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Abstract

Point and region estimation may both be described as specific decision problems. In point estimation,
the action space is the set of possible values of the quantity on interest; in region estimation, the action
space is the set of its possible credible regions. Foundations dictate that the solution to these decision
problems must depend on both the utility function and the prior distribution. Estimators intended for
general use should surely be invariant under one-to-one transformations, and this requires the use
of an invariant loss function; moreover, an objective solution requires the use of a prior which does
not introduce subjective elements. The combined use of an invariant information-theory based loss
function, the intrinsic discrepancy, and an objective prior, the reference prior, produces a general
solution to both point and region estimation problems. In this paper, estimation of the two parameters
of univariate location-scale models is considered in detail from this point of view, with special attention
to the normal model. The solutions found are compared with a range of conventional solutions.
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1 Introduction

Point and region estimation of the parameters of location-scale models have a long,
fascinating history which is far from settled. Indeed, the list of contributors to the simpler
examples of this class of problems, estimation of the normal mean and estimation of the
normal variance, reads like a Who’s Who in 20th century statistics.
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jose.m.bernardo@uv.es, www.uv.es/bernardo
Received: March 2006



4 Objective Bayesian point and region estimation in location-scale models

In this paper, an objective Bayesian decision-theoretic solution to both point and
region estimation of the parameters of location-scale models is presented, with special
attention devoted to the normal model. In marked contrast with most approaches, the
solutions found are invariant under one-to-one reparametrization.

1.1 Notation

Probability distributions are described through their probability density functions, and
no notational distinction is made between a random quantity and the particular values
that it may take. Bold italic roman fonts are used for observable random vectors
(typically data) and bold italic greek fonts for unobservable random vectors (typically
parameters); lower case is used for variables and upper case calligraphic for their
dominion sets. The standard mathematical convention of referring to functions, say fx(·)
and gx(·) of x ∈ X, respectively by f (x) and g(x) is often used. Thus, the conditional
probability density of observable data x ∈ X given ωωω is represented by either px(· |ωωω)
or p(x |ωωω), with p(x |ωωω) ≥ 0, x ∈ X, and

∫
X p(x |ωωω) dx = 1, and the posterior

density of a non-observable parameter vector θθθ ∈ Θ given data x is represented by
either πθθθ(· | x) or π(θθθ | x), with π(θθθ | x) ≥ 0 and

∫
Θ
π(θθθ | x) dθθθ = 1. Density functions of

specific distributions are denoted by appropriate names. In particular, if x has a normal
distribution with mean μ and standard deviation σ, its probability density function will
be denoted N(x | μ, σ), and if λ has a gamma distribution with parameters α and β,
its probability density function will be denoted Ga(λ |α, β), with E[λ] = α/β, and
Var[λ] = α/β2.

It is assumed that available data x consist of one observation from the family
F ≡ {p(x |ωωω), x ∈ X, ωωω ∈ Ω} of probability distributions for x ∈ X, and that
one is interested in point and region estimation of some function θθθ = θθθ(ωωω) ∈ Θ of
the unknown parameter vector ωωω. Often, but not necessarily, data consist of a random
sample x = {x1, . . . , xn} of some simpler model {q(x |ωωω), x ∈ X, ωωω ∈ Ω}, in which
case, X = Xn and the likelihood function is p(x |ωωω) =

∏n
j=1 q(xj |ωωω). Without loss of

generality, the original parametric family F may be written as

F ≡ {px(· | θθθ, λλλ), x ∈ X, θθθ ∈ Θ, λλλ ∈ Λ} (1)

in terms of the vector of interest θθθ, and a vector λλλ of nuisance parameters. A point
estimator of θθθ is some function of the data θ̃θθ(x) ∈ Θ such that, for each possible set of
observed data x, θ̃θθ(x) could be regarded as an appropriate proxy for the actual, unknown
value of θθθ. A p-credible region of θθθ is some subset Cp(x,Θ) of Θ whose posterior
probability is p. Within this framework, attention in this paper focuses on problems
where data consist of a random sample x = {x1, . . . , xn} from a location-scale model
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m(x | μ, σ, f ), of the form

m(x | μ, σ, f ) = σ−1 f {σ−1(x − μ)}, x ∈ �, μ ∈ �, σ > 0, (2)

where f (.) is some probability density in�, so that f (y) ≥ 0,
∫
� f (y) dy = 1. Interest lies

in either the location parameter μ, the scale parameter σ, or some one-to-one function
of these, and the likelihood function is

p(x | μ, σ) =
∏n

j=1
m(xj | μ, σ, f ) = σ−n

∏n

j=1
f {σ−1(xj − μ)}. (3)

Standard notation is used for the sample mean and the sample variance, respectively
denoted by x =

∑n
j=1 xj/n and s2 =

∑n
j=1(xj − x)2/n. Many conventional point estimators

of the variance of location-scale models are members of the family of affine invariant
estimators,

σ̃2
ν =

ns2

ν
=

1
ν

∑n

j=1
(xj − x)2, ν > 0 . (4)

In particular, with normal data, the MLE of the variance σ2 is s2 = σ̃2
n, and the unbiased

estimator is σ̃2
n−1. More sophisticated estimators may sometimes be defined in terms of

affine estimators; for instance, Stein (1964) and Brown (1968) estimators of the normal
variance may respectively be written as

σ̃2
stein = min

{
σ̃2

n+1, σ̃
2
(n+2)/(1+z2)

}
, σ̃2

brown = min
{
σ̃2

n−1, σ̃
2
n/(1+z2)

}
,

where z = x/s is the standardized sample mean.

1.2 Contents

Section 2 provides a short review of intrinsic estimation, our approach to both point
and region estimation. An information-theory based invariant loss function, the intrinsic
discrepancy, is proposed as a reasonable general alternative to the conventional (non-
invariant) quadratic loss. As is usually the case in modern literature, point estimation
is described as a decision problem where the action space is the set of possible values
for the quantity of interest; an intrinsic point estimator is then defined as the Bayes
estimator which corresponds to the intrinsic loss and the appropriate reference prior.
This provides a general invariant objective Bayes point estimator. Less conventionally,
region estimation is also described as a decision problem where, for each p, the action
space is the set of possible p-credible regions for the quantity of interest; a p-credible
intrinsic region estimator is then defined as the lowest posterior loss p-credible region
with respect to the intrinsic loss and the appropriate reference prior. This provides a
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general invariant objective Bayes region estimator which always contains the intrinsic
point estimator.

In Section 3 location-scale models are analyzed from this point of view. In particular,
intrinsic point estimators and intrinsic region estimators are derived for the mean of a
normal model, the variance of a normal model, and the scale parameter of a Cauchy
model.

2 Intrinsic Estimation

2.1 The intrinsic discrepancy loss function

Point estimation of some parameter vector θθθ ∈ Θ is customarily described as a decision
problem where the action space is the set A = {θ̃θθ; θ̃θθ ∈ Θ} of possible values of the
vector of interest. Foundations dictate (see e.g., Bernardo and Smith, 1994, Ch. 2 and
references therein) that to solve this decision problem it is necessary to specify a loss
function 
{θ̃θθ, θθθ}, such that 
{θ̃θθ, θθθ} ≥ 0 and 
{θθθ, θθθ} = 0, which describes, as a function
of θθθ, the loss suffered from using θ̃θθ as a proxy for the unknown value of θθθ. The loss
function is context specific, and should be chosen in terms of the anticipated uses of
the estimate; however, a number of conventional loss functions have been suggested
for those situations where no particular uses are envisaged, as in scientific inference.
The simplest of these conventional loss functions (which typically ignore the presence
nuisance parameters) is the ubiquitous quadratic loss, 
{θ̃θθ, (θθθ, λλλ)} = (θ̃θθ − θθθ)t(θ̃θθ − θθθ); the
corresponding Bayes estimator, if this exists, is the posterior mean, E[θθθ | x]. Another
common conventional loss function is the zero-one loss, defined as 
{θ̃θθ, (θθθ, λλλ)} = 1, if θ̃θθ
does not belong to a ε-radius neighbourhood of θθθ, and zero otherwise; as ε → 0, the
corresponding Bayes estimator converges to the posterior mode, Mo[θθθ | x]. For details,
see, e.g., Bernardo and Smith (1994, p. 257).

Example 1 (Normal variance) With the usual objective prior π(μ, σ) = σ−1, the
(marginal) reference posterior density of σ is the square root inverted gamma

π(σ | x) = π(σ | s, n) =
n(n−1)/2 sn−1

2(n−3)/2 Γ[(n − 1)/2]
σ−n e−

1
2 n s2/σ2

, n ≥ 2. (5)

The quadratic loss in terms of the variance, 
{σ̃2, σ2} = (σ̃2 − σ2)2, leads to E[σ2 | x] =
σ̃2

n−3 (which obviously requires n ≥ 3). Similarly, the quadratic loss in terms of the
standard deviation, 
{σ̃, σ} = (σ̃ − σ)2, yields

E[σ | x] =

√
n
2
Γ[(n − 2)/2]
Γ[(n − 1)/2]

s, n ≥ 3. (6)
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For moderate n values, the Stirling approximation of the Gamma functions in (6)
produces E[σ | x]2 ≈ σ̃2

n−5/2. Notice that, using the conventional quadratic loss function,
the Bayes estimate of σ2 is not the square of the Bayes estimate of σ. This lack of
invariance is not an special feature of the quadratic loss; on the contrary, this is the
case of most conventional loss functions. For instance, the use of the slightly more
sophisticated standardized quadratic loss function on the variance,


stq(σ̃
2, σ2) = [(σ̃2/σ2) − 1]2 (7)

yields (if n ≥ 2, for π(σ | x) to be proper)

arg min
σ̃2>0

∫ ∞

0

[(σ̃2/σ2) − 1]2 π(σ | x) dσ =
n s2

n + 1
= σ̃2

n+1, (8)

which is also the minimum risk equivariant estimator (MRIE) of σ2 under this loss,
while the standardized quadratic loss function it terms of the standard deviation,

(σ̃, σ) = [(σ̃/σ) − 1]2 yields (again, if n ≥ 2)

arg min
σ̃2>0

∫ ∞

0

[(σ̃/σ) − 1]2 π(σ | x) dσ =

√
n
2

Γ[n/2]
Γ[(n + 1)/2]

s, (9)

which is different from (6), and whose square is not (8). Similarly, for the zero-one
loss in terms of σ2, the Bayes estimator is the mode of the posterior distribution of σ2,
π(σ2 | x) = π(σ | x)/(2σ), which is Mo(σ2 | x) = σ̃2

n+1, the same as (8), while the Bayes
estimator for the zero-one loss in terms of σ is Mo(σ | x) = s, the MLE of σ, whose
square is obviously not the same as (8). For further information on alternative point
estimators of the normal variance, see Brewster and Zidek (1974) and Rukhin (1987).

