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a b s t r a c t

A Bayesian statistical approach is introduced to assess experimental data from the analyses
of radionuclide activity concentration in environmental samples (low activities). A theo-
retical model has been developed that allows the use of known prior information about
the value of the measurand (activity), together with the experimental value determined
through the measurement. The model has been applied to data of the Inter-laboratory
Proficiency Test organised periodically among Spanish environmental radioactivity labora-
tories that are producing the radiochemical results for the Spanish radioactive monitoring
network. A global improvement of laboratories performance is produced when this
prior information is taken into account. The prior information used in this methodo-
logy is an interval within which the activity is known to be contained, but it could be
extended to any other experimental quantity with a different type of prior information
available.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian methods are increasingly being used with success in
experimental sciences. These methods are particularly well-
suited to incorporate available prior information into the
analysis of the experimental quantities, providing a power-
ful and flexible tool, essential in several scientific areas.
Bayesian Statistics provides a more intuitive assessment pro-
cedure, closer to the thinking of the scientist than classical
methodologies [1–4]. In this paper, a Bayesian approach is
introduced to assess experimental data analysis from the
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measurement of radionuclide activity concentration1 in envi-
ronmental matrices.

Any measurement result is in general a point estimate
of the measured quantity (measurand), the true value of
which remains unknown. Therefore, a set of plausible values
of the measurand around the estimate should be appraised
[5]. Under symmetry assumptions, this may be described by
the standard deviation of a probability density describing the
remaining uncertainty with respect to the true (unknown)
value of the measurand (uncertainty of measurement [6]).

1 The radioactive contents in a sample is usually expressed by
unit of volume (activity concentration) or mass (specific activity).
However, further on in the text, the generic term “activity” will be
employed to refer any of the possible forms to express the activity
(absolute, specific, concentration).
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In the case of the determination of radionuclide activity
concentration, the uncertainty has an intrinsic compo-
nent due to the counting rate that becomes increasingly
important as the activity is lower, and other compo-
nents associated to the rest of magnitudes involved in
the measurement, such as detector calibration, back-
ground effect, nuclear parameters and sample mass or
volume.

The aim of this paper is to show how the knowledge of prior
information on the quantity of interest (activity) may be com-
bined with the experimental data to obtain a better estimator
of the quantity of interest than that obtained from a classi-
cal use of the experimental data. This has been implemented
through Bayesian methods. Specifically, the Bayesian Statis-
tics has been applied to study how the experimental data are
modified when the analyst has been informed about an activ-
ity interval in which the true value of the activity is delimited.
The case of study is the Inter-laboratory Proficiency Test organ-
ised periodically among Spanish environmental radioactivity
laboratories that are producing the radiochemical results for
the Spanish radioactive monitoring network [7]. The frame-
work of these exercises consists on the determination of
different radionuclide activities in a test sample distributed
to the laboratories of the network. Each laboratory reports the
results of the analysis to the coordinator, that will assess the
laboratory performance through statistical analysis. A value is
assigned for each measurand that is disclosed to participants
after the reporting deadline, but an information interval on
the activity level is given when distributing the samples on a
regular basis. The inclusion of the information interval in the
basis of the Proficiency Test is a general policy in the Span-
ish laboratory intercomparisons, to ensure the participants
that the sample activity conforms with their routine analy-
sis (environmental activity levels). The activity level interval
is informed to participants since, for the monitoring networks
analyses, the laboratories always know something about the
usual levels of activity in the environmental samples they are
measuring.

The results produced by the laboratories can be mod-
ified (to improve its quality), when this prior information
is incorporated into the statistical model for assessment.
To study this effect, a theoretical model has been devel-
oped and its application to the results of an Inter-laboratory
Proficiency Test organised in Spain [8] is presented and
discussed.

2. Posterior distribution of the activity

Any statistical procedure requires a model which describes
the probabilistic relationship beween the obervations and the
quantity of interest (in this case, the true activity contained in
the sample). To this model, the Bayesian approach adds a prior
distribution which encapsulates whatever prior knowledge is
available on the true value of the quantity of interest. In our
case, as it is explained later, obervations are assumed to have
a normal distribution centered at true value of the quantity
of interest, which is assumed to belong to a particular finite
interval.

