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• ABSTRACT: In this work we present an approach involving objective Bayesian reference analysis to
the Frailty model with survival time univariate and sources of heterogeneity that are not captured
by covariates. The derivation unconditional hazard and survival leads to the result known as Lomax
distribution, also known as the Pareto distribution of the second kind. This distribution has an
important position in the test of life to adjust data from failures of business. Reference analysis,
introduced by Bernardo (1979) produce a new solution for this problem. The results are illustrated
with survival data analyzed in the literature and simulated data.
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1 Introduction

The notion of frailty provides a convenient way to introduce random e↵ects, dependence and unobserved
heterogeneity into models for survival data. In its simplest form, a frailty is an unobserved random pro-
portionality factor that modifies the hazard function of an individual, or of related individuals. One can
distinguish two broad classes of frailty models: models with an univariate survival time as endpoint and
models that describe multivariate survival endpoints (e.g., competing risks, recurrence of events in the same
individual, occurrence of a disease in relatives). The term frailty itself was introduced by Vaupel et al. (1979)
in univariate survival models and the model was substantially promoted by its application to multivariate
survival data in a seminal paper by Clayton (1978) (without using the notion ”frailty”) on chronic disease
incidence in families. Frailty models are extensions of the proportional hazards model which is best known
as the Cox model (Cox, 1972), the most popular model in survival analysis. Normally, in most clinical
applications, survival analysis implicitly assumes a homogeneous population to be studied. This means that
all individuals sampled into that study are subject in principle under the same risk (e.g., risk of death, risk
of disease recurrence). In many applications, the study population can not be assumed to be homogeneous
but must be considered as a heterogeneous sample, i.e. a mixture of individuals with di↵erent hazards. For
example, in many cases it is impossible to measure all relevant covariates related to the disease of interest,
sometimes because of economical reasons, sometimes the importance of some covariates is still unknown.

The frailty approach is a statistical modelling concept which aims to account for heterogeneity, caused
by unmeasured covariates. In statistical terms, a frailty model is a random e↵ect model for time-to-event
data, where the random e↵ect (the frailty) has a multiplicative e↵ect on the baseline hazard function.

Univariate lifetime is used to describe the influence of unobserved covariates in a proportional hazards
model (heterogeneity). The variability of survival data is split into a part that depends on risk factors,
and is therefore theoretically predictable, and a part that is initially unpredictable, even when all relevant
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information is known. A separation of these two sources of variability has the advantage that heterogeneity
can explain some unexpected results or give an alternative interpretation of some results, for example, Aalen
and Tretli (1999) analyzed the incidence of testis cancer by means of a frailty model based on data from the
Norwegian Cancer Registry collected during 1953-93.

One important problem in the area of frailty models is the choice of the frailty distribution. The frailty
distributions most often applied is the gamma distribution (Clayton 1978; Vaupel et al. 1979). The model
presented in this article will be studied with the gamma frailty distribution under a objective Bayesian
perspective. Sinha and Dey (1997) and Tomazella et all. (2004) are some Bayesian work with frailty model.

From a Bayesian perspective, the outcome of any inference problem is the posterior distribution of the
quantity of interest, which combines the information provided by the data with available prior information;
it has been often recognized that there is a pragmatically important need for a form of prior to posterior
analysis which captures, in a well-defined sense, the notion that the prior should have a minimal e↵ect,
relative to the data, on the posterior inference.

Reference analysis, introduced by Bernardo (1979) and further developed by Berger and Bernardo (1989,
1992a,b,c) seems to be the only available method to achieve posterior distributions which produces objective
Bayesian inference, meaning that inferential statements depend only on the postulated model and the avail-
able data. Moreover, there is the requirement that the prior distribution is minimally informative in a precise
information-theoretic sense. The information provided by the data should dominate the prior information
reflecting the vague nature of the prior knowledge. The driving idea is to maximize the expected Kullback-
Leibler divergence of the posterior distribution with respect to the prior. Starting from a reference prior,
the reference posterior is a consequence of a formal application of the Bayes theorem. Reference analysis
provides posterior distributions with some nice properties, such as generality and invariance, consistent
marginalization and consistent sampling properties.