As Example 1 dramatically illustrates, conventional loss functions are typically not
invariant under reparametrization. As a consequence, the Bayes estimator φφφ∗ of a one-
to-one transformation φφφ = φφφ(θθθ) of the original parameter θθθ is not necessarily φφφ(θθθ∗)
and thus, for each loss function, one may produce as many different estimators of the
same quantity as alternative parametrizations one is prepared to consider, a less than
satisfactory situation. Indeed, scientific applications require this type of invariance. It
would certainly be hard to argue that the best estimate of, say the age of the universe
is θ∗ but that the best estimate of the logarithm of that age is not log(θ∗). Invariant loss
functions are required to guarantee invariant estimators.

With no nuisance parameters, intrinsic loss functions (Robert, 1996), of the general
form 
(θ̃θθ, θθθ) = 
{px(. | θ̃θθ), px(. | θθθ)} shift attention from the discrepancy between the
estimate θ̃θθ and the true value θθθ, to the more relevant discrepancy between the statistical
models they label, and they are always invariant under one-to-one reparametrization.
The intrinsic discrepancy, introduced by Bernardo and Rueda (2002), is a particular
intrinsic loss with specially attractive properties.



8 Objective Bayesian point and region estimation in location-scale models

Definition 1 (Intrinsic Discrepancy) The intrinsic discrepancy between two elements
px(· |ωωω1) and px(· |ωωω2) of the parametric family of distributions F = {px(· |ωωω), x ∈
X(ωωω), ωωω ∈ Ω}, is

δx(ωωω1, ωωω2) = δ{px(. |ωωω1), px(. |ωωω2)} = min{κx(ωωω1 |ωωω2), κx(ωωω2 |ωωω1)},
κx(ωωω j |ωωωi) =

∫
X(ωωωi)

px(x |ωωωi) log
px(x |ωωωi)
px(x |ωωω j)

dx,

The intrinsic discrepancy δx{F1,F2} between two subsets F1 and F2 of F is the minimum
intrinsic discrepancy between its elements,

δx(F1,F2) = min
ωωω1∈F1 , ωωω2∈F2

δ{px(. |ωωω1), px(. |ωωω2)}

Thus, the intrinsic discrepancy δ(ωωω1, ωωω2) between two parameter values ωωω1 and ωωω2 is
the minimum Kullback-Leibler directed logarithmic divergence (Kullback and Leibler,
1951) between the distributions px(. |ωωω1) and px(. |ωωω2) which they label. Notice that
this is obviously independent of the particular parametrization chosen to describe the
distributions. The intrinsic discrepancy is a divergence measure in the class F ; indeed,
(i) it is symmetric, (ii) it is non-negative and (iii) it is zero if, and only if, px(x |ωωω1) =
px(x |ωωω2) almost everywhere. Notice that in Definition 1 the possible dependence of the
sampling space X = X(ωωω) on the parameter value ωωω is explicitly allowed, so that the
intrinsic discrepancy may be used with non-regular models where the supportX(ωωω1) of,
say, px(. |ωωω1) may be strictly smaller than the support X(ωωω2) of px(. |ωωω2).

The intrinsic discrepancy is also invariant under one-to-one transformations of the
random vector x. Moreover, directed logarithmic divergences are additive with respect
to conditionally independent observations. Consequently, if x = {x1, . . . , xn} is a random
sample from, say qx(· |ωωω) so that the probability model is p(x |ωωω) =

∏n
i=1 q(xj |ωωω),

then the intrinsic discrepancy δx{ωωω1, ωωω2} between px(· |ωωω1) and px(· |ωωω2) is simply
n δx{ωωω1, ωωω2}, that is, n times the intrinsic discrepancy between qx(· |ωωω1) and qx(· |ωωω2).

In the context of point estimation, the intrinsic discrepancy leads naturally to the
(invariant) intrinsic discrepancy loss δx{θ̃θθ, (θθθ, λλλ)} defined as the intrinsic discrepancy
between the assumed model px(· | θθθ, λλλ) and its closest approximation within the set
{px(· | θ̃θθ, λ̃λλ), λ̃λλ ∈ Λ} of all models with θθθ = θ̃θθ.

Definition 2 (Intrinsic discrepancy loss) Consider the family of probability
distributions F = {px(· | θθθ, λλλ), θθθ ∈ Θ, λλλ ∈ Λ, x ∈ X(ωωω, λλλ)}. The intrinsic discrepancy
loss from using θ̃θθ as a proxy for θθθ is

δx{θ̃θθ, (θθθ, λλλ)} = inf
λ̃λλ∈Λ

δx{(θ̃θθ, λ̃λλ), (θθθ, λλλ)},

the intrinsic discrepancy between px(· | θθθ, λλλ) and the set {px(· | θ̃θθ, λ̃λλ), λ̃λλ ∈ Λ}.
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Notice that the value of δx{θ̃θθ, (θθθ, λλλ)} does not depend on the particular parametrization
chosen to describe the problem. Indeed, for any one-to-one reparametrizations φφφ = φφφ(θθθ)
and ψψψ = ψψψ(λλλ),

δx{φ̃φφ, (φφφ, ψψψ)} = δx{θ̃θθ, (θθθ, λλλ)} (10)

so that, as one should surely require, the loss suffered from using φ̃φφ = φφφ(θ̃θθ) as a proxy
for φφφ(θθθ) is precisely the same as the loss suffered from using θ̃θθ as a proxy for θθθ, and this
is true for any parametrization of the nuisance parameter vector.

Under frequently met regularity conditions, the two minimizations required in
Definition 2 may be interchanged. This makes analytical derivation of the intrinsic loss
considerably simpler.

Theorem 1 (Computation of the intrinsic discrepancy loss) Let F be a parametric
family of probability distributions

F = {p(x | θθθ, λλλ), θθθ ∈ Θ, λλλ ∈ Λ, x ∈ X(θθθ, λλλ)},

with convex support X(θθθ, λλλ) for all θθθ and λλλ. Then,

δx{θ̃θθ, (θθθ, λλλ)} = inf
λ̃λλ∈Λ

min
{
κx{θ̃θθ, λ̃λλ | θθθ, λλλ}, κx{θθθ, λλλ | θ̃θθ, λ̃λλ}

}

= min
{
inf
λ̃λλ∈Λ

κx{θ̃θθ, λ̃λλ | θθθ, λλλ}, inf
λ̃λλ∈Λ

κx{θθθ, λλλ | θ̃θθ, λ̃λλ}
}

Proof. This follows from the fact that, if X(θθθ, λλλ) is a convex set, then the two directed
logarithmic divergences involved in the definition are convex functionals. For details,
see Juárez (2004). �

Example 2 (Normal variance, continued) Consider x = {x1, . . . , xn}. The directed
logarithmic divergence of

∏n
i=1 N(xj | μ̃, σ̃) from

∏n
i=1 N(xj | μ, σ) is

κx{μ̃, σ̃ | μ, σ} = n
∫ ∞

−∞
N(x | μ, σ) log

[
N(x | μ, σ)
N(x | μ̃, σ̃)

]
dx

=
n
2

[
σ2

σ̃2
− 1 − log

σ2

σ̃2
+

(μ − μ̃)2

σ̃2

]
. (11)

This is minimized when μ̃ = μ, to yield

inf
μ̃∈R

κx{μ̃, σ̃ | μ, σ} = n
2

g

(
σ2

σ̃2

)
=

n
2

g (φ) ,
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where φ = σ̃2/σ2, and g(.) is the linlog function defined by

g(t) = (t − 1) − log t, t > 0. (12)

Notice that g(t) ≥ 0 and g(t) = 0 if (and only if) t = 1. This follows from the fact that
g(t) is the absolute distance between log t and its tangent at t = 1.

Exchanging the roles of (μ̃, σ̃) and (μ, σ), it is similarly found that κx{μ, σ | μ̃, σ̃} is
also minimized when μ̃ = μ, to yield

inf
μ̃∈R

κx{μ, σ | μ̃, σ̃} = n
2

g

(
σ̃2

σ2

)
=

n
2

g

(
1
φ

)
.

Moreover, g(t) < g(1/t) if, and only if, t < 1 and hence, using Theorem 1,

δx{σ̃, (μ, σ)} = δx{φ} =
⎧⎪⎪⎨⎪⎪⎩

n
2
g(φ) if φ < 1,

n
2
g(1/φ) if φ ≥ 1,

φ =
σ̃2

σ2
. (13)

Thus, for fixed n, the intrinsic discrepancy loss δx{σ̃, (μ, σ)} only depends on the ratio
φ = σ̃2/σ2. The intrinsic discrepancy loss is closely related to the (also invariant) entropy
loss,


ent{σ̃, σ} = 
ent{φ} =
∫ ∞

−∞
N(x | μ, σ) log

[
N(x | μ, σ)
N(x | μ, σ̃)

]
dx =

1
2

g(φ), (14)

�4 �2 0 2 4

1 1

Δ ��� �stq��� �ent���

��log�Σ� 2 �Σ2 �

Figure 1: Intrinsic discrepancy loss (solid line), entropy loss (continuous line), and standardized quadratic
loss (dotted line) for point estimation of the normal variance, as a function of ψ = log(σ̃2/σ2).
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which Brown (1990) attributes to Stein. Except for the proportionality constant n (which
does not affect estimation), the entropy loss (14) is the same as the intrinsic discrepancy
loss (13) whenever σ̃ < σ. Indeed, the intrinsic discrepancy loss may be seen as a
symmetrized version of the entropy loss.

