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Summary

Comparing the means of two normal populations is a very old problem in
mathematical statistics, but there is still no consensus about its most appro-
priate solution. In this paper we treat the problem of comparing two normal
means as a Bayesian decision problem with only two alternatives: either to
accept the hypothesis that the two means are equal, or to conclude that
the observed data are, under the assumed model, incompatible with that
hypothesis. The combined use of an information-theory based loss function,
the intrinsic discrepancy (Bernardo and Rueda, 2002), and an objective prior
function, the reference prior (Bernardo, 1979; Berger and Bernardo, 1992),
produces a new solution to this old problem which, for the first time, has the
invariance properties one should presumably require.
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1. STRUCTURE OF THE DECISION PROBLEM

Precise hypothesis testing as a decision problem. Assume that available data z have
been generated from an unknown element of the family of probability distributions
for z ∈ Z, {pz(· |φ,ω), φ ∈ Φ, ω ∈ Ω}, and suppose that it is desired to check
whether or not these data may be judged to be compatible with the (null) hypothesis
H0 ≡ {φ = φ0}. This may be treated as a decision problem with only two alterna-
tives; a0: to accept H0 (and work as if φ = φ0) or a1: to claim that the observed
data are incompatible with H0. Notice that, with this formulation, H0 is gener-
ally a composite hypothesis, described by the family of probability distributions
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M0 = {pz(· |φ0,ω0), ω0 ∈ Ω}. Simple nulls are included as a particular case where
there are no nuisance parameters.

Foundations dictate (see e.g., Bernardo and Smith, 1994, and references therein)
that, to solve this decision problem, one must specify utility functions u{ai, (φ,ω)}
for the two alternatives a0 and a1, and a joint prior distribution π(φ,ω) for the
unknown parameters (φ,ω); then, H0 should be rejected if, and only if,Z

Φ

Z
Ω

[u{a1, (φ,ω)} − u{a0, (φ,ω)}] π(φ,ω |z) dφ dω > 0,

where, using Bayes’ theorem, π(φ,ω |z) ∝ p(z |φ,ω)π(φ,ω) is the joint posterior
which corresponds to the prior π(φ,ω). Thus, only the utilities difference must be
specified, and this may usefully be written as

u{a1, (φ,ω)} − u{a0, (φ,ω)} = `{φ0, (φ,ω)} − u0,

where `{φ0, (φ,ω)} is the non-negative terminal loss suffered by accepting φ = φ0

given (φ,ω), and u0 > 0 is the utility of accepting H0 when it is true. Hence, H0

should be rejected if, and only if,

t(φ0 |z) =

Z
Θ

Z
Ω

`{φ0, (φ,ω)}π(φ,ω |z) dφ dω > u0,

that is, if the posterior expected loss, the test statistic t(φ0 |z) is large enough.

The intrinsic discrepancy loss. As one would expect, the optimal decision depends
heavily on the particular loss function `{φ0, (φ,ω)} used. Specific problems may
require specific loss functions, but conventional loss functions may be used to proceed
when one does not have any particular application in mind.

A common class of conventional loss function are the step loss functions. These
forces the use of a non-regular ‘spiked’ proper prior which places a lump of proba-
bility at φ = φ0 and leads to rejecting H0 if, and only if, its posterior probability
is too small or, equivalently, if, and only if, the Bayes factor against H0, is suffi-
ciently large. This will be appropriate wherever preferences are well described by
a step loss function, and prior information is available to justify a (highly informa-
tive), spiked prior. It may be argued that many scientific applications of precise
hypothesis testing fail to meet one or both of these conditions.

Another example of a conventional loss function is the ubiquitous quadratic loss
function. This leads to rejecting the null if, and only if, the posterior expected
Euclidean distance of φ0 from the true value φ is too large, and may safely be used
with (typically improper) ‘noninformative’ priors. However, as most conventional
continuous loss functions, the quadratic loss depends dramatically on the particular
parametrization used. But, since the model parametrization is arbitrary, the con-
ditions to reject φ = φ0 should be precisely the same, for any one-to-one function
ψ(φ), as the conditions to reject ψ = ψ(φ0). This requires the use of a loss function
which is invariant under one-to-one reparametrizations.