Section 2 we present a summary of reference analysis. In Section 3, the theory is applied to an inference
problem, the frailty model parameters. In Section 4 a example simulated data is presented. In Section 5 a
real numeric example is presented. In Section 6 include discussion.

2 Reference Analysis

Reference analysis, introduced by Bernardo (1979) and further developed by Berger and Bernardo (1989,
1992a,b,c) appears to be the only available method to derive objective posterior distributions which produces
objective Bayesian inference, in the sense that inferential statements depend only on the assumed model and
the available data, and the prior distribution used to make an inference is least informative in a certain
information-theoretic sense. The reference Bayesian analysis is to specify a prior distribution such that,
even for moderate sample sizes, the information provided by the data should dominate the prior information
because of the “vague” nature of the prior knowledge. Reference analysis uses the concept of statistical
information, in the technical sense of Shannon (1948) and Lindley (1956). To make this notion precise, see
Bernardo (2005) for a recent discussion of these ideas.

An important feature in the Berger and Bernardo approach to construct a non-informative prior is the
di↵erent treatment for interest and nuisance parameters. When there are nuisance parameters (typical case
in this paper), one must establish an ordered parameterization with the parameter of interest singled out
and then follow the procedure below.

Consider p (x|�,�) , (�,�) 2 � ⇥ ⇤ ✓ R⇥R a probability model with two real-valued parameters �
and �, where � is the quantity of interest , and suppose that the joint posterior distribution of (�,�) is
asymptotically normal with covariance matrix S(�̂, �̂). So if S(�,�) = H�1(�,�) we have,

(i) the conditional reference prior of � given � is

⇡ (�|�) / h22(�,�)1/2 � 2 ⇤ (�)

(ii) if ⇡ (�|�) is not proper, a compact approximation {⇤i (�) , i = 1, 2...} to ⇤ (�) is required, and the
reference prior of � given � is given by
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⇡i (�|�) =
h22(�,�)1/2

R
⇤i(�) h22(�,�)1/2d�

, � 2 ⇤i (�)

(iii) within each ⇤i(�) the marginal reference prior of � is obtained as

⇡i(�) / exp

(Z

⇤i(�)
⇡i (�|�) log

h
s
1/2
11 (�,�)

i
d�

)

where s
1/2
11 (�,�) = h� (�,�) =h11 � h12h

�1
22 h21

(iv) the reference posterior distribution of � given data {x1, ..., xn} is

⇡(�|x1, ..., xn) / ⇡(�)

(Z

⇤(�)

(
nY

l=1

p (xl|�,�)

)
⇡ (�|�) d�

)

Under appropriate regularity conditions (see Bernardo (2005) for more details) the joint reference prior
can be written as the product of two independent functions of parameters as follows.

If the nuisance parameter space ⇤ (�) = ⇤ is independent of �, and the functions s
�1/2
11 (�,�) and

h
1/2
22 (�,�) factorize in the form

{s11 (�,�)}�1/2 = f1 (�) g1 (�) , {h22(�,�)}1/2 = f2 (�) g2 (�) ,

then,

⇡(�) / f1 (�) , and ⇡ (�|�) / g2 (�) .

the joint reference prior relative the parametric value ordered (�,�) is given by

⇡ (�, �) = f1 (�) g2 (�) .

In this case, there is no need for compact approximation, even if the conditional reference prior is not
proper (see Bernardo and Smith, 1994).

3 The Frailty Model

The standard situation of the application of survival methods in clinical research assumes that a homogeneous
population is investigated when subject are under di↵erent conditions (e.g., experimental treatment and
standard treatment). The appropriate survival model then assumes that the survival data of the di↵erent
patients are independent form each other and that each patient’s individual survival time distribution is the
same (independent and identically distributed failure times). This basic presumption implies a homogeneous
population. However, in the field of clinical trials, one observes in many most practical situations that patients
di↵er substantially. The e↵ect of a drug, a treatment, or the influence of various explanatory variables may
di↵er greatly between subgroups of patients.