Notice that, for all values of the ratio φ = σ̃2/σ2, δx{φ} = δx{1/φ}; hence, the intrinsic
loss equally penalizes overestimation and underestimation. In sharp contrast, both the
entropy loss and the often recommended standardized quadratic loss function, which is
also a function of the ratio φ,


stq(σ̃
2, σ2) = [(σ̃2/σ2) − 1]2 = (φ − 1)2,

clearly underpenalize small estimators, thus yielding estimators of the variance which
are too small. This is illustrated in Figure 1, where the functions δx(φ) (for n = 1),

ent{φ}, and 
stq(φ) are all represented as a function of ϕ = logφ. More conventional loss
functions, as the usual quadratic loss,


quad(σ̃
2, σ2) = [σ̃2 − σ2]2 = σ4(φ − 1)2,

are not even invariant with respect to affine transformations. All this led Stein (1964,
p. 156) to write “I find it hard to take the problem of estimating σ2 with quadratic loss
very seriously”.

2.2 Reference posterior expectation

Given data x generated by p(x | θθθ, λλλ), a situation with no prior information about the
value of θθθ is formally described by the reference prior π(λλλ | θθθ) π(θθθ) which corresponds
to the model px(· | θθθ, λλλ) when θθθ is the quantity of interest (Bernardo, 1979; Berger and
Bernardo, 1992; Bernardo, 2005a). In this case, all available information about θθθ is
encapsulated it its (marginal) reference posterior distribution, π(θθθ | x) =

∫
Λ
π(θθθ, λλλ | x) dλλλ

where, by Bayes theorem, π(θθθ, λλλ | x) ∝ p(x | θθθ, ωωω) π(λλλ | θθθ) π(θθθ). If numerical summaries
of the information encapsulated in π(θθθ | x) are further required in the form of either
point or region estimators of θθθ under some specified loss function 
{θ̃θθ, (θθθ, λλλ)}, then the
reference posterior expected loss

l(θ̃θθ | x) =
∫
Θ

∫
Ω


{θ̃θθ, (θθθ, λλλ)} π(θθθ, λλλ | x) dθθθ dλλλ

(from using θ̃θθ as a proxy for θθθ) has to be evaluated. In view of the arguments given above,
attention will focus on the intrinsic discrepancy reference expected loss, or intrinsic
expected loss, for short.
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Definition 3 (Intrinsic expected loss) Consider the parametric family of probability
distributions

F = {px(· | θθθ, λλλ), x ∈ X(θθθ, λλλ), θθθ ∈ Θ, λλλ ∈ Λ, )}. (15)

The intrinsic expected loss from using θ̃θθ given data x, denoted d(θ̃θθ | x), is the posterior
expectation of the intrinsic discrepancy loss, δx{θ̃θθ, (θθθ, λλλ)} with respect to the joint
reference posterior, π(θθθ, λλλ | x),

d(θ̃θθ | x) =
∫
Θ

∫
Ω

δx{θ̃θθ, (θθθ, λλλ)} π(θθθ, λλλ | x) dθθθ dλλλ, (16)

where π(θθθ, λλλ | x) ∝ p(x | θθθ, ωωω) π(λλλ | θθθ) π(θθθ), and π(λλλ | θθθ) π(θθθ) is the (joint) reference prior
when θθθ is the quantity of interest.

The function d(θ̃θθ | x) measures the posterior expected loss from using θ̃θθ as a proxy
for the unknown value of θθθ, in terms of the expected intrinsic discrepancy between the
assumed model, px(· | θθθ, λλλ), and the class

Fθ̃θθ = {p(x | θ̃θθ, λ̃λλ), λ̃λλ ∈ Λ, x ∈ X(ωωω, λλλ) (17)

of those models in F for which θθθ = θ̃θθ.
The intrinsic expected loss provides an objective measure of the compatibility of the

value θ̃θθ with the observed data x, with a nice interpretation in terms of likelihood ratios.
Indeed, it immediately follows from Definitions 1, 2 and 3, that d(θ̃θθ | x) is the posterior
expectation of the minimum expected log-likelihood ratio between the true model and
the closest model for which θθθ = θ̃θθ. For instance, if d(θ̃θθ | x) = log 100, then data x are
expected to be about 100 times more likely under the true (unknown) model than under
any model within this family with θθθ = θ̃θθ.

Example 3 (Normal variance, continued) In Example 2 the intrinsic discrepancy loss
from using σ̃ as a proxy for σ was seen to be a function δx(φ) of the ratio φ = σ̃2/σ2

(Equation 13). Changing variables in (5), the reference posterior of φ is

π(φ | x) = Ga
(
φ

∣∣∣ n − 1
2

, n s2

2σ̃2

) . (18)

Hence, the intrinsic expected loss from using σ̃ as a proxy for σ is

d(σ̃ | x) = d(σ̃ | s2, n) =
∫ ∞

0

δx(φ) Ga
(
φ | n − 1

2
, n s2

2σ̃2

)
dφ (19)

which may easily be computed by one-dimensional numerical integration. Good
analytical approximations will however be provided is Section 3. As a numerical



J. M. Bernardo 13

illustration, a random sample of size n = 12 was simulated from a normal distribution
with μ = 5 and σ = 2, yielding x = 4.214 and s = 2.071. The corresponding intrinsic
expected loss d(σ̃ | x), represented in the lower panel of Figure 2, is locally convex
around a unique minimum.

2.3 Intrinsic Point and Region Estimation

Bayes estimates are, by definition, those which minimize the expected posterior
loss. The intrinsic estimate is the Bayes estimate which corresponds to the intrinsic
discrepancy loss and the reference posterior distribution, i.e., that value θ̃θθint(x) ∈ Θ
which minimizes the intrinsic expected loss. Formally,

Definition 4 (Intrinsic point estimator) Consider again the parametric family of
probability distributions F defined by (15). An intrinsic estimator of θθθ is a value

θ̃θθint(x) = minθ̃θθ∈Θ d{θ̃θθ | x},

which minimizes the intrinsic discrepancy reference posterior loss (16).

Under general regularity conditions, the intrinsic expected loss d{θ̃θθ | x} is locally
convex near its absolute minimum and, therefore, the intrinsic estimate is typically exists
and it is unique. Moreover, since both the intrinsic loss function and the reference prior
are invariant under one-to-one reparametrization, the intrinsic estimator ψ̃ψψint(x) of any
one-to-one function ψψψ(θθθ) of θθθ will simply be ψ̃ψψint = ψψψ(θ̃θθint). For more details on intrinsic
estimation, see Bernardo and Juárez (2003).

Bayesian region estimation is typically based on posterior credible regions, i.e., sets
of θθθ values with pre-specified posterior probabilities. However, for any fixed p, there are
typically infinitely many p-credible regions. In most cases, these are chosen to be either
highest posterior density (HPD) regions, or probability centred regions.

It is well known that the ubiquitous highest posterior density (HPD) regions are not
consistent under reparametrization. Thus, if φφφ{θθθ} is a one-to-one function of θθθ, the image
of a HPD p-credible region of θθθ will not generally be HPD for φ. Thus, if Cp is a HPD
p-credible set estimate for, say, the perihelion of the Earth, log(Cp) will not be a HPD p-
credible set estimate for its logarithm. This suggests that highest posterior density may
not be a good criterion for set estimation in scientific inference.

In one-dimensional problems, one may define probability centred credible intervals,
and these are invariant under reparametrization. Indeed, the probability centred p-
credible interval of a real-valued quantity of interest θ is defined by the (1 − p)/2 and
(1+ p)/2 quantiles of its posterior distribution π(θ | x), and this is invariant under one-to-
one reparametrizations, since all quantiles are invariant. However, the notion cannot
be uniquely extended to multidimensional problems and, even in one-dimensional
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problems, their use may less than satisfactory as, for instance, in those situations where
the posterior density is monotonously decreasing within its support.

Whenever a loss structure has been established, foundations dictate that values with
smaller expected loss are to be preferred. Thus, for any loss function 
{θ̃θθ, (θθθ, ωωω)} is it
natural to define p-credible lowest posterior loss (LDL) region estimators (Bernardo,
2005b) as those p-credible regions which contain θ̃θθ values whose expected loss l(θ̃θθ | x)
(Eq. 15), is smaller than that of any θ̃θθ values outside the region.

In particular, if the loss function is quadratic, so that


{θ̃θθ, (θθθ, λλλ)} = (θ̃θθ − θθθ)t(θ̃θθ − θθθ),

2 3 4 5

1.5

3

4.5

6
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Σ

Figure 2: Reference posterior density of the standard deviation σ of a normal distribution (upper panel),
and intrinsic expected loss from using σ̃ as a proxy for σ (lower panel), given a random sample x of size
n = 12 with standard deviation s = 2.071. The intrinsic estimate (solid dot) is σ̃int = 2.256; the 0.90
intrinsic credible region (shaded region) is Cint

0.90 = (1.575, 3.243).
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the expected loss is

l(θ̃θθ | x) =
∫
Θ

(θ̃θθ − θθθ)t(θ̃θθ − θθθ) π(θθθ | x) dθθθ

= (θ̃θθ − E[θθθ | x])t(θ̃θθ − E[θθθ | x]) + Var[θθθ | x].

Hence, with quadratic loss, the lowest posterior loss p-credible region consists of those
θ̃θθ values with the smallest Euclidean distance to the posterior mean E[θθθ | x]. Notice that
these LDL p-credible regions are not invariant under reparametrization.

To obtain LDL invariant region estimators the loss function used must be invariant
under one-to-one reparametrization. The arguments mentioned above suggest the use
of the intrinsic discrepancy loss. The p-credible intrinsic region estimator is the lowest
posterior loss p-credible region which corresponds to the intrinsic discrepancy loss.

Definition 5 (Intrinsic region estimator) Consider once more the parametric family
of probability distributions F defined by (15). An intrinsic p-credible region for θθθ is a
subset Cint

p = Cint
p (x,Θ) of Θ such that

∫
Cint

p

π(θθθ | x) dθθθ = p, ∀θ̃θθi ∈ Cint
p , ∀θ̃θθ j � Cint

p , d{θ̃θθi | x} < d{θ̃θθ j | x},

where, again, d{θ̃θθ | x} is the intrinsic expected loss (16).