Let x denote the laboratory measurement result of the
activity,2 and let u be the deviation which models the corre-
sponding measurement uncertainty,3 which is assumed to be
known [6]. The pair (x, u) is the information determined by
the laboratory. Let ! ∈ " be the actual (unknown) activity; this
is the quantity of interest. From the Bayesian point of view,
there exists a probability density #(!) (which is a rational mea-
sure of uncertainty about the value of !, not a description
of any frequentist variation), which encapsulates all avail-
able information about its value before the measurements are
made. After the observation of x this probability distribution is
updated, via Bayes theorem to the posterior distribution #(!|x),
which combines the information about ! contained in the data
with the prior information contained in #(!).

Moreover, it is possible to specify the conditional probabil-
ity density of the observation x, denoted by p(x|!), by using a
probability model which takes into account the physical pro-
cess which generates the experimental data x for any given
!.

By Bayes theorem, the information about the value of ! after
the experimental result has been obtained x is described by the
corresponding posterior distribution #(!|x) given by

#(!|x) = p(x|!) #(!)
p(x)

= p(x|!) #(!)∫
"

p(x|!) #(!)d!
. (1)

This combines the information about ! contained in the data
x with the information about ! contained in the prior distribu-
tion #(!).

To obtain an explicit expression for #(!|x), both p(x|!) and
#(!) must be specified. In the problem we are interested, the
variation of the measurement x around the true value of the
activity ! is due to many, essentially independent causes; as a
consequence, by the central limit theorem, it is reasonable to
assume that x is normal distributed,4 that is

p(x|!) = N(x|!, u) = 1

u
√

2#
e−(1/2) (((x−!)2)/(u2)) (2)

Thus, since u is assumed to be known, substituting into (1)
the posterior distribution of the activity becomes

#(!|x) = N(x|!, u) #(!)∫
"

N(x|!, u) #(!) d!
. (3)

The prior information available by the laboratory about the
activity ! is a reference interval $ = [m, M] in which the activ-

2 The result x may be obtained from a single measurement, or
can be the mean value of a set of measurements.

3 According to the GUM guide [6], the exact terminology of the
measurement uncertainty of x is u(x). This terminology will be sim-
plified in the paper, and the uncertainty will be denoted by u. This
simplification avoids the confusion that may arise of considering
any functional dependence between u and x, which is not the case
in the paper (there is no dependence in this context).

4 It can be shown that this is a correct approximation when the
uncertainties of input quantities used to determine the activity
result x are small, that is, the same conditions that allow the
(linear) uncertainties propagation rules of ISO GUM guide to be
applied.
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ity is included, so that it is known that m ≤ ! ≤ M. This activity
interval is informed by the organiser of the Proficiency Test to
each laboratory, in order to indicate the activity level of the
radionuclide contained in the sample. For example, the labo-
ratory has to determine the activity of 239+240Pu contained in a
water sample, and it is informed that the reference interval is
$ = [40, 100] Bq m−3. The true value of the activity ! is known
by the organiser with standard uncertainty according to the
GUM,5! = (49.8 ± 1) Bq m−3, whilst the laboratory has the men-
tioned prior information, plus the experimental information
obtained from its own measurement [8].

Since there is no reason a priori to assume that some parts
of $ are more likely to contain ! than others, it seems rea-
sonable to assume a uniform prior distribution for ! over this
interval,6 so that

#(!) =

{ 1
M − m

! ∈ $

0 ! /∈ $
(4)

A far stronger argument may be given for the use of the
prior (4). Indeed, it may be shown that this is the reference
prior [2] for this model, that is the prior which precisely
describes that the only available information about the value
of ! is that it lies within the interval $ = [m, M].

Substituting (4) into (3) the factors 1/(M − m) cancel out and
one immediately gets

#(!|x) =






N(x|!, u)
∫ M

m

N(x|!, u) d!

