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Natural Induction:
An Objective Bayesian Approach

James O. Berger, José M. Bernardo and Dongchu Sun

Abstract. The statistical analysis of a sample taken from a finite population is a classic problem for
which no generally accepted objective Bayesian results seem to exist. Bayesian solutions to this problem
may be very sensitive to the choice of the prior, and there is no consensus as to the appropriate prior to
use.

This paper uses new developments in reference prior theory to justify and generalize Perks (1947)
([15]) ‘rule of succession’ — determining the probability that a new element from a population will have
a property, given that all n previous elements from a random sample possessed the property — and to
propose a new objective Bayesian solution to the ‘law of natural induction’ problem — determining the
probability that all elements in a finite population have the property, given that all previous elements had
the property.

The prior used for the first problem is the reference prior for an underlying hypergeometric probability
model, a prior first suggested by Jeffreys (1946) ([10]) and recently justified on the basis of an exchange-
ability argument in Berger, Bernardo and Sun (2009) ([4]). The reference prior in the second problem
arises as a modification to this prior that results from declaring the quantity of interest to be whether or
not all the elements in the finite population have the property under scrutiny.

Inducción en las Ciencias de la Naturaleza:
Una Solución Bayesiana Objetiva

Resumen. El análisis estadı́stico de una muestra aleatoria extraı́da de una población finita es un prob-
lema clásico para el que no parece existir una solución bayesiana generalmente aceptada. Las soluciones
bayesianas a este problema pueder ser muy sensibles a la elección de la distribución inicial, y no existe
consenso sobre la distribución inicial que deberı́a ser utilizada.

En este trabajo se hace uso de desarrollos recientes del análisis de referencia para justificar y gene-
ralizar la solución de Perks (1947) ([15]) a la ‘regla de sucesión’ — la probabilidad de que un nuevo
elemento de la población tenga una propiedad si todos los elementos de una muestra aleatoria la tienen
— y para proponer una nueva solución bayesiana objetiva a la ‘ley de inducción natural’, — la proba-
bilidad de que todos los elementos de una población finita tengan una propiedad si todos los elementos
de la muestra la tienen. La distribución inicial utilizada para el primer problema es la distribución de
referencia para el modelo probabilı́stico hipergeométrico subyacente, una distribución inicial sugerida
por Jeffreys (1946) ([10]) y recientemente justificada utilizando un argumento de intercambiabilidad en
Berger, Bernardo and Sun (2009) ([4]). La distribución de referencia para el segundo problema se obtiene
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como resultado de modificar la distribución anterior al declarar que el problema de interés es determinar
si es o no es cierto que todos los elementos de una población finita tienen la propiedad objeto de estudio.

1 The Problem
The “rule of succession” and “law of natural induction” (see below for definitions) have been discussed for
hundreds of years by scientists, philosophers, mathematicians and statisticians. Zabell (1989, 2005) ([18,
19]) gives introductions to much of the more quantitative side of this history, as well as providing numerous
modern insights.

Our focus here is primarily technical: to produce the specific “rule” and “law” that arise from adopting
the reference prior approach to objective Bayesian analysis, as this approach has proven itself to be quite
successful in a wide variety of contexts (see Bernardo, 1979, 2005 ([5, 7]); Berger and Bernardo, 1992 ([2]);
and Berger, Bernardo and Sun, 2009 ([3, 4]), for discussion).

Sampling from a finite population. The most common statistical framework in which these subjects are
discussed is that of a finite population of size N , where the interest centers on R, the unknown number of
elements from the population which share a certain property. For instance, the population may consist of
a batch of N recently produced items, R of which satisfy the required specifications and may therefore be
safely sold, or it may consist of a population ofN individuals,R of which share some genetic characteristic.
The elements which share the property under analysis will be called conforming, and the event that a
particular element in the population is conforming with be denoted by +. Given the information provided
by a random sample of size n (without replacement) from the population with has yielded r conforming
items, interest usually centers in one of these problems:

• The proportion θ = R/N of conforming items in the population.

• The probability Pr(+ | r, n,N) that an element randomly selected among the remaining unobserved
N − n elements turns out to be conforming. The particular case Pr(+ | r = n, n,N), that the next
observed item is conforming, given that the first n observed elements are conforming, is commonly
referred to as the rule of succession.