Intrinsic credible regions are typically unique and, since they are based in the invariant
intrinsic discrepancy loss, they are consistent under one-to-one reparametrization. Thus,
if ψψψ(θθθ) is a one-to-one function of θθθ, the image Cint

p (x,Ψ) = ψψψ{Cint
p (x,Θ)} of an intrinsic

p-credible region for θθθ is an intrinsic p-credible region for φφφ. For more details on
intrinsic region estimation, see Bernardo (2005b).

Example 4 (Normal variance, continued) Numerical minimization of the intrinsic
expected loss (19) in Example 3 immediately yields the intrinsic estimator of of the
standard deviation σ. This is

σ∗(x) = σ∗(n, s) = arg min
σ̃>0

d(σ̃ | x) = 2.256, (20)

and it is marked with a solid dot in the top panel of Figure 2. Since intrinsic estimation
is invariant, the intrinsic estimates of σ2 or logσ are respectively (σ∗)2 and log(σ∗).

Moreover, the intrinsic p-credible interval for σ is given by Cint
p = (σ0, σ1), where

{σ0, σ1} is the unique solution to the equations system

⎧⎪⎪⎨⎪⎪⎩
d(σ0 | x) = d(σ1 | x)∫ σ1

σ0
π(σ | x) dσ = p
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For instance, with p = 0.90 this yields Cint
0.90 = (1.575, 3.243), the shaded region

in the top panel of Figure 2. Since intrinsic region estimation is also invariant under
reparametrization, the intrinsic p-credible intervals for σ2 or logσ will respectively be
(Cint

p )2 and log(Cint
p ).

3 Intrinsic estimation in location-scale models

This section analyses intrinsic point and region estimation of the parameters μ and σ (or
arbitrary one-to-one functions of these) of variation-independent location-scale models.

3.1 Reference analysis of location-scale models

The likelihood function p(x | μ, σ, f ) which corresponds to a random sample x =
{x1, . . . , xn} from a location-scale model m(x | μ, σ, f ) of the form (2), is given by
Equation (3). This will typically have a unique maximum, denoted (μ̂, σ̂), which not
always has a simple analytical expression.

Under appropriate regularity conditions (see, e.g., Bernardo and Smith, 1994,
Sec. 5.3 and references therein) the joint posterior distribution of μ and σ will be
asymptotically normal with mean (μ̂, σ̂) and covariance matrix

V(μ̂, σ̂, n) = n−1 F−1(μ̂, σ̂) = (σ̃2/n) A−1( f ) (21)

where F(μ, σ) is Fisher’s information matrix which, in location-scale models, is
always of the form F(μ, σ) = σ−2A( f ), where A( f ) is a 2 × 2 matrix which
depends on the probability density f (·), but not on μ or σ. As a consequence, if the
parameter of interest is either μ (or a one-to-one function of μ) or σ (or a one-to-one
function of σ) with independent variation, then (Fernández and Steel, 1999, Th. 1),
under regularity conditions sufficient to guarantee posterior asymptotic normality, and
variation independence of μ and σ, the joint reference prior is independent of the
function f (·) and, in terms of μ and σ, is given by

π(μ) π(σ | μ) = π(σ) π(μ |σ) = σ−1. (22)

Using Bayes theorem, the corresponding joint reference posterior is

π(μ, σ | x) = σ−(n+1)
∏n

j=1
f {σ−1(xj − μ)}, (23)

which is typically proper for all n ≥ 2. In particular, it is proper for all n ≥ 2 whenever
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f (.) is either a standard normal or a scale mixture of standard normals, what includes
Student models.

In the normal case, with f (x) = N(x | 0, 1), the joint posterior (23) becomes

π(μ, σ | x, s, n) = N(μ | x, σ/√n) π(σ | s, n),

where π(σ | s, n) is the square root inverted gamma given by (5). The corresponding
marginal reference posterior of the precision λ = σ−2 is found to be π(λ | x) =
Ga(λ | (n − 1)/2, (ns2)/2) and, thus,

E[λ | x] =
n − 1
n s2

, Var[λ | x] =
2(n − 1)

n2 s4
. (24)

The marginal reference posterior of μ is the Student distribution

π(μ | x) = St
(
μ

∣∣∣ x,
s√

n − 1
, n

)
∝

(
1 +

(μ − x)2

s2

)−n/2
. (25)

For details see, for instance, Bernardo and Smith (1994, Sec. 5.4).

3.2 Intrinsic estimation of the normal mean

As stated in Example 2 (Eq. 11), the directed divergence κ{μ j, σ j | μi, σi}, of N(x | μ j, σ j)
from N(x | μi, σi), is

κ{μ j, σ j | μi, σi} = 1
2

{σ2
i

σ2
j

− 1 − log
σ2

i

σ2
j

+
(μi − μ j)2

σ2
j

}
.

As a function of σ̃, the directed divergence κ{μ̃, σ̃ | μ, σ} is minimized when σ̃2 takes the
value σ̃2

min = (μ − μi)2 + σ2, and substitution yields

κ{μ̃, σ̃min | μ, σ} = 1
2

log

[
1 +

(μ − μ̃)2

σ2

]
.

Similarly, the directed divergence κ{μ, σ | μ̃, σ̃} is minimized, as a function of σ̃, when
σ̃ = σ, and substitution now yields

κ{μ, σ | μ̃, σ} = 1
2

(μ − μ̃)2

σ2
.

Hence, making use of Theorem 1 and the fact that, for all x > 0, log(1 + x) ≤ x, the
intrinsic discrepancy loss δ{μ̃, (μ, σ)} from using μ̃ as a proxy for μwith a normal sample
of size n is
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δ{μ̃, (μ, σ)} = δ{θ2} = n
2

log[1 +
θ2

n
], θ = θ(μ̃, μ, σ) =

μ − μ̃
σ/
√

n
, (26)

which only depends on the number θ of standard deviations which separate μ̃ from μ.
Figure 3 represents the intrinsic loss function (26), as a function of θ, for several values
of n.
As one might expect, δ{μ̃, (μ, σ)} increases with |θ|. The dependence is essentially
quadratic in a neighbourhood of zero, but shows a very reasonable concavity in regions
where |θ| is large.

Using Definition 3, the intrinsic discrepancy reference expected loss d(μ̃ | x) may be
written in terms of the reference posterior of θ; indeed,

d(μ̃ | x) =
∫ ∞

0

∫ ∞

−∞
δ{μ̃, (μ, σ)} π(μ, σ | x) dμ dσ

=

∫ ∞

0

n
2

log

[
1 +

θ2

n

]
π
(
θ | x) dθ. (27)

But θ = (μ̃ − μ)/(σ/√n) may be written as a + β where, as a function of μ and σ,
β = (μ − x)/(σ/

√
n) has a standard normal reference posterior, and a is the constant

a = (x − μ̃)/(σ/√n). Hence, the conditional posterior distribution of θ2 given σ is
noncentral χ2 with one degree of freedom and non centrality parameter a2,

π(θ2 | x, σ) = χ2(θ2 | 1, a2), a2 = n
(x − μ̃)2

σ2
.
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Figure 3: Intrinsic discrepancy loss for estimation of the normal mean as a function of the number
θ = (μ̃ − μ)/(σ/√n) of standard deviations which separates μ̃ from μ, for n = 2, n = 3, and n = 10.
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It follows that the intrinsic expected loss d(μ̃ | x) only depends on μ̃ through (x− μ̃)2, and
increases with (x − μ̃)2; therefore, the intrinsic estimator of μ is

μ̃int(x) = arg min
μ̃∈�

d(μ̃ | x) = arg min
μ̃∈�

(x − μ̃)2 = x.

Moreover, d(μ̃ | x) is symmetric around x and, hence, all intrinsic credible regions must
be centered at x. In view of (25), this implies that the intrinsic the p-credible regions are
just the usual Student-t HPD p-credible intervals

Cint
p (x) =

{
μ̃; x − qp,n s/

√
n − 1 ≤ μ̃ ≤ x + qp,n s/

√
n − 1

}
, (28)

where qp,n is the (p+1)/2 quantile of a standard Student-t with n−1 degrees of freedom.
It immediately follows from (28) that Cint

p consist of the set of μ̃ values such that

(x − μ̃)/(s/√n − 1) belongs to a probability p centred interval of a standard Student-t
with n−1 degrees of freedom. But, as a function of the data x, the sampling distribution
of

t(x) = (x − μ)/(s/√n − 1) (29)

is also a standard Student-t with n − 1 degrees of freedom. Hence, for all sample sizes,
the expected coverage under sampling of the p-credible intervals (28) is exactly p, and
the intrinsic credible regions are exact frequentist confidence intervals.

A simple asymptotic approximation to d(μ̃ | x), which provides a direct measure in a
log-likelihood ratio scale of the expected loss associated to the use of μ̃, may easily be
obtained. Indeed, a variation of the delta method shows that, under appropriate regularity
conditions, the expectation of some function y = g(x) of a random quantity x with mean
μx and variance σ2

x may be approximated by

E[g(x)] ≈ g

[
μx +

σ2
x

2
g′′(μx)
g′(μx)

]
. (30)

On the other hand, the conditional posterior mean of θ2 is 1 + a2, and its conditional
posterior variance is 2+4a2; but E[σ−2 | x] = E[λ | x] = (n − 1)/(ns2) (Eq. 24) and hence,
the unconditional posterior mean and variance of θ2(μ̃) are, respectively,

E[θ2 | x] = 1 + t2, Var[θ2 | x] = 2 + 4 t2,

both functions of the conventional t statistic (29). Using these in (30) to approximate the
posterior expectation of log(1 + θ2/n) required in (27) yields

d(μ̃ | x) ≈ n
2

log

[
1 +

1
n

n(1 + t2) + t4

n + t2 + 1

]
. (31)
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Progressively cruder, but simpler approximations are

d(μ̃ | x) ≈ n
2

log

[
1 +

1
n

(
1 + t2

)]
≈ 1

2

(
1 + t2

)
. (32)

Thus, for large n, the intrinsic expected loss d(μ̃ | x) is essentially quadratic in the number
t = (x − μ̃)/(s/√n − 1) of standard deviations which separate x from μ̃. Summarizing,
we have thus established

Theorem 2 (Intrinsic estimation of the Normal mean) Let x be a random sample of
size n from N(x | μ, σ), with mean and variance x and s2, and let t =

√
n − 1 (x − μ̃)/s)

be the conventional t statistic.
(i) The intrinsic point estimator of μ is μ̃int(x) = x.
(ii) The unique p-credible intrinsic region for μ is the probability centred interval

Cint
p (x) = x ± qp,n s/

√
n − 1 ,

where qp,n is the (p + 1)/2 quantile of a standard Student-t distribution with n − 1
degrees of freedom. For all sample sizes, the frequentist coverage of Cint

p (x) is
exactly p.