It may be argued (Bernardo and Rueda, 2002; Bernardo, 2005b) that a measure
of the disparity between two probability distributions which may be appropriate for
general use in probability and statistics is the intrinsic discrepancy,

δz{pz(·), qz(·)} ≡ min

Z
Z
pz(z) log

pz(z)

qz(z)
dz,

Z
Z
pz(z) log

pz(z)

qz(z)
dz

ff
, (1)
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defined as the minimum (Kullback-Keibler) logarithmic divergence between them.
This is symmetric, non-negative, and it is zero if, and only if, pz(z) = qz(z) a.e.
Besides, it is invariant under one-to-one transformations of z, and it is additive
under independent observations; thus if z = {x1, . . . , xn}, pz(z) =

Qn
i=1 px(xi), and

qz(z) =
Qn
i=1 qx(xi), then δz{pz(·), qz(·)} = n δx{px(·), qx(·)}.

Within a parametric probability model, say {pz(· |θ),θ ∈ Θ}, the intrinsic
discrepancy induces a loss function δ{θ0,θ} = δz{pz(· |θ0), pz(· |θ)}, in which the
loss to be suffered if θ is replaced by θ0 is not measured terms of the disparity
between θ and θ0, but in terms of the disparity between the models labelled by θ
and θ0. This provides a loss function which is invariant under reparametrization:
for any one-to-one function ψ = ψ(θ), δ{ψ0,ψ} = δ{θ0,θ}. Moreover, one may
equivalently work with sufficient statistics: if t = t(z) is a sufficient statistic for
pz(· |θ), then δz{θ0,θ)} = δt{θ0,θ}. The intrinsic loss may be safely be used with
improper priors. In the context of hypothesis testing within the parametric model
pz(· |φ,ω), the intrinsic loss to be suffered by replacing φ by φ0 becomes

δz{H0, (φ,ω)} ≡ inf
ω0∈Ω

δz{pz(· |φ0,ω0), pz(· |φ,ω)}, (2)

that is, the intrinsic discrepancy between the distribution pz(· |φ,ω) which has
generated the data, and the family of distributions F0 ≡ {pz(· |φ0,ω0),ω0 ∈ Ω}
which corresponds to the hypothesis H0 ≡ {φ = φ0} to be tested. If, as it is
usually the case, the parameter space Φ×Ω is convex, then the two minimization
procedures in (2) and (1) may be interchanged (Juárez, 2005).

As it is apparent from its definition, the intrinsic loss (2) is the minimum con-
ditional expected log-likelihood ratio (under repeated sampling) against H0, what
provides a direct calibration for its numerical values; thus, intrinsic loss values of
about log(100) would indicate rather strong evidence against H0.

The Bayesian Reference Criterion (BRC). Any statistical procedure depends on the
accepted assumptions, and those typically include many subjective judgements. If
has become standard, however, to term ‘objective’ any statistical procedure whose
results only depend on the quantity of interest, the model assumed and the data ob-
tained. The reference prior (Bernardo, 1979; Berger and Bernardo, 1992; Bernardo,
2005a), loosely defined as that prior which maximizes the missing information about
the quantity of interest, provides a general solution to the problem of specifying an
objective prior. See Berger (2006) for a recent analysis of this issue.

The Bayesian reference criterion (Bernardo and Rueda, 2002) is the normative
Bayes solution to the decision problem of hypothesis testing described above which
corresponds to the use of the intrinsic loss and the reference prior. Given a para-
metric model {pz(· |φ,ω), φ ∈ Φ, ω ∈ Ω}, this prescribes to reject the hypothesis
H0 ≡ {φ = φ0} if, and only if,

d(H0 |z) =

Z ∞
0

δ π(δ |z) dδ > δ0, (3)

where d(H0 |z), termed the intrinsic (test) statistic, is the reference posterior ex-
pectation of the intrinsic loss δz{H0, (φ,ω)} defined by (2), and where δ0 is a con-
text dependent positive utility constant, the largest acceptable average log-likelihood
ratio against H0 under repeated sampling. For scientific communication, δ0 could
conventionally be set to log(10) ≈ 2.3 to indicate some evidence against H0, and to
log(100) ≈ 4.6 to indicate strong evidence against H0.
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2. NORMAL MEANS COMPARISON