Univariate frailty models take into account that the population is not homogeneous. Heterogeneity may
be explained by covariates, but when important covariates have not been observed, this leads to unobserved
heterogeneity. Vaupel et al. (1979) introduced univariate frailty models (with a gamma distribution) into
survival analysis to account for unobserved heterogeneity or missing covariates in the study population. The
idea is to suppose that di↵erent patients possess di↵erent frailties and patients more “frail” or “prone” tend
to have the event earlier that those who are less frail.

In this work we consider unobserved source of heterogeneity that are not readily captured by covariate.
The univariate frailty model extents the Cox model such that the hazard of an individual depends in addition
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on an unobservable random variable v, which acts multiplicatively on the baseline hazard function, so the
hazard for individual i at time t is

hi(t) = hi(t|⌫i) = ⌫ih0(t), (1)

where ⌫i represent the individuals frailty, and a baseline hazard h0(t). The individual hazard hi(t) is
interpreted as a conditional hazard given ⌫i. The model (26) is sometimes refereed as Clayton’s multiplicative
model (Clayton,1991), where the frailty term represents the information that may not be observed such as,
environment and genetics factors or information that, by some reason, were not considered at the planning.
An important point is that the frailty ⌫ is an unobservable random variable varying over the sample which
increases the individual risk if ⌫ > 1 or decreases if ⌫ > 1.

The corresponding conditional survival function is

Si(t) = Si(t|⌫i) = S0(t)⌫i , (2)

representing the probability of being alive at t given the random e↵ect ⌫i.
Note that until now the model is described at individual level, but this individual model is not observable.

That is the reason why it is essential to consider the model at a population level. The survival of the total
population is the mean of the individual survival functions.

An important point is the identifiability of univariate frailty models. Univariate frailty models are not
identifiable from the survival information alone. However, Elbers and Ridder (1982) proved that a frailty
model with finite mean is identifiable with univariate data, when covariates are included in the model.

The frailty term is random and we must assume a distribution for it. Natural frailty distribution candi-
dates supposed to be continue and time dependent, are the gamma, log-normal, inverse Gaussian an Weibull.
In this work we consider the gamma. This distribution has the range (0,1) and is mathematically tractable.
In order to keep the identifiability of the model it is convenient to take the distribution with mean 1 so we
assume a gamma distribution with parameter ( 1

↵ , 1
↵ ), where ↵ quantifies the amount of heterogeneity among

subjects.

3.1 Unconditional Hazard and Survival

To obtain the unconditional survival function we need to integrate out the frailty term.

S(t) =
Z 1

0
S(t|⌫)g(⌫)d⌫. (3)

To obtain the unconditional hazard we start from the unconditional survival and take negative logs to
obtain the cumulative hazard

H(t) = � log S(t) (4)

= � log
Z 1

0
S(t|⌫)g(⌫)d⌫. (5)

The very useful tool in frailty analysis is the Laplace Transform. Given a function f(x), the Laplace
Transform considered as function of a real argument s is defined as

Q(s) =
Z 1

0
esxf(x)dx. (6)

The reason why this is useful in our context is that the Laplace transform has exactly the same form as
the unconditional survival function. Think of f(x) as the frailty distribution g(⌫) and s as the cumulative
baseline hazard H0(t) and we obtain
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S(t) =
Z 1

0
eH0(t)⌫f(⌫)d⌫ = Q(H0(t)), (7)

where Q denotes the Laplace transform.
Vaupel (1990) has defined the frailty transform as the function

F (m, s) =
Z 1

0
⌫mes⌫g(⌫)d⌫ (8)

Note que F (0, s) is the Laplace transform (6), and F (m, s) give the m-th moment of the distribution of ⌫ at
birth.