• The probability Pr(All + |n,N) that all the elements in the population are conforming given that
the first n observed elements are conforming. This is commonly referred to as the law of natural
induction.

The probability model for the relevant sampling mechanism is clearly hypergeometric, so that

Pr(r |n,R,N) = Hy(r |n,R,N) =

(
R
r

)(
N−R
n−r

)(
N
n

) , (1)

where r ∈ {0, . . . ,min(R,n)}, 0 ≤ n ≤ N , and 0 ≤ R ≤ N .
Bayesian solutions to the problems described above require specification of a prior distribution Pr(R|N)

over the unknown number R of conforming elements in the population. As will later become evident,
these solutions are quite sensitive to the particular choice of the prior Pr(R |N). Note, however, that
non-Bayesian solutions to these problems are very problematical, in part because of the discreteness of
the problem and the fact that the interesting data outcome — all n observed elements are conforming — is
extreme and, in part, because of structural difficulties with non-Bayesian approaches in confirming a precise
hypothesis such as “all the elements in a population are conforming.”

Predictive and posterior distributions. If Pr(R |N), R = 0, . . . , N , defines a prior distribution for R,
the posterior probability of R conforming elements in the population having observed r conforming ele-
ments within a random sample of size n is, by Bayes theorem,

Pr(R | r, n,N) =
Hy(r |n,R,N) Pr(R |N)

Pr(r |n,N)
, (2)

126



Objective Bayes Finite Population Sampling

for R ∈ {r, . . . , N − n+ r}, and zero otherwise, where

Pr(r |n,N) =
N−n+r∑
R=r

Hy(r |n,R,N) Pr(R |N) (3)

is the predictive distribution for the number r of conforming elements in a random sample of size n. Since,
given N , the discrete parameter θ = R/N , for θ ∈ {0, 1/N, . . . , 1}, is a one-to-one transformation of R,
the corresponding posterior of θ is just π(θ | r,N, n) = Pr(Nθ | r,N, n).

Rule of succession. By the total probability theorem, the probability that an element randomly selected
among the remaining unobserved N − n elements is conforming is

Pr(+ | r, n,N) =
N−n+r∑
R=r

R− r
N − n

Pr(R | r, n,N). (4)

In particular, the probability of the eventEn that something which has occurred n times and has not hitherto
failed to occur (so that r = n) will occur again is

Pr(En |N) = Pr(+ | r = n, n,N) (5)

which, for many commonly used priors, turns out to be independent of the population size N . This is
commonly referred to as the rule of succession. As n increases, Pr(En |N) converges quickly to one for
all N for commonly used priors. This agrees with the usual perception that, if an event has been observed
for a relatively large uninterrupted number of times, it is very likely that it will be observed again in the
next occasion.

Law of natural induction. The posterior probability that all the N elements in the population are con-
forming given that all the n elements in the sample are, is

Pr(All + |n,N) = Pr(R = N | r = n, n,N). (6)

In typical applications, n will be moderate and N will be much larger than n. For many conventional
priors, Pr(All + |n,N) would then be very small, and this clearly conflicts with the common perception
from scientists that, as n increases, Pr(All + |n,N) should converge to one, whatever the (often very large)
value of N might be. A formal objective Bayesian solution to this problem, typically known as the law of
natural induction, is the main objective of this paper, and will require following a suggestion of Jeffreys.

2 Conventional Objective Bayesian Inference

Both Bayes (1763) [1] and Laplace (1774, 1812) [13, 14] utilized a constant prior for unknowns. Since R
may take N + 1 different values, the constant prior is thus the uniform distribution

πu(R |N) =
1

N + 1
, R = 0, . . . , N. (7)

We first review the analysis for this conventional objective prior, as given in Broad (1918) ([9]).

Predictive and posterior distributions. The corresponding predictive distribution πu(r |n,N) for the
number r of conforming elements in a random sample of size n is

πu(r |n,N) =
1

N + 1

N−n+r∑
R=r

Hy(r |n,R,N) =
1

n+ 1
,
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for r = 0, . . . , n, a uniform distribution over its n+1 possible values, which is therefore independent ofN .
Substituting into (2), the corresponding posterior distribution for R is

πu(R | r, n,N) =
n+ 1
N + 1

Hy(r |n,R,N) =

(
R
r

)(
N−R
n−r

)(
N+1
n+1

) , (8)

for R ∈ {r, . . . , N − n + r}, and zero otherwise. In particular, the posterior probability that all the N
elements in the population are conforming, given that all the n elements in the sample are conforming, is

πu(All + |n,N) = πu(R = N | r = n, n,N) =
n+ 1
N + 1

, (9)

which is essentially the ratio of the sample size to the population size. Notice that, when n is much smaller
than N as will often be the case, πu(All + |n,N) will be close to zero even for large values of the sample
size n.