(iii) The expected intrinsic loss associated to the use of μ̃ as a proxy for μ is

d(μ̃ | x) ≈ n
2

log

[
1 +

1
n

n(t2 + 1) + t4

n + t2 + 1

]
≈ n

2
log

[
1 +

1
n

(
1 + t2

)]
.

As a numerical illustration, a random sample of size n = 25 was generated from a
standard normal, yielding x = −0.162 and s = 0.840. The intrinsic estimator is μ∗ =
x = −0.162 and the 0.99-intrinsic credible region is the interval [−0.642, 0.318]. The
exact value of the expected intrinsic loss d(1/3 | x), computed from (27) by numerical
integration, is 3.768, while (31) and the two approximations in (32) respectively
yield 3.781, 3.970 and 4.673. Hence, the observed data may be expected to be about
exp(3.768) ≈ 43 times more likely under the true value of μ that under the closest
normal model with μ = 1/3, suggesting that the value μ = 1/3 is hardly compatible
with the observed data.

3.3 Intrinsic estimation of the normal variance

It has already been established (Example 2, Eq. 13) that the intrinsic discrepancy loss
from using σ̃2 as a proxy for σ2 is

δx{σ̃2, (μ, σ)} = δx{φ} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n
2

g(φ) if φ < 1,

n
2

g(1/φ) if φ ≥ 1,
(33)
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where g(t) = (t − 1) − log t, and φ = σ̃2/σ2, and that this is also the intrinsic loss
δx{ψ̃, (μ, σ)} from using ψ̃ a a proxy for ψ for any one-to-one function ψ(σ2) of σ2.
Moreover, the reference posterior of φ is the gamma distribution of Eq. 18. Hence, the
intrinsic estimator of σ2 is

σ̃2
int(x) = arg min

σ̃2>0

∫ ∞

0

δx(φ) Ga
(
φ

∣∣∣ n − 1
2

, n s2

2σ̃2

)
dφ,

where δx(φ) is given by (33). Moreover, it immediately follows from (18) that, as a
function of σ, the reference posterior distribution of τ = n s2/σ2 is

π(τ | x) = π(τ | n) = χ2(τ | n − 1) (34)

a central χ2 with n− 1 degrees of freedom; but φ = c τ/n, with c = σ̃2/s2 and, therefore,
the expected posterior loss from using σ̃ may further be written as

d(σ̃2 | s2, n) = d(c | n) =
∫ ∞

0

δ
(c τ

n

)
χ2(τ | n − 1) dτ, c = σ̃2/s2. (35)

Thus, the intrinsic estimator of the normal variance is an affine equivariant estimator of
the form

σ2
int(s, n) = c∗n s2, c∗n > 0, (36)

where c∗n is the value of c which minimizes d(c | n) in (35). The exact value of c∗n may
be numerically found by one-dimensional numerical integration, followed by numerical
optimization. The first row of Table 1 displays the exact values of c∗n for several sample
sizes. However, good analytical approximations for c∗n may be obtained.

We first consider a general approximation method. Let ω be a particular parametri-
zation of the problem, and consider a (variance stabilizing) reference reparametrization

Table 1: Exact and alternative approximate values for the intrinsic
point estimator of the normal variance σ2

int = c∗ns
2.

n 2 3 4 5 10 20 50

c∗n 4.982 2.347 1.803 1.569 1.231 1.106 1.041

( n
n − 1

)2

4.000 2.250 1.778 1.563 1.235 1.108 1.041

n
n − 1

e1/(n−1) 5.437 2.473 1.861 1.605 1.242 1.110 1.041

n
n − 2

— 3.000 2.000 1.667 1.250 1.111 1.042
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φ(ω) defined as one with a uniform reference prior. This is given by any solution to the
differential equation φ′(ω) = π(ω), where π(ω) is the marginal reference prior for ω.
Under regularity conditions, the sampling distribution of φ(ω̂), where ω̂ = ω̂(x) is the
MLE of ω, and the reference posterior of φ(ω), are both asymptotically normal. Using
these approximations, the intrinsic expected loss from using ω̃ is found to be (Bernardo,
2005b, Theo. 4.1)

d(ω̃ | x) ≈ n
2

{
σ2
φ + [μφ − φ(ω̃) ]2

}
. (37)

where μφ and σ2
φ are respectively the posterior mean and posterior variance of φ = φ(ω).

This is minimized by φ(ω̃) = μφ = E[φ | x]. Hence, in terms of any reference
parametrization φ, the intrinsic point estimate is approximately the posterior mean μφ
and, by invariance, the intrinsic estimator of any one-to-one function, ψ = ψ(φ) is
approximately given by ψ̃int = ψ(μφ). Thus,

φ̃int(x) ≈ μφ = E[φ | x], ω̃int(x) ≈ φ−1{μφ}. (38)

Under regularity conditions (see, e.g., Schervish, 1995, Sec. 7.1.3) the delta method
may be used to obtain simple approximations to the posterior moments of φ is terms of
those of ω, namely

μφ ≈ φ{μω} + σ2
ω φ

′′{μω}/2 , (39)

σ2
φ ≈ σ2

ω [ φ′{μω}]2. (40)

Substitution into (38) and (37) respectively provide useful approximations to the
intrinsic point estimator of ω, and to the expected loss from using ω̃ as a proxy for
ω.

In the particular case of the normal variance, it is convenient to start from the
parametrization in terms of the precision λ = σ−2, whose posterior moments have simple
expressions. Since reference priors are consistent under reparametrization, the reference
prior for λ is π(λ) = π(σ)|∂σ/∂λ| ∝ λ−1 and, therefore, a reference parametrization is

φ = φ(λ) =
∫ λ

π(λ) dλ =
∫ λ

λ−1 dλ = log λ.

Notice that the reference prior of φ = log λ is indeed uniform, as it is the case for the
logarithm of any other power of σ. Using (39) and (40) with the first posterior moments
of λ, given in (24), yields

φ̃int(x) ≈ μφ = E[log λ | x] ≈ log
(n − 1

n s2

)
− 1

n − 1
, (41)

σ2
φ = Var[log λ | x] ≈ 2

n − 1
. (42)
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By invariance, (41) directly provides an approximation to the intrinsic estimator of the
variance. This has the form of a modified version of the conventional unbiased estimator
σ̃2

n−1; indeed, since σ2 = e−φ,

σ̃2
int(x) = e−φ̃int(x) ≈ n s2

n − 1
e

1
n−1 = σ̃2

n−1 e
1

n−1 ,

which, as shown in the third row of Table 1, provides good approximations, even for
small values of n.

A better analytical approximation to the intrinsic estimator of the normal variance
may be obtained making use of the particular features of this example. This is done by
separately minimizing the expected value of each of the two functions which enter the
definition of the intrinsic discrepancy loss δx{φ}, and using the arithmetic mean of the
corresponding results.

Indeed, the delta method may be used to approximate both E[g(cτ/n)] and
E[g(n/(cτ))] in terms E[τ | n] = n − 1 and Var[τ | n] = 2(n − 1). The approximation
to E[g(cτ/n)] is minimized by ĉ∗1n = n/(n − 1), while the approximation to E[g(n/(cτ))]
is minimized by by ĉ∗2n = n(n + 1)/(n − 1)2. As one would expect, their average,

ĉ∗n =
ĉ∗1n + ĉ∗2n

2
=

( n
n − 1

)2
=

n
n − (2 − n−1)

, (43)

provides a good approximation to the value c∗n which minimizes (35). As shown in the
second row of Table 1, the approximation remains good even for small values of n.
Combination of (36) and (43) establishes that, for all but very small n values,

σ̃2
int(x) = σ̃2

int(s, n) ≈
( n
n − 1

)2
s2. (44)

In view of the second expression for ĉ∗n in (43), a cruder approximation is given by
σ̃2

int ≈ σ̃2
n−2. This is larger than the MLE σ̂2 = s2 (which divides by n the sum of squares),

and also larger than the conventional unbiased estimate of the variance σ̃2
n−1 (which

divides by n − 1). Notice that numerical differences between intrinsic and conventional
estimators may be large for small values of n. In particular, with only two observations
{x1, x2}, the intrinsic estimator of the variance is σ2

int(2, s
2) ≈ 5 s2 = 5(x1 − x2)2/4; this is

2.5 times larger than the unbiased estimator, (x1 − x2)2/2 in this case, which (with good
reason) is generally considered to be too small.

As shown by (35), the expected intrinsic loss d(σ̃2 | n, s2) of any affine equivariant
estimator of the variance σ̃2 = kns2, is actually independent of s2 and only depends on the
sample size n. Moreover, it is easily verified that the expected intrinsic loss d(σ̃2 | n, s2)
is precisely equal to the frequentist risk associated to the intrinsic discrepancy loss,

r(σ̃2
i | n, σ2) =

∫ ∞

0

δ{σ̃2
i (s

2), σ2} p(s2 | n, σ2) ds2.
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Thus, under intrinsic discrepancy loss, the intrinsic estimator σ̃2
int dominates all affine

equivariant estimators. For details, see Bernardo (2006).
Region estimation is now considered. As described in Example 4, the intrinsic p-

credible region for σ is the unique solution Cint
p = {σ0, σ1} to the equations system

{
d(σ2

0 | x) = d(σ2
1 | x),

∫ σ1

σ0

π(σ | x) dσ = p
}
.