! ∈ $

0 ! /∈ $

(5)

Since for any normal density N(x|%, u) = N(%|x, u), Eq. (5)
may also be expressed as

#(!|x) =






N(!|x, u)
∫ M

m

N(!|x, u) d!

! ∈ $

0 ! /∈ $

(6)

Hence, the resulting posterior distribution #(!|x) is a trun-
cated normal, that vanishes outside the interval $, and is
normalised inside the interval, so that

∫
$

#(!|x) d! = 1 (Fig. 1). A
limit case of this distribution is the situation $ = (−∞, ∞), that

5 The test sample was prepared by the CIEMAT Metrologic Labo-
ratory for the Measurement of Ionising Radiations.

6 This rectangular distribution represents the prior knowledge of
the quantity of interest, the real activity. In the GUM guide, rect-
angular and other types of distributions are used to describe the
incomplete knowledge about an input quantity in order to prop-
agate the uncertainty (type B uncertainties). The central idea is
the same in both cases: the distribution represents the (always
incomplete in metrology) knowledge of the experimental quantity.
Rectangular and other distributions used to describe the incom-
plete knowledge of input quantities in the GUM guide can be seen
in fact as prior distributions. In order to use them, a prior knowl-
edge about the input quantity must be available. Otherwise, the
shape of the distribution (rectangular, triangular) could not be
decided.

Fig. 1 – Probability density !("|x) of the true activity " when
it is considered both experimental and prior information.

is, when no prior knowledge about the activity value is con-
sidered. Some information is however always available about
the value of the measurand (since the activity is a positive
quantity, a ≥ 0, and the number of radioactive atoms in a sam-
ple cannot be infinite), though this information is (almost)
never utilised.7 This corresponds to the classical treatment of
the experimental data, that implicitly ignores the additional
knowledge about the limited value of the activity, what in turn
directly leads to the classical result, the normal probability
distribution #(!|x) = N(!|x, u). This may occur even when prior
information is considered, if the interval is large enough.8 The
difference between #(!|x) and the normal (not truncated) dis-
tribution becomes relevant when the interval is small enough,
so that it provides significant information not contained in the
normal distribution itself. This is the case that will be studied,
when the effects of prior information available about the true
value of activity ! are noticeable.

3. Posterior expectation of the activity

The posterior density, #(!|x), describes all available infor-
mation about the value of the true activity !, combining
prior knowledge and experimental information. However, it
is required to obtain a point estimator of !, which act as sum-
mary of the information contained in #(!|x). In other words, a
single value must be obtained as a result that combines the
experimental data and our prior knowledge. Being the poste-
rior distribution #(!|x), the result is simply the expected value
of !. Since the posterior expectation of ! is Bayesian modifi-
cation of the initial experimental value x, we will denote this
expectation as xB. This may be computed as the ratio of two

7 A particular and very interesting limit case can be studied
when the only knowledge available is that the activity is a pos-
itive quantity, that is, $ = [0, ∞). It should be noted that this prior
information is used in the recent revision of ISO 11929-7 standard
for the determination of characteristic limits for ionising radiation
measurements [9].

8 That is, if M > x + 3u and m < x − 3u then #(!|x) ( N(!|x, u),
since the difference between distribution #(!|x) and N(!|x, u) is the
probability in the tails, that in such case is not relevant.



200 a n a l y t i c a c h i m i c a a c t a 6 0 4 ( 2 0 0 7 ) 197–202

integrals,

xB = E[!|x] =
∫ M

m

! #(!|x) d! =

∫ M

m
! N(!|x, u) d!

∫ M

m
N(!|x, u) d!