Law of succession. From (4), the probability that an element randomly selected from among the re-
maining unobserved N − n elements is conforming given the uniform prior (7), so that Pr(R | r, n,N) is
given in (8), reduces to

πu(+ | r, n,N) =
N−n+r∑
R=r

R− r
N − n

(
R
r

)(
N−R
n−r

)(
N+1
n+1

) =
r + 1
n+ 2

. (10)

This is usually known as Laplace’s rule of succession, although Laplace (1774) ([13]) did not consider
the case of finite N and only derived (10) for its continuous binomial approximation without apparently
realizing that this is also an exact expression for finite N , a result established by Broad (1918) ([9]). In
particular, with the uniform prior (7), the probability of the event En that something which has occurred n
times and has not hitherto failed to occur (so that r = n) will occur again is

πu(En) = πu(+ | r = n, n,N) =
n+ 1
n+ 2

, (11)

which is independent of the population size N . As n increases, πu(En) quickly converges to one.
Notice the dramatically different behaviour of the seemingly related Equations (9) and (11). In typical

applications, n will be moderate and N will be much larger than n; if this is the case, πu(All + |n,N)
will be close to zero, but πu(En) will be close to one. Thus, if an event has been observed for a relatively
large number of uninterrupted times, and the uniform prior (7) is used for both problems, one obtains that
it is very likely that it will be observed again in the next occasion, but quite unlikely that it will always be
observed in the future.

3 Reference Analysis of the Hypergeometric Model
The conventional use of a uniform prior for discrete parameters can ignore the structure of the problem
under consideration. For the hypergeometric model, where the values of R are actual numbers, not merely
labels, there is arguably a clear structure. Indeed, for large N it is well known that the hypergeometric
distribution is essentially equivalent to the binomial distribution with parameter θ = R/N . The objective
prior for R should thus be compatible with the appropriate objective prior for θ in a Binomial Bi(r |n, θ)
model; this is commonly chosen to be the corresponding Jeffreys (and reference) prior, which is the (proper)
distribution

πr(θ) = Be(θ | 1
2
, 1

2
) =

1
π

1√
θ (1− θ)

, 0 < θ < 1. (12)

As N increases, the uniform prior (7) remains uniform, and this is clearly not compatible with (12).
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Similar reasoning led Jeffreys (1946, 1961) ([10, 12]) to suppose that theR conforming items arose as a
random sample from a binomial population with parameter p (which can be thought of as the limiting value
of θ = R/N as N → ∞), and then assign p the Jeffreys prior in (12). This hierarchical structure can be
justified on the basis of exchangeability, as observed in Berger, Bernardo and Sun (2009) ([4]) (which also
generalized the approach to other discrete distributions). The resulting induced reference prior for R is

πr(R |N) =
1
π

Γ(R+ 1
2
) Γ(N −R+ 1

2
)

Γ(R+ 1) Γ(N −R+ 1)
, R ∈ {0, 1, . . . , N}, (13)

which may also be written as

πr(R |N) = f(R) f(N −R), R ∈ {0, 1, . . . , N}, (14)

where

f(y) =
1√
π

Γ(y + 1/2)
Γ(y + 1)

, y ≥ 0 . (15)

As will later become evident, the positive, strictly decreasing function defined by (15) occurs very frequently
in the derivations associated to the problems analyzed in this paper. Since Γ(1/2) =

√
π, f(0) = 1.

Moreover, using Stirling’s approximation to the Gamma functions, it is easily seen that, for large y,

f(y) ≈ 1√
π

1
√
y

,

so that if R and N −R are both large, one has

πr(R |N) ≈ 1
π

1√
R (N −R)

.