Using (34), this may equivalently be written in terms of τ = n s2/σ2 as

{
d(σ2

0 | x) = d(σ2
1 | x),

∫ ns2/σ2
0

ns2/σ1

χ(τ | n − 1) dτ = p
}
. (45)

Thus, the unique p-credible intrinsic region for σ2 is the interval

Cint
p (x) =

{ n s2

χ2
n−1(1 − α)

, n s2

χ2
n−1(1 − p − α)

}
(46)

where χ2
n−1(q) is the q quantile of a χ2

n−1 distribution, and α is the solution to the equation

d
( n s2

χ2
n−1(1 − α)

| x
)
= d

( n s2

χ2
n−1(1 − p − α)

| x
)
. (47)

By invariance, this provides the intrinsic p-credible region of any one-to-one function
of σ2.

As a function of the data x, the sampling distribution of n s2/σ2 is also a χ2 with n−1
degrees of freedom. Hence, for all sample sizes, the expected coverage under sampling
of the p-credible intervals (46) is exactly p.

Using (35) to evaluate expected losses, the exact solution to equation (47) may easily
be obtained by numerical methods. However, good analytical approximations are may
be obtained.

Working again in terms of the reference parametrization for this problem, φ =
log λ = −2 logσ, and using (37), (39) and (40), the expected loss from using φ̃ as a
proxy for φ is approximately

d(φ̃ | x) ≈ n
2

[
2

n − 1
+

(
φ̃int − φ̃ )2

]
. (48)

But this is symmetric around φ̃int = log(λ̃int) = − log(σ2
int) and therefore, to keep those

φ̃ points with smaller expected loss, any intrinsic credible region for φ = log λ must be
(approximately) centered at φ̃int. Thus, using (42) and (44) this will be of the form
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Cint
p (x,Φ) ≈ φ̃int ± αpnσφ ≈ log

[(n − 1
n

)2 1
s2

]
± γpn

√
2

n − 1
(49)

where γpn is the solution to the equation

∫ φ̃int+γpn σφ

φ̃int−γpn σφ

π(φ | x) dφ = p,

or, equivalently since

τ = n s2λ = n s2eφ,

ns2 eφ̃int±γpn σφ =
(n − 1)2

n
exp

[
± γpn

√
2

n − 1

]
,

π(τ | x) = χ2(τ | n − 1),

γpn is the unique solution to the equation

Fn−1
{ (n − 1)2

n
e+γpn

√
2

n−1
}
− Fn−1

{ (n − 1)2

n
e−γpn

√
2

n−1
}
= p, (50)

where Fν is the cumulative distribution function of a χ2
ν distribution.

A numerical solution to (50) is immediately found with standard statistical software.
However, a simple analytical approximation may be derived using the fact that the
reference posterior distribution of φ = log λ becomes approximately normal (at a faster
rate that any other simple function of σ) as the sample size n increases. Using this
approximation and (49), the p-credible intrinsic region for φ is approximated by the
interval

Cint
p (x,Φ) ≈ log

[(n − 1
n

)2 1
s2

]
± qp

√
2

n − 1
(51)

where qp is the (p + 1)/2 quantile of a standard normal distribution. By invariance, the
p-credible intrinsic region for the variance σ2 = e−φ will be approximated by

{
s2

( n
n − 1

)2
e−γnp

√
2

n−1 , s2
( n
n − 1

)2
e+γnp

√
2

n−1
}

(52)

where γnp is the solution to (50) which, as n increases, converges to qp, the (p + 1)/2
quantile of an standard normal distribution.

Summarizing, we have thus established

Theorem 3 (Intrinsic estimation of the normal variance) Let x be a random sample of
size n from N(x | μ, σ), with variance s2.
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(i) The intrinsic point estimator σ̃2
int(x) of σ2 is

σ̃2
int(x) = arg min

σ̃>0
d(σ̃2 | x),

d(σ̃2 | x) =
n
2

∫ ∞

0

δ

(
σ̃2 τ

n s2

)
χ2(τ | n − 1) dτ,

δ{θ} = min{g(θ), g(1/θ)}, g(θ) = (θ − 1) − log θ,

σ̃2
int(x) ≈

( n
n − 1

)2
s2.

The intrinsic point estimator σ̃int(x) is the Bayes estimator with respect to the
intrinsic discrepancy loss. Besides, it has smaller frequentist risk with respect to
this loss than any other affine equivariant estimator.

(ii) The unique p-credible intrinsic region Cint
p (x) for σ2 is the interval

Cint
p (x) = {a(α, x), b(α, p, x)} =

{ n s2

χ2
n−1(1 − α)

, n s2

χ2
n−1(1 − p − α)

}
,

where χ2
n−1(q) is the q quantile of a χ2

n−1 distribution, and α is the solution to the
equation d{a(α, x) | x)} = d{b(α, p, x) | x)}. For all sample sizes, the frequentist
coverage of Cint

p (x) is exactly p. Moreover,

Cint
p (x) ≈ s2

( n
n − 1

)2 {
e−γnp

√
2

n−1 , e+γnp

√
2

n−1
}

where γnp is the solution to the equation

Fn−1
{ (n − 1)2

n
e+γnp

√
2

n−1
}
− Fn−1

{ (n − 1)2

n
e−γnp

√
2

n−1
}
= p.

and Fν is the cumulative distribution function of a χ2
ν distribution. As n increases,

γnp converges to the (p + 1)/2 normal quantile.

(iii) The expected intrinsic loss associated to the use of σ̃2 is

d(σ̃2 | s2, n) ≈ n
2

[ 2
n − 1

+
(
log

1
σ2

int

− log
1
σ̃2

)2]
,

with σ̃2
int(x) ≈ n2 s2/(n − 1)2.

For the numerical illustration considered in Example 4 (where the sample size was
only n = 12), the approximation (44) to the intrinsic estimate of σ2 yields σ̃2

int ≈ 5.104.
The approximation (52) to the intrinsic 0.90-credible region yields (2.480, 11.507)
using the exact solution γnp = 1.693 to equation (50), and (2.531, 11.272) using the
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corresponding normal approximation γnp ≈ q0.90 = 1.645. These approximations may
be compared eith the exact values σ̃2

int = 5.090 and Cint
0.90 = (2.481, 11.717) numerically

found in Example 4.

3.4 Intrinsic estimation of the Cauchy scale parameter

We finally consider an example where no analytical expressions are possible. With the
use of increasingly complex statistical models, this is fast becoming the norm, rather
than the exception, in statistical practice.

Let x = {x1, . . . , xn} be a random sample from a Cauchy distribution Ca(x | 0, σ),
centered at zero with unknown scale parameter σ, so that the likelihood function is

p(x |σ) =
n∏

i=1

Ca(xj | 0, σ) ∝ σ−n
n∏

i=1

(
1 +

x2
j

σ2

)−1
.

The Cauchy distribution does not belong to the exponential family and, therefore,
there is no sufficient statistic of finite dimension. There is no analytical expression
for the MLE σ̂ of the unknown parameter. Fisher information function is n/(2σ2)
and, therefore, the posterior distribution of σ will be asymptotically normal,
N(σ | σ̂, √2 σ̂/

√
n).

Since this is a scale model, the reference prior is π(σ) = σ−1 and, using Bayes
theorem, the reference posterior is

π(σ | x) =
σ−1p(x |σ)∫ ∞

0
σ−1p(x |σ) dσ

, (53)

which may easily be numerically computed. It may be verified that, provided the data x
contain at least two different observations, π(σ | x) has a gamma-like shape with a unique
mode.

Figure 4 represents the reference posteriors of σ which correspond to a set of 25
random samples of size n = 12, which were all generated from a Cauchy distribution
Ca(x | 0, 2). This may be seen as a graphical representation of the sampling distribution
of πσ(· | x), the reference posterior of σ, given σ = 2 and n = 12. Notice that, although
all these posteriors contain indeed the true value σ = 2 from which the samples have
been simulated (marked in the figure with a solid dot), the variability is very large.

The logarithmic divergence κ{σ2 |σ1} of Ca(x | 0, σ2) from Ca(x | 0, σ1) is

∫ ∞

−∞
Ca(x | 0, σ1) log

Ca(x | 0, σ1)
Ca(x | 0, σ2)

dx = log
1

4σ1 σ2

+ 2 log(σ1 + σ2).
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Figure 4: Reference posterior distributions of σ for a set of 25 random samples of size n = 5 generated
from a Ca(x | 0, 2) distribution.

Since, in this case, κ{σ2 |σ1} = κ{σ1 |σ2}, the intrinsic discrepancy loss from using
σ̃ as a proxy fo σ is (Def. 2)

δ{σ̃, σ} = log
1

4 σ̃ σ
+ 2 log(σ̃ + σ) = log

1

4
√
φ
+ log(1 +

√
φ), (54)

where φ = σ̃2/σ2. Thus, as in the normal case (Eq. 33), the intrinsic discrepancy loss
only depends on the variance ratio φ = σ̃2/σ2.
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Figure 5: Intrinsic discrepancy loss from using σ̃ as a proxy for σ as a function of ψ = log(σ̃2/σ2) for
Cauchy (solid line) and normal (dotted line) distributions.

Figure 5 provides a direct comparison between the intrinsic discrepancy loss for the
scale parameter in the Cauchy and in the normal case. As one might expect, for any
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given value of the ratio φ = σ̃2/σ2, the intrinsic loss is smaller in the Cauchy case than
it is in the normal case.
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Figure 6: Reference posterior density (upper panel) and intrinsic expected loss (lower panel) for the
scale parameter σ of a Cauchy Ca(x | 0, σ) distribution, given x = {−1.78,−0.75,−2.44,−3.30, 8.48}. The
intrinsic estimator is σ̃int = 2.452 (solid dot) and the intrinsic 0.90-credible region is Cint

0.90 = (0.952, 6.314)
(shaded region).