, (7)

both of which may be expressed in terms of simple definite
integrals. Moreover, with an appropriate change of variables,
the integral in the denominator of (7) may be written in terms
of the error function as

I =
∫ M

m

N(!|x, u) d! = 1
2

[
erf

( 1
√

2

M − x

u

)
− erf

( 1
√

2

m − x

u

)]
(8)

where erf(z) is the error function defined as

erf(z) = 2
√

#

∫ z

0
e−ω2

dω. (9)

With a similar change of variables, the integral in the
numerator of (7) may be written in terms of the last result
as

∫ M

m

! N(!|x, u) d! = x I + 2u
√

#

∫ (1/
√

2)((M−x)/u)

(1/
√

2)((m−x)/u)
ω e−ω2

dω

= x I + u2[N(m|x, u) − N(M|x, u)]. (10)

and, therefore, substituting into (7) one finally has

xB = x + ε, (11)

ε = 2u2 N(m|x, u) − N(M|x, u)

erf((1/
√

2) ((M − x)/u)) + erf((1/
√

2) ((x − m)/u))
. (12)

The expression (11), xB = x + ε, can be interpreted as fol-
lows; with quadratic loss, the best point estimator xB of the
activity ! when the prior information is known, is equal to the
the initial experimental value x, modified by a perturbation ε

that contains the prior information available on the true value
of the activity.

It can be shown that, as one would expect, the correction
term ε tends to zero when the interval is big enough, that is,
if M ) x + 3u and m * x − 3u. If any of these conditions is not

satisfied (the interval $ is small enough) the value of the cor-
rection is not negligible. Moreover, it is possible to study the
tendency of the correction, from the asymmetric shape of the
posterior probability density, that is, from the relative position
of the data x inside the interval $ (see Fig. 1). As the sign of the
denominator in (12) is positive, the sign of ε is determined by
the sign of the numerator. Thus, if N(m|x, u) > N(M|x, u) then
ε > 0, while if N(m|x, u) < N(M|x, u) then ε < 0. This last case
corresponds to Fig. 1, and therefore the correction tends to
place xB to the left side of the original value x. In general, the
term ε tends to correct the asymmetric shape of the distribu-
tion, allowing to determine a value xB better centered in the
interval $ of possible ! values than the conventional estimator,
the initial data x. It can be demonstrated that this correction
will improve the estimate x directly obtained from the data,
giving a value xB which in most cases will be closer to ! than x.
Only when x lies between ! and the middle point of the inter-
val, the value xB will not improve, most probably the result will
stay essentially unaltered, as the correction is zero for values x
placed in the middle of the interval. The general improvement
of the data will be shown using real experimental data in next
section.

4. Application to Proficiency Test data
CSN/CIEMAT-04

In order to examine what variation produces the described
Bayesian approach in the results of the activity measure-
ments, the data of the Inter-laboratory Proficiency Test of
environmental radioactivity laboratories CSN/CIEMAT-2004
have been used [8]. This test consisted on the measure-
ment of a synthetically prepared water sample, containing
the radionuclides listed in Table 1, whose reference activities
xRef (metrologically certified) are in the characteristic range of
environmental samples.

The total number of participant laboratories in the Profi-
ciency Test was 35, but since all of them do not have capacity
to analyse all the radionuclides, the number of participants
in the measurement of each radionuclide (N in the table) is
smaller. In the participation basis of the test, the coordinator
informed to each laboratory the interval $ = [m, M] in which
the activity of each radionuclide is limited. Once the measure-

Table 1 – Radionuclides determined in the Inter-laboratory Proficiency Test of environmental radioactivity laboratories
CSN/CIEMAT-2004

Radionuclide N xRef (Bq m−3) (p (% of xRef) m (Bq m−3) M (Bq m−3)

3H 17 10136 12 8000 15000
90Sr 27 187 20 100 400
137Cs 35 499 8 200 900
239+240Pu 10 49.8 14 40 100
241Am 13 50.2 16 30 100
˛T 33 90.8 22 50 150
ˇT 33 1333 17 800 1800
ˇP 23 808 13 600 1200

˛T, ˇT, ˇR, are, respectively, gross alpha, gross beta and residual beta index. The number of participants in the analysis of each radionuclide is
N, being xRef the reference activity, (p the precision established for each radionuclide (expressed as a percentage of xRef) and m, M the minimum
and maximum activity values of the interval $, informed by the test organiser to the laboratories.
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Table 2 – Data from 239+240Pu analysis in the CSN/CIEMAT-2004 Proficiency Test