Problem statement in the common variance case. Let available data z = {x,y},
x = {x1, . . . , xn}, y = {y1, . . . , ym}, consist of two random samples of possibly dif-
ferent sizes n and m, respectively drawn from N(x |µx, σ) and N(y |µy, σ), so that
the assumed model is p(z |µx, µy, σ) =

Qn
i=1 N(xi |µx, σ)

Qm
j=1 N(yj |µy, σ). It is

desired to test H0 ≡ {µx = µy}, that is, whether or not these data could have been
drawn from some element of the family F0 ≡ {p(z |µ0, µ0, σ0), µ0 ∈ <, σ0 > 0}. To
implement the BRC criterion described above one should: (i) compute the intrinsic
discrepancy δ{H0, (µx, µy, σ)} between the family F0 which defines the hypothesis
H0 and the assumed model p(z |µx, µy, σ); (ii) determine the reference joint prior
πδ(µx, µy, σ) of the three unknown parameters when δ is the quantity of interest; and
(iii) derive the relevant intrinsic statistic, that is the reference posterior expectation
d(H0 |z) =

R∞
0
δ πδ(δ |z) dδ of the intrinsic discrepancy δ{H0, (µx, µy, σ)}.

The intrinsic loss. The (Kullback–Leibler) logarithmic divergence of a normal dis-
tribution N(x |µ2, σ2) from another normal distribution N(x |µ1, σ1) is given by

κ{µ2, σ2 |µ1, σ1} ≡
Z ∞
−∞

N(x |µ1, σ1) log
N(x |µ1, σ1)

N(x |µ2, σ2)
dx

=
1

2

„
µ2 − µ1

σ2

«2

+
1

2

„
σ2

1

σ2
2

− 1− log
σ2

1

σ2
2

«
. (4)

Using its additive property, the (KL) logarithmic divergence of p(z |µ0, µ0, σ0)
from p(z |µx, µy, σ) is nκ{µ0, σ0 |µx, σ} + mκ{µ0, σ0 |µy, σ}, which is minimized
when µ0 = (nµx + mµy)/(n + m) and σ0 = σ. Substitution yields h(n,m) θ2/4,
where h(n,m) = 2nm/(m + n) is the harmonic mean of the two sample sizes,
and θ = (µx − µy)/σ is the standardized distance between the two means. Simi-
larly, the logarithmic divergence of p(z |µx, µy, σ) from p(z |µ0, µ0, σ0) is given by
nκ{µx, σ |µ0, σ0}+mκ{µy, σ |µ0, σ0}, minimized when µ0 = (nµx +mµy)/(n+m)
and σ2

0 = σ2 + (µx − µy)2 (mn)/(m + n)2. Substitution now yields a minimum di-
vergence (n+m)/2 log[1 + h(n,m)/(2(n+m)) θ2, which is always smaller than the
minimum divergence h(n,m) θ2/4 obtained above. Therefore, the required intrinsic
loss function is

δz{H0, (µx, µy, σ)} =
n+m

2
log

»
1 +

h(n,m)

2(n+m)
θ2

–
, (5)

a logarithmic transformation of the standardized distance θ = (µx−µy)/σ between
the two means. The intrinsic loss (5) increases linearly with the total sample size
n+m, and it is essentially quadratic in θ in a neighbourhood of zero, but it becomes
concave for | θ | > (k + 1)/

√
k, where k = n/m is the ratio of the two sample sizes,

an eminently reasonable behaviour which conventional loss functions do not have.
For equal sample sizes, m = n, this reduces to n log[1+θ2/4] a linear function of the
sample size n, which behaves as θ2/4 in a neighbourhood of the origin, but becomes
concave for | θ | > 2.