The intrinsic expected loss from using σ̃ is the reference posterior expectation of the
intrinsic discrepancy loss,

d(σ̃ | x) = n
∫ ∞

0

δ{σ̃, σ} π(σ | x) dσ,

where δ{σ̃, σ} and π(σ | x) are respectively given by (54) and (53), and may easily be
computed by numerical integration. The intrinsic estimator of σ is

σ̃int(x) = arg inf
σ̃>0

d(σ̃ | x)
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and the p-credible intrinsic region is the solution Cint
p (x) = (σ0, σ1) to the equations

system

{
d(σ0 | x) = d(σ1 | x),

∫ σ1

σ0

π(σ | x) dσ = p
}
.

As a numerical illustration, a random sample of size n = 5 was generated from a
Cauchy Ca(x | 0, 2), yielding x = {−1.78,−0.75,−2.44,−3.30, 8.48}. The results from
the reference analysis of this data set are encapsulated in Figure 6. The reference
posterior distribution π(σ | x) is represented in the upper panel, and the expected intrinsic
loss d(σ̃ | x) from using σ̃ as a proxy forσ is represented in the lower panel. The intrinsic
estimator, represented by a solid dot, is σ̃int = 2.452, and the intrinsic 0.90-credible
interval, represented by a shaded region, is Cint

0.90 = (0.952, 6.314).
Neither exact Bayesian credible regions nor exact frequentist confidence intervals

may be analytically obtained in this problem. The frequentist coverage of the intrinsic
credible regions was however analyzed by simulation. A set of 5, 000 random samples of
size n = 5 were generated from a Cauchy Ca(x | 0, 2), and their corresponding intrinsic
0.90-credible intervals were computed; it was then found that the proportion of those
intervals which contained the true value σ = 2 was 0.905. With 25, 000 random samples
this proportion was 0.902. This suggests that (as in the normal case) the expected
frequentist coverage of reference p-credible regions, the limit of this algorithm as the
number of generated random samples increases, is exactly p. To further explore this
suggestion, a set of 10, 000 random samples of size n were generated from a Cauchy
distribution Ca(x | , 0, σ) for each of several combinations {n, σ} of sample size n and true
value σ of the scale parameter and the corresponding intrinsic p-credible regions where
computed for p = 0.90 and p = 0.95. Table 2 describes the proportion of these regions
which actually contained the value of σ from which the samples had been generated.

Table 2: Proportions of intrinsic p-credible intervals which contained the true value of σ among 10, 000
random samples generated from each of several combinations of sample size n and true value of σ.

p = 0.90 p = 0.95
n n

σ 2 12 30 2 12 30
0.5 0.9002 0.9044 0.8999 0.9490 0.9491 0.9507
2.0 0.8971 0.8971 0.9003 0.9467 0.9517 0.9490
4.0 0.9006 0.8960 0.8990 0.9484 0.9497 0.9507

Examination of this table provides strong statistical evidence that the frequentist
coverage of reference p-credible regions is indeed exactly equal to p for all sample
sizes. Indeed, treating each simulation as a Bernoulli trial, the reference posterior
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distribution of the frequentist coverage θi j which corresponds to the (i, j) cell is
approximately normal with mean observed proportion pi j quoted in the table, and
standard deviation (0.90 ∗ 0.10/10000)1/2 = 0.0030 for the 0.90-credible intervals,
and (0.95 ∗ 0.05/10000)1/2 = 0.0022 for the 0.95-credible intervals. This makes the
respective nominal values 0.90 and 0.95 clearly compatible with the observed results.
Notice that this is not an asymptotic analysis, as in probability matching theory (Datta
and Sweeting, 2005), for it even applies to the smallest possible samples, those with
n = 2.

References

Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors. Bayesian Statistics 4
(J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 35-60
(with discussion).

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal
Statistical, 41, 113-147 (with discussion). Reprinted in Bayesian Inference (N. G. Polson and
G. C. Tiao, eds.) Brookfield, VT: Edward Elgar, 1995, 229-263.

Bernardo, J. M. (2005a). Reference analysis. Handbook of Statistics 25 (D. K. Dey and C. R. Rao, eds.).
Amsterdam: Elsevier, 17-90.

Bernardo, J. M. (2005b). Intrinsic credible regions: An objective Bayesian approach to interval estimation.
Test, 14, 317-384 (with discussion).

Bernardo, J. M. (2006). Intrinsic point estimation of the normal variance. Bayesian Statistics and its
Applications (S. K. Upadhyay, U. Singh and D. K. Dey, eds.) New Delhi: Anamaya, 110-121.
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Miguel A. Gómez Villegas
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Universidad Complutense de Madrid

Let me begin by congratulating Professor Bernardo for his excellent job in objective
Bayesian analysis. This paper, and the closely related Bernardo (2005), present a unified
theory of estimation by point and credible regions based on information ideas he has
used previously to define reference priors. The idea originates from the study of both
problems as decision problems, where the loss function is the “intrinsic discrepancy”
inspired in the Kullblack-Leibler divergence, and defined as the minimum of kx{̃θ, λ̃|θ, λ}
and kx{θ, λ|̃θ, λ̃} where

kx{̃θ, λ̃|θ, λ} =
∫
χ(θ,λ)

π(x|θ, λ) ln
π(x|θ, λ)
π(x|̃θ, λ̃)dx

An intrinsic point estimator is then defined as the Bayes estimator which corresponds
to the intrinsic loss and the appropriate reference prior. A p-credible intrinsic region
estimator is defined as the lowest posterior loss p-credible with respect to the intrinsic
loss and the appropriate reference prior.

A first question is: do we need to employ

∫
Cint

p

π(θ|x)dθ ≥ p

with the inequality instead of equality to allow the discrete case?

Second, it would be useful to have a better understanding of the proposed approach
to applying these ideas to the exponential distribution family instead of location-scale
models; this is a family of distributions greater than the other.

Professor Bernardo claims that in one-dimensional problems, one may define
probability centred credible intervals, and these are invariant under reparametrization.
Will it not be necessary to suppose that the transformation is monotonic?

Third, on a more philosophical basis, I think that invariance is a compelling argument
for point estimations and for credible regions. Indeed both point estimations and credible
regions are two answers to the same question: how we can eliminate the uncertainty
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about θ. Bernardo’s approach permits one to obtain invariance under reparametrization
in both problems.

Fourth, the chosen examples show the coherence between frequentist inference and
Bayesian inference. When intrinsic credible regions that require minimal subjective
inputs are employed, exact frequentist confidence regions are obtained, at least in the
normal mean and variance. This fact is similar to the one obtained by this discussant
in Gómez-Villegas and González-Pérez (2005) and references therein. I wonder if
Professor Bernardo has any idea about the essential reasons behind the matching
properties between intrinsic credible regions and confidence regions in these cases?

Fifth, adopting this approach to credible set construction, I see problems in
computations, the posterior intrinsic loss integrated over a large dimensional space.
From the point of view of applications, a simple asymptotic approximation to normality
should be necessary.

In closing, I would like to thank the editor of the journal for giving me the
opportunity to discuss this paper.
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Two concepts are basic to the ideas of this excellent paper: objectivity and the concept
of estimation as a decision problem. In the author’s skilful hands, these lead to reference
priors and intrinsic loss functions, and hence, by minimizing expected loss, to estimates
which are often superior to the conventional ones. It can be said with some confidence
that we have here a solution to the problem Harold Jeffreys first posed around 1939
of providing an objective, coherent method for scientific inference. The development
employs several subtle ideas, and considerable mathematical complexity, but one feature
that struck me is that the final results are usually fairly simple and look right. An example
of this is provided by the loss functions in Figure 3, which have the reasonable convexity
property around the true value but, unlike quadratic loss, exhibit sensible concavity at
more discrepant values. I would have preferred the loss to have been bounded but, with
normal distributions and their thin tails, this scarcely matters. To be bounded may be
more important with the fat tails of the Cauchy in Figure 6, in order to avoid paradoxes
of the St. Petersburg type. A related point is that although the mathematics can be
formidable, at least in the view of some applied statisticians, once it has been done
the practitioner can easily use the results in the confidence that the machinery used to
produce them is sound. It is comparable to driving a car, without knowing how it was
made, but having confidence in the manufacturer.

Granted the basic concepts, this is an important paper, but was Jeffreys right to search
for objectivity, and was Fisher wrong in dismissing decision concepts from inference?
I think Jeffreys was wrong and Fisher was right. At the risk of repeating what I have
said before, it seems to me that inference and decision-making are distinct and both are
subjective. In other words, the two basic concepts, that provide the foundations of this
paper, are suspect.

Consider first the fixed likelihood upon which all the arguments in the paper rest.
Is it really objective? There are a few cases where substantial evidence for normality
exists, but often the normal, or another member of the exponential family, is used
merely for mathematical simplicity. With the increased computing power available
today, statisticians are less constrained and can use other distributions that appear more
realistic, thereby introducing subjectivity. There are some popular data sets that have
been repeatedly analysed using different likelihoods. Where is the objectivity there? It
is interesting that Bernardo uses one symbol, p, for probabilities of data but another,
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π, for probabilities of parameters. In reality both p and π reflect beliefs about data and
parameters respectively, obey the same rules and do not deserve separate treatments.

Inference concerns parameters. (It is more practical to make inference about future
data but I do not explore that trail here.) What are these parameters, the θ and λ of the
paper? If our statistical analyses are to be of use in data analysis, θ at least ought to relate
to something in the real world. Bernardo has only one sentence about this, referring to
θ as the age of the earth. Putting aside intelligent designers, reputable scientists differ in
their views of the age. In other words, their ideas are subjective, so that before relevant
data about the age are considered, their different views need to be included. Another
relevant fact is that information about the age of the earth does not come from data with
normal, or any other objective, likelihood. More conspicuous examples of subjectivity
are apparent witch clinical trials, where the different views of drug companies and
official bodies are consulted before the trial. This became clear recently when a trial
went horribly wrong and experts claimed the probabilities used were, in their opinion,
unsound. So often today, θ is regarded as nothing more than a symbol, whereas, to be
of value, it has to refer to reality and hence influenced by opinions about that reality.
These opinions should be incorporated into the analysis, not ignored and replaced by a
reference prior, especially when this is improper.