Lab code x (Bq m−3) u (Bq m−3) xB (Bq m−3) |xB|/|x| |z| |zB| |zB|/|z|

1 47.60 1.10 47.60 1.000 0.316 0.316 1.000
2 34.90 1.00 40.18 1.151 2.138 1.380 0.645
3 41.20 4.25 43.87 1.065 1.234 0.851 0.690
4 40.70 1.62 41.58 1.022 1.306 1.179 0.903
5 53.40 1.10 53.40 1.000 0.516 0.516 1.000
6 43.05 1.49 43.12 1.002 0.968 0.958 0.989
7 43.50 1.75 43.60 1.002 0.904 0.890 0.985
8 42.00 2.50 42.92 1.022 1.119 0.987 0.882
9 53.60 4.50 53.62 1.000 0.545 0.548 1.005

10 62.00 1.50 62.00 1.000 1.750 1.750 1.000

$ = [40, 100] Bq m−3.

ments are performed, each laboratory reported the results of
activity and its uncertainty, (x, u) respectively, for each ana-
lyzed radionuclide. The evaluation of the Proficiency Test was
performed following the international protocols [10–12]. The
assessment of performance is calculated for each laboratory
using the statistical scheme z-score,

z = x − xRef

(p
(13)

where (p is the fitness for purpose based “standard deviation
for proficiency assessment”, which is established by the coor-
dinator for each radionuclide, and whose value range between
8% of the reference value (137Cs) and 22% (gross alpha activity
˛T). The z-score is therefore an indication of the deviation of
the measurement x with respect to the reference value xRef

expressed in terms of the established deviation (p. Interpreta-
tion of z-score is based on the normal distribution N(x|Ref, (p)
assuming that xRef is very close to !, so that a value |z| ≤ 2 is
designated satisfactory, |z| > 3 is considered not-satisfactory
and 2 < |z| < 3 is designated acceptable.9

To compare the effects of the Bayesian approach, two z-
scores will be calculated: using the activity value x reported by
the laboratory, and using the modified Bayesian value xB = !∗,
and in this case we will denote z-score as zB, that is

• Result without prior information; x → z = ((x − xRef)/((p))
• Result with prior information; xB → zB = ((xB − xRef)/((p))

Since the Bayesian approach allows to determine a value xB,
that should be more accurate than the value x initially deter-
mined experimentally, this would have to be translated into
a z-score with a smaller absolute value in the Bayesian case,
that is, it would have to be obtained |zB| ≤ |z|, or equivalently
|zB|/|z| ≤ 1

In Table 2 the data relative to 239+240Pu analysis are pre-
sented: The laboratory code, the reported values of activity

9 It must be mentioned that the International Standard Protocols
commonly used to perform and evaluate Proficiency Tests [10–12]
use the classical (not Bayesian) decision theory. The Proficiency
Test described in this paper [8] was designed and evaluated fol-
lowing these protocols, and therefore classical z-score was used.
A very interesting study on how to compare measurement results
using the Bayesian Decision theory can be found in [13].

Fig. 2 – Quotient |zB|/|z| (Bayesian z-score with respect to
the classic one) for the 239+240Pu analysis in the
INTER/CSN-2004 Proficiency Test.

and its uncertainty, (x, u) respectively, the Bayesian activity xB,
the quotient |xB|/|x|, that shows the variation experienced by
the Bayesian value xB with respect to the classic value x, the
absolute values of z-score: classic |z| and Bayesian |zB|, and the
quotient |zB|/|z|, which describes the variation of the Bayesian
score with respect to the classic one.