The Laplace transform of the gamma distribution with parameters ( 1
↵ , 1

↵ ), is

Q(s) =
✓ 1

↵
1
↵ + s

◆ 1
↵

. (9)

Evaluating this at s = H0(t) we obtain the result for survival function

S(t) =
1

(1 + ↵H0(t))
1
↵

(10)

The unconditional (population) hazard function under gamma frailty is

h(t) =
h0(t)

1 + ↵H0(t)
. (11)

For the baseline hazard function we using the exponential distribution. This distribution has been
extensively used to model the baseline hazard function due to its simplicity and flexibility. This is the
particular case where the hazard is constant for each individual. So if the hazard baseline is �0(t) = � and
frailty has a gamma distribution the population hazard is

h(t) =
�

1 + ↵�t
, (12)

where � is the average individual hazard and ↵ is the variance of frailty.
The result is know as a Pareto distribution of the second kind or Lomax distribution (Lomax, 1954) with

parameters ( 1
↵ ,↵�), where its probability density function (pdf) is

f(t) =
�

(1 + ↵�t) 1
↵ +1

, t > 0, ↵ > 0, � > 0. (13)

The survival function associated with (13) is given by

S(t) =
1

(1 + ↵�t) 1
↵

. (14)

Further, E(t) =
⇥
↵�( 1

↵ � 1)
⇤�1, ↵ < 1 and V ar(t) = 1

↵

⇥
↵�( 1

↵ � 1)( 1
↵ � 2)

⇤�1, ↵ < 1
2 .

The Lomax distribution, occurs in economics (Arnold, 1983) and reliability theory (Harris, 1968). In
reliability theory it appears as a mixture of the one parameters exponential.

In the particular case where ↵ = 1 the Figure 1 show the density function (13), survival function (14)
and hazard function (12) for value di↵erent of �

Let t1, . . . , tn be a random sample of lifetime data, the likelihood function for n individual is given by

L(�, ↵) =
nY

i=1

h(ti)S(ti) (15)

5



Figure 1: Density function (13),survival function (14) and hazard function (12)
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Considering (10) and (12) have

L(�, ↵) =
nY

i=1

�

(1 + ↵�ti)1/↵+1
. (16)

The Figure 2 show the behaviour of the likelihood (16).

Figure 2: likelihood function (16)

The log-likelihood function(16) is given by

l(�, ↵) = n log �� (1/↵ + 1)
nX

i=1

log(1 + ↵�ti). (17)

Interval estimates and hypothesis tests for the parameters can be performed, in principle, by considering
the asymptotic normal distribution of the maximum likelihood estimates (mles) and the asymptotic chi-
squared distribution of the likelihood ratio statistics, respectively (Lawless,1982). As these procedures are
standard we turn to the Bayesian approach.

3.2 Reference Analysis for the frailty parameter

The posterior distribution of the parameter is often asymptotically normal (see e.g., Bernardo and Smith
(1994, Sec. 5.3). In this case, the reference prior is easily derived. The posterior distribution is asymptotically
normal, than reference prior only depends on Fisher information matrix. In this section we derive the
reference prior considering the approach of one nuisance parameter described in the section (2). Considering
that in this model we have preference by parameter ↵ that quantifies the amount of heterogeneity among
subjects, the parameters � is nuisance parameter.

Considering the log of the likelihood function (17) we have that the first and second derivatives are given
by

@l
@� = n

� � (1/↵ + 1)
Pn

i=1
↵ti

1+↵�ti

@l
@↵ = 1

↵2

Pn
i=1 log(1 + ↵�ti)� 1+↵

↵

Pn
i=1

�ti
1+↵�ti
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@2l
@�2 = n

� � (1/↵ + 1)
Pn

i=1
↵t2i

(1+↵�ti)2

@2l
@↵2 = 2

↵3

Pn
i=1 log(1 + ↵�ti)� (1 + 1

↵

Pn
i=1

�2ti
(1+↵�ti)2

� 2
↵2

Pn
i=1

�ti
1+↵�ti

@2l
@↵@� = � 1

↵2

Pn
i=1

↵ti
1+↵�ti

�
Pn

i=1
�↵t2i

(1+↵�ti)2
+ (1/↵ + 1)