All of us have, at some time, expressed an opinion about something without having
any intention of basing any action upon that opinion. In statistics, this opinion-forming
is inference and means we infer the value of the real θ. In the Bayesian paradigm this
is done by means of your probability distribution of θ, given the data and the original
information about θ. Whilst it is true that any inference has to be capable of being used
as a basis for action, for otherwise what use is it, it is not true that inference has to have
immediate actions in mind. In particular, inference does not require a loss function, and
certainly not a loss function that ignores reality. In Bayesian terms, there is only one
inference, the posterior distribution and, although it may be advantageous to summarize
its main features, such approximations scarcely need elaborate techniques, except in the
case of many parameters.

Inference from data consists in modelling that data in the form of a likelihood
depending on parameters, supplying your opinion of the parameters prior to the data,
and combining likelihood and prior by Bayes theorem. Finally the nuisance aspect of
the parameters is removed by integration. When several people are involved there may
be disagreements over likelihood or prior. These may be removed by discussion but, if
this fails, the calculations may be repeated under different subjective opinions and the
posteriors compared. That science is objective is a myth. Apparent objectivity in science
only arises when the data are extensive.

This paper explores a field that, in my view, is not in the broad stream of statistics.
This is not to deny it great merit, for we now know what that field contains, material of
real merit from which all can learn.



Mark J. Schervish

Carnegie Mellon University, USA

I admire Professor Bernardo for his steadfastness and resolution in staying the course
of research into reference priors and other so-called objective Bayesian methods.
Despite repeated attacks dating back to the discussion of Bernardo (1979) he has
continually risen to the challenge of making these methods palatable to practitioners
and theoreticians alike. I will not here rehearse all of the criticisms or the support for
his work in this area. I refer the interested reader to the various discussions of the
papers listed in the reference list to Professor Bernardo’s paper. I will mention just a
few problems that I have with the methods as well as what I like about them.

To begin with a positive note, I like the idea of having a transformation-equivariant
estimation procedure for non-decision-theoretic inference. When one is faced with a
decision problem in which a specific loss function is relevant, then one does not care
whether one’s inference satisfies an ad hoc criterion such as transformation equivariance.
On the other hand, when one merely wishes to report an estimate of some quantity,
especially the parameter of a statistical model which most likely is a figment of one’s
imagination (model) anyway, then it becomes difficult to explain why the estimate
of an equivalent parameter is not the equivalent estimate. Indeed, I believe that the
intrinsic discrepancy loss satisfies a slightly stronger invariance than is stated in (10).
I believe that one could apply a one-to-one reparameterization of the form φ = φ(θ) and
ψ = ψ(λ, θ) and still achieve (10). Of course, a completely general reparameterization
would change the meaning of the parameter of interest, and yet the desire for an
equivariant estimate would remain.

One of the serious concerns with reference priors is their violation of the likelihood
principle. The reference priors are different for binomial sampling and negative binomial
sampling so that even if the observed data could have come from either sampling
scheme, the posterior would depend on the sampling plan. If one were to observe a
binomial sample and use the reference prior, and later observe a negative binomial
sample, one would get a different inference than if one were to observe the same two
samples in the other order. As mentioned earlier, various discussants have described
other concerns with the methods advocated in the manuscript, and I will let the reader
find them in their original forms. I will add only one other concern that I have, and that
is with the use of the description of these methods as “objective”. I suppose that, so
long as one agrees with all of the reasons put forth for why such methods should be
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used, then one will use the methods and they become objective in that sense. But any
set of methods could be called objective on those grounds. One of the main strengths
of Bayesian methodology is that it forces users to be explicit about the assumptions
that they are making. People who think that they are using objective methods are simply
borrowing a collection of subjective assumptions and ignoring the fact that choices were
made by someone else arriving at those assumptions. When you lay your assumptions
out for all to see, you are in a position to evaluate the sensitivity of your inferences to
the assumptions. If you hide behind a cloak of objectivity, you may produce the same
answer that others produce, but you have lost the ability to see what is the effect of the
subjective choices that were made.



Rejoinder

I am extremely grateful to the three discussants by their thoughtful comments. I will
answer them individually.

Gómez-Villegas. If the parameter of interest θθθ is discrete, then we would certainly need
to work with regions C such that

∫
C
π(θ | θθθ) dθθθ ≥ p since, in that special case, not all

credible probabilities p would be attainable. However, point and region estimation are
usually done with continuous parameter spaces, and this is indeed the case in the location
and scale models considered in this paper. In that situation, the equality may always be
obtained.

The ideas discussed in the paper may certainly be applied to models in the
(generalized) exponential family and it is likely that this would lead to some rather
general results. I did not have time and space to do this here, but it is certainly a research
line well worth exploring.

As Professor Gómez-Villegas points out, the invariance arguments invoked only refer
to monotonic, one-to-one transformations of the parameter. Even though not always
explicitly stated, we were indeed always assuming this to be the case.

I believe that the exact numerical coincidence between objective credible regions
and frequentist confidence interval is the exception, not the rule; when it happens,
it is the consequence of the existence of pivotal quantities, so that the reference
distribution of the pivot (considered as a function of the parameter) is precisely the
same as its sampling distribution (considered as a function of the data). In particular,
this coincidence cannot exist if data are discrete, as in the case of binomial or
Poisson data. Beyond the particular situations where pivots exist, one may only expect
an asymptotic approximation: objective credible regions are typically approximate
confidence intervals, the approximation improving with the sample size.

Routine application of the methods described in this paper will certainly require
either available software producing the exact results (not difficult to write in the
standard examples which constitute the vast majority of applications) and/or appropriate
analytical approximations. The latter may easily be obtained, as in the examples
contained in the paper, by using the normal approximation with the parametrization
induced by the appropriate variance-stabilizing transformation, and then making use of
the invariance properties of the procedures.

Lindley. I am really proud that Professor Lindley may believe that the procedures
described provide an objective coherent method for scientific inference in the sense
demanded by Jeffreys, and I am very grateful for that comment.
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It would certainly be better from a foundations viewpoint if the expected loss were
bounded, but information measures with continuous parameters are are not bounded
(one needs infinite amount of information to know precisely a real number) and yet
have all kind of attractive properties.

To repeat in print the basics of an argument that Professor Lindley and I have often
had in private conversations,

(i) I believe, with Jeffreys, that Fisher was wrong in dismissing decision concepts in
inference. If, by some reason, you must choose an estimate, then (whether you like
it or not) you have a well posed decision problem where the action space is the set
of parameter values; then foundations dictate that (to act rationally) you must use a
loss function. For instance, in one continuous parameter problems, the median may
well be an estimate with good robustness properties, but the fact remains that this
would be a good estimate if (and only if ) your loss function is well approximated
by a linear, symmetric loss function.

(ii) I applaud the use of subjective priors when the problem is simple and small enough
for the required probability assessments to be feasible (which is not frequent). But,
even in this case, there is no reason while other people should necessarily accept
a subjective prior which goes beyond clearly stated assumptions and verifiable
(possibly historical) data. There is a clear need for some commonly accepted
minimum set of conclusions to be solely derived from assumptions and data, and
this is precisely what reference posteriors provide. As their name indicate, they
are proposed as a reference, to be compared with subjective posteriors when these
are available. This is part of a necessary exercise in sensitivity analysis, by making
explicit which parts of the conclusions depend on a particular subjective prior, and
which parts are implied by the model assumed and the data obtained.

As Professor Lindley points out, although inferential statements are typically used as
a basis for action, there are many situations were inferences are to be drawn without any
specific action in mind. This is precisely why we suggest the use of an the information-
based loss function. If a particular action is in mind, one should certainly use a context
dependent loss function which appropriately describes the decision problem analyzed.
It no particular decision problem is in mind, one is bound to use some conventional
loss function. We have argued that conventional loss functions (such as the ubiquitous
quadratic loss) are often unsatisfactory. Instead, for “pure inference” problems one
should try to minimize the information loss due to the use of an estimate of the
unknown parameter value; and this, I believe, is appropriately captured by the intrinsic
discrepancy loss.

Schervish. I am very glad to read that Professor Schervish appreciates the importance of
invariant procedures. In teaching, I often start my lectures by stating that any inferential
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procedure which is not invariant under monotonic transformations of the parameter
is suspect, and go on to provide a set of examples of those as “counterexamples” to
common statistical procedures.

I agree with Professor Schervish on the importance of the likelihood principle,
but I believe that the principle is actually compatible with a sensible use of reference
distributions. Indeed, a reference posterior encapsulates, by definition, the (minimal)
inferential statements you could proclaim about the parameter of a model if your prior
was that maximizing the information that data generated from that particular model
could possibly provide. If you change the model (even if the new model induces
a proportional likelihood function), you change the reference prior. Thus, different
reference posteriors corresponding to different sampling schemes with Bernoulli
observations provide a collection of conditional answers (one for each sampling scheme
one is willing to consider), which may all be part of the sensitivity analysis to changes
in the prior mentioned above.

Objectivity is indeed an emotionally charged word, and it should be explicitly
qualified whenever it is used. No statistical analysis is seriously objective, if only
because the choice of both the experiment design and the model used have typically
very strong subjective inputs. However, the frequentist paradigm is sold as “objective”
just because its conclusions are only conditional on the model assumed and the data
obtained, and this objectivity illusion has historically helped frequentist to keep a large
share of the statistics market. I claim for the procedures described in this paper the
right to use “objective” in precisely the same sense: these are procedures which are
only conditional on the assumed model and the observed data. The use of the word
“objective” in this precise, limited sense may benefit, I believe, the propagation of the
Bayesian paradigm. For a recent discussion of this and related issues see Berger (2006)
and ensuing discussion.

I fully agree with Professor Schervish on the paramount importance of clearly
presenting the assumptions needed for an inferential statement. In the case of reference
posteriors this should typically read as a conditional statement of the form: “If available
data x had been generated by model M ≡ {px(· |ωωω), ωωω ∈ Ω} and prior information
about θθθ(ωωω) were minimal with respect to the information about θθθ(ωωω) that repeated
sampling fromM could possibly provide then, the marginal reference posterior π(θθθ | x)
encapsulates what could be said about the value of θθθ, solely on the basis of that
information”.
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