Table 2 shows that the values |zB|/|z| are practically equal
or smaller than the unit, what confirms the general improve-
ment produced by the Bayesian treatment of the experimental
data using the prior knowledge of the interval $ = [m, M], even
in this case in which ! is near one border of the interval. Fig. 2
represents |zB|/|z| for each laboratory, showing clearly that
|zB|/|z| ≤ 1. It can be observed that, from 10 data, 4 of them
have improved their quality, whereas the rest remains essen-
tially unaltered. The biggest change in z is for laboratory 2
(|zB|/|z| = 0.645), from z = 2.14 to zB = 1.38, changing notice-
ably the quality of the result, that in fact produces a shift on the
scoring, from acceptable (2 < |z| < 3) to satisfactory (|z| ≤ 2).
With respect to the relative modification of the analysis results
|xB|/|x|, the greatest change, 15%, is for the same laboratory,10

being the rest below the 6%. Indeed, these modifications of

10 The laboratory 2 reports an activity value (34.90) that is outside
the provided information interval (40–100). The Bayesian transfor-
mation is specially significant in this case, as it moves the activity
value into the information interval (40.18).
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the activity values are significant with respect to the standard
deviation for proficiency assessment ((p = 14%), and therefore
produce the mentioned variation in the scoring.

Summarising, the decreasing trend of z-score values
observed in Fig. 2 points to a global improvement in perfor-
mance through Bayesian treatment. This can be confirmed by
means of the sum of quadratic deviations, being smaller in the
Bayesian approach, in particular S =

∑N
i=1|z|2 = 14.5, whereas

SB =
∑N

i=1|zB|2 = 10.4. With respect to the individual labora-
tory results, Fig. 2 demonstrates that each data improves,
or remains unchanged. Regarding the decission of a labora-
tory when reporting a result, concerning to the application
of the Bayesian approach, it has been clearly demonstrated
that the results most probably will improve. Therefore, it is
always worth to apply the Bayesian transformation. In other
words, each laboratory can decide whether to apply or not the
Bayesian approach, but it must at least know that the fact of
not applying it can be disadvantageous for the quality of the
results emitted by the laboratory, as it has been shown in the
case of laboratory 2.

It could be objected that the Bayesian method is artifi-
cial, since if the interval $ is unknown, the quality of the
measurement would be z (not zB) and, therefore the per-
formance of the laboratory is the initial value of z-score.
Nevertheless, radiochemical analysis involves experimental
information and parametric (not measured) information. In
particular, the experimental information is the counting rate
of the sample, the measurement of the background, the cal-
ibration of the detector, the chemical recovery, the mass of
the sample, the time of counting, and in general any directly
measurable information. The parametric (which is equivalent
to prior) information necessary to determine the final result
of the activity are the decay constants, the half-life periods,
the emission intensities, etc. of the radiation. The final qual-
ity of the result of the analysis will depend therefore on the
quality of all the information used in the determination of the
mesurand. In consequence, the laboratory should incorporate
suitably all the available prior information, in order to report
the best quality result. In particular, the prior knowledge of the
interval in which the activity is limited is an information that
should not be to be ignored, being comparable to any other
prior information used in the determination of the mesurand,
such as the tabulated constants, or any other used parameter
not measured.

It may then be stated that the use of the Bayesian estimate
xB = E[!|x] improves the quality of the analysis. This result is a
direct consequence of using all the available information, both
experimental and prior information.

5. Conclusions

The developed model has shown that the quality of the results
produced by a laboratory can be improved, by incorporat-

ing the prior information known by the analyst, through
Bayesian statistics. This model has been applied to the scope
of radioactive analyses and the utilised prior information is
an information interval on the activity level, but it could be
extended to any experimental quantity under different prior
available information. The analyst is always acquainted on
some prior information on the measurand, and can apply the
Bayesian approach, but only when the information is signifi-
cant compared to the experimental data, the modification can
be noticed. In the case of environmental radioactivity mea-
surements, when the information interval is small enough,
compared to the confidence limits of the uncertainty, the
change would be appreciated. Moreover, the modification
increases as the value of the measurement is far from the
middle point of the interval.

Proficiency Tests constitute a suitable application field to
essay and validate this Bayesian methodology, where a deeper
study for quantitative assessment of the laboratory results
can be achieved, and the z scoring of participants can be
improved.
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