Pn
i=1

ti
1+↵�ti

Setting the results of the first partial derivatives equal to zero, an iteration procedure may be used to
obtain the estimate of ↵ and �. The Fisher’s matrix is given by

H(↵, �) =

2

664

2+↵(3+↵�4↵3�2↵4+↵6+↵7)
↵6(↵6(1+↵)(2+↵)) �↵

h
↵

�(2+↵) �
1

↵2�(1+�)

i

�↵
h

↵
�(2+↵) �

1
↵2�(1+�)

i
↵3

�2(2+↵)

3

775 (18)

The corresponding inverse Fisher’s matrix is given by

S(↵, �) =

2

4
↵6(1 + ↵)2 �↵2(1 + ↵)(�2� ↵ + ↵3 + ↵4)

�↵2(1 + ↵)(�2� ↵ + ↵3 + ↵4) �2(1+↵)
↵3

⇥
2 + ↵(3 + ↵� 4↵3 � 2↵4 + ↵6 + ↵7)

⇤

3

5 (19)

Hence h
1/2
�� (↵, �) and S

�1/2
↵↵ (↵, �) factorize, we have

h
1/2
�� (↵, �) /

r
↵3

2 + ↵

1
�

= f�(↵)g�(�) (20)

and

s�1/2
↵↵ (↵, �) / 1

↵3(1 + ↵)
= f↵(↵)g↵(�) (21)

So that reference prior of � given ↵ is

⇡(�|↵) / 1
�

(22)

and the marginal reference prior of the parameter of interest ↵, is given by

⇡(↵) / 1
↵3(1 + ↵)

. (23)

Combining (22) and (23), the joint reference prior needed to obtain a reference posterior for the parameter
of interest ↵ is given by

⇡(↵, �) / ⇡(↵)⇡(�|↵) =
1

�↵3(1 + ↵)
. (24)

The Figure 3 show the reference prior for ↵ (23) and the joint reference prior for ↵ and � (24).
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Figure 3: Reference prior for ↵ (23) (left) and joint reference prior (24) (right)

Therefore, using (24) in Bayes theorem to derive the corresponding joint posterior and integrating out
the nuisance parameter �, the reference posterior for the parameter ↵

⇡(↵|t1, . . . , tn) / ⇡(↵)
Z 1

0
�(n�1)

nY

i=1

1
(1 + ↵�ti)(1/↵+1)

d�. (25)

Defined the desired reference posterior distribution of the quantity of interest ↵ the next step is to obtain
inference of the parameters. In our case, can not be obtained the marginal posterior densities explicitly. We
overcome this di�culty by making use of the Markov Chain Monte Carlo (MCMC) methodology to obtain
approximations for such densities.

4 Example with simulated data

As a brief numerical illustration of posterior densities given in (25), we consider four simulated samples with
n = 10, n = 25, n = 50 and n = 100, observation from the Lomax distribution with ↵ = 0.25, � = 4.

Considering the simulated data set it was obtained a samples of the reference posterior (25) generated
by the Metropolis-Hastings technique (Hastings, 1970), i.e., through Markov Chain Monte Carlo methods
implemented in software R. The convergence of the chains were assessed according to convergence diagnostics
implemented in CODA (Best et al., 1997). Graphical traces of those methods and kernel density estimation
for the parameter ↵ and � showed that there were no convergence problems. We generated two chains of
50, 000 iterations each for the model parameters.

The posterior results are summarized in Table 1, where it is presented characteristics such as poste-
rior mean and standard deviation (SD) and the credible intervals of (95%) of the parameters of interest
considering the simulated samples with n = 10, n = 25, n = 50 and n = 100.

In the Figures 4, show plots of the generated samples n = 10 and n = 100, where also we observed
equilibrium around of one point. The Figure 5 show the empirical marginal posteriors for model parameter
↵ and � based on the generated chains of the marginal reference posterior (25).