Reference analysis. The intrinsic loss (5) is a piecewise invertible function of θ, the
standardized difference of the means. Consequently, the required objective prior is
the joint reference prior function πθ(µx, µy, σ) when the standardized difference of
the means, θ = (µx−µy)/σ, is the quantity of interest. This may easily be obtained
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using the orthogonal parametrization {θ, ω1, ω2}, with ω1 = σ
p

2(m+ n)2 +mnθ2,
and ω2 = µy +nσ θ/(n+m). In the original parametrization the required reference
prior is found to be

πθ(µx, µy, σ) =
1

σ2

 
1 +

h(n,m)

4(m+ n)

„
µx − µy

σ

«2
!−1/2

. (6)

By Bayes theorem, the posterior is πθ(µx, µy, σ |z) ∝ p(z |µx, µy, σ)πθ(µx, µy, σ).
Changing variables to {θ, µy, σ}, and integrating out µy and σ, produces the (marginal)
reference posterior density of the quantity of interest

π(θ |z) = π(θ | t,m, n)

∝
„

1 +
h(n,m)

4(m+ n)
θ2

«−1/2

NcSt

 
t

˛̨̨̨ r
h(n,m)

2
θ, n+m− 2

!
(7)

where

t =
x̄− ȳ

s
p

2/h(n,m)
, s2 =

n s2
x +ms2

y

n+m− 2
,

and NcSt(· |λ, ν) is the density of a noncentral Student distribution with noncen-
trality parameter λ and ν degrees of freedom. The reference posterior (7) is proper
provided n ≥ 1, m ≥ 1, and n+m ≥ 3. For further details, see Pérez (2005).

The reference posterior (7) has the form π(θ | t, n,m) ∝ π(θ) p(t | θ, n,m), where
p(t |µx, µy, σ,m,m) = p(t | θ, n,m) is the sampling distribution of t. Thus, the
reference prior is consistent under marginalization (cf. Dawid, Stone and Zidek,
1973).

The intrinsic statistic. The reference posterior for θ may now be used to obtain the
required intrinsic test statistic. Indeed, substituting into (5) yields

d(H0 |z) = d(H0 | t,m, n) =

Z ∞
0

n+m

2
log

»
1 +

h(n,m)

2(m+ n)
θ2

–
π(θ | t,m, n) dθ, (8)

where π(θ | t,m, n) is given by (7). This has no simple analytical expression but may
easily be obtained by one-dimensional numerical integration.

Example. The derivation of the appropriate reference prior allows us to draw precise
conclusions even when data are extremely scarce. As an illustration, consider a
(minimal) sample of three observations with x = {4, 6} and y = {0}, so that n = 2,

m = 1, x̄ = 5, ȳ = 0, s =
√

2, h(n,m) = 4/3 and t = 5/
√

3. If may be verified
numerically that the reference posterior probability that θ < 0 is

Pr[θ < 0 | t, h, n] =

Z 0

−∞
π(θ | t,m, n) dθ = 0.0438,

directly suggesting some (mild) evidence against θ = 0 and, hence, against µx = µy.
On the other hand, using the formal procedure described above, the numerical value
of intrinsic statistic to test H0 ≡ {µx = µy} is

d(H0 | t,m, n) =

Z ∞
0

3

2
log

»
1 +

2

9
θ2

–
π(θ | t,m, n) dθ = 1.193 = log[6.776].



576 José M. Bernardo and Sergio Pérez

Thus, given the available data, the expected value of the average (under repeated
sampling) of the log-likelihood ratio against H0 is 1.193 (so that likelihood ratios
may be expected to be about 6.8 against H0), which provides a precise measure of
the available evidence against the hypothesis H0 ≡ {µx = µy}.

This (moderate) evidence against H0 is not captured by the conventional fre-
quentist analysis of this problem. Indeed, since the sampling distribution of t under
H0 is a standard Student distribution with n+m−2 degrees of freedom, the p-value
which corresponds to the two-sided test for H0 is 2(1 − Tm+n−2{|t|}), where Tν is
the cumulative distribution function of an Student distribution with ν degrees of
freedom (see, e.g., DeGroot and Schervish, 2002, Section 8.6). In this case, this
produces a p-value of 0.21 which, contrary to the preceding analysis, suggests lack
of sufficient evidence in the data against H0.

Further results. The full version of this paper (Bernardo and Pérez, 2007) contains
analytic asymptotic approximations to the intrinsic test statistic (8), analyzes the
behaviour of the proposed procedure under repeated sampling (both when H0 is
true and when it is false), and discusses its generalization to the case of possibly
different variances.
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Juárez, M. A. (2005). Normal correlation: An objective Bayesian approach. Tech. Rep., CRiSM
05-15, University of Warwick, UK.
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