From the results simulated, we conclude that the prior distributions yield posterior densities adequately.
It may be observed that even with rather small and moderate samples sizes, the reference posterior prob-
abilities are not appreciably di↵erent (see Figure 5). However a comparative study in terms of frequentist
coverage probabilities of this priors is needed.
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Table 1: estimated parameters for simulated sample
↵ �

n Mean SD Cred. Int.(95%) Mean SD Cred. Int.(95%)

10 0, 254 0, 0135 [0, 230 ; 0, 282] 3, 96 0, 36 [3, 33 ; 4, 71]
25 0, 255 0, 0135 [0, 231 ; 0, 282] 3, 92 0, 35 [3, 29 ; 4, 65]
50 0, 254 0, 0134 [0, 230 ; 0, 282] 3, 93 0, 35 [3, 31 ; 4, 66]
100 0, 256 0, 0128 [0, 234 ; 0, 283] 3, 84 0, 31 [3, 26 ; 4, 48]

Figure 4: Trace of ↵ and � for n = 10 (above) and for n = 100 (down)

Figure 5: Marginal posterior density of ↵ and � for all generate sample

5 Example with real data

In this section the methodology is illustrated considering the leukemia survival data introduced by Feigel and
Zelen (1965), where the concomitant variable WBC, the white blood cell count of a patient, is not considered
in the model. In the Table 2, we have the data of n = 17 positive patients and n = 16 negative patients.
We want to find inference for ↵ frailty variance and � the average individual hazard.

The posterior results for interest parameters are summarized in Table 3. In the Figures 6, show the
empirical marginal posteriors for model parameter ↵ and � based on the generated chains of the marginal
reference posterior.

Figure 7 shows that there is evidence of convergence for both parameters, because the chains they behave
within a limit. This can also be seen in Figure 6, since the densities estimated parameters of interest for the
two chains are generated close.

It is important to note that there is significant of the frailty variance indicated by the estimated of ↵
which is equal to 2.583 and the average individual hazard is too significant indicated by estimated of �,
which is equal to 0.194.
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Table 2: Feigl and Zelen survival time data (Weeks)
Times Ag+ log10 (wbc) Times Ag- log10 (wbc)

63 2300 3,36 56 4400 3,64

156 750 3,88 65 3000 3,48

134 2600 3,41 7 1500 3,18

16 6000 3,78 16 9000 3,95

108 10000 4,02 22 5300 3,72

121 10000 4,00 3 10000 4,00

4 17000 4,23 4 19000 4,28

39 5400 3,73 2 27000 4,43

143 7000 3,85 3 28000 4,45

56 9400 3,97 8 31000 4,49

26 32000 4,51 4 26000 4,41

22 35000 4,54 3 21000 4,32

1 100000 5,00 30 79000 4,9

1 100000 5,00 4 10000 5,00

5 52000 4,72 43 10000 5,00

65 100000 5,00

Table 3: Posterior results of (25)
Parameters Mean SD Cred.Int.(95%)

↵ 2.583 0.423 [1.89; 3.54]
� 0.194 0.044 [0.12; 0.29]

Figure 6: Marginal posterior density ↵ and �

Figure 7: Trace for ↵ and �

6 Discussion

In this paper we have summarized the derivation of the reference prior distributions and we have illustrated
with an important example in survival analysis, where the results of this study, however, suggest that ignoring
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frailty may result in biased estimates, considering that the variance of frailty is significant.
Although we considered the gamma frailty distribution and exponential lifetime distribution, this method-

ology is, in principle, general and can be applied to other frailty distributions, such as inverse Gaussian, log-
normal and Weibull distributions, as well as other lifetime distributions. However, mathematical di�culties
may be found, even using MCMC Methods to infer over the model parameters.

One possible solution to this problem is to consider a model that captures the e↵ect of covariates. The
general model we will entertain is a proportional hazards model with a frailty term where the hazard at time
t for an individual with covariates x and frailty ⌫ is,

h(t, x, ⌫) = ⌫h0(t) exp(x
0
�), (26)

where the distribution of ⌫ does not depend on the observed covariate x.
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