For N = 1, the reference prior (14) is the uniform prior πr(R |N = 1) = {1/2, 1/2}, for R ∈ {0, 1},
as one would certainly expect, but this is the only case where the reference prior for the hypergeometric
is uniform. Indeed, using Stirling’s approximation for the Gamma functions in (13) one gets, in terms of
θ = R/N ,

πr(θ |N) ≈ 1
N + 2

π

Be
(
N θ + 1

π

N + 2
π

∣∣∣∣ 1
2

, 1
2

)
, θ = 0, 1/N, . . . , 1, (16)

which is basically proportional to Be(θ | 1
2
, 1

2
), and hence compatible with the reference prior for the con-

tinuous limiting model Bi(r |n, p) with p = limN→∞R/N .
Reference predictive and posterior distributions. Using (3), the reference prior predictive distribution

of the number r of conforming items in a random sample of size n is

Pr(r |n,N) =
N∑
R=0

Hy(r |R,N, n)πr(R |N)

=
1
π

Γ(r + 1
2
) Γ(n− r + 1

2
)

Γ(r + 1) Γ(n− r + 1)
= f(r) f(n− r) = πr(r |n),

which is independent of the population sizeN . Notice that, as in the case of the uniform prior, the reference
prior predictive distribution of r given n has precisely the same mathematical form as the reference prior
of R given N , πr(R |N).

Furthermore, using (2) and the last result, the reference posterior distribution of R turns out to be

πr(R | r, n,N) =
c(r, n,N) Γ(R+ 1

2
) Γ(N −R+ 1

2
)

Γ(R− r + 1) Γ(N −R− (n− r) + 1)
, (17)

c(r, n,N) =
Γ(n+ 1) Γ(N − n+ 1)

Γ(N + 1) Γ(r + 1
2
) Γ(n− r + 1

2
)

.
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In particular, if N = 2 and n = 1, this yields

πr(R | r = 0, n = 1, N = 2) = {3/4, 1/4, 0}, R = 0, 1, 2,

which may be compared with the corresponding result {2/3, 1/3, 0}, obtained from a uniform prior.
Substituting R = N and r = n into (17) and simplifying, the reference posterior probability that all

elements in the population are conforming, given that all elements in the sample are conforming, is

πr(All + |n,N) =
Γ(N + 1/2)
Γ(N + 1)

Γ(n+ 1)
Γ(n+ 1/2)

=
f(N)
f(n)

≈
√
n

N
. (18)

Thus, πr(All + |n,N) is basically the square root of the ratio of the sample size to the population size, a
considerable contrast to the result (n+ 1)/(N + 1) obtained in (9) for the uniform prior.

Rule of succession. From (4), the probability that an element randomly selected from among the re-
maining unobserved N − n elements is conforming, for the reference prior (13), reduces to

πr(+ | r, n,N) =
N−n+r∑
R=r

R− r
N − n

πr(R | r, n,N) =
r + 1/2
n+ 1

, (19)

which is independent of N . Equation (19) provides the reference rule of succession, which was first ob-
tained by Perks (1947) ([15]) although, following Laplace, he only derived it for the limiting binomial
approximation (N = ∞ case), apparently not realizing that it was also an exact expression for any finite
population size N .

The reference rule of succession (19) may be compared with Laplace’s (r + 1)/(n + 2) of (10). In
particular, the corresponding reference probability of the event En — that something which has occurred n
times and has not hitherto failed to occur will occur — is, for any population size N ,

πr(En) = πr(+ | r = n, n,N) =
n+ 1/2
n+ 1

. (20)

As one would require, for n = 0 (and hence with no initial information), both (11) and (20) yield 1/2.
For n = 1, Laplace yields 2/3 while the corresponding reference probability is 3/4. It is easily verified
that, as n increases, the reference law of succession (20) has an appreciably faster convergence to one than
Laplace’s (11).

4 Natural Induction
In line with his early discussions on scientific enquiry (Wrinch and Jeffreys, 1921-23 ([17]), later expanded
in Jeffreys, 1931 ([11])), Jeffreys (1961, p. 128) ([12]) disagreed with the result (9) — and would also have
disagreed with (18) — arguing that, to justify natural induction, one should be able to demonstrate that a
law is probably correct for all elements of a population of size N , given that it has proven to be correct
in all of a very large number n of randomly chosen instances, even if n is appreciably smaller than N . In
contrast, (9) and (18) can be quite small for large n ifN is much larger than n. (Note that both (11) and (20)
are near 1 for large n, but these probabilities refer to the event En that a further randomly chosen element
will obey the stated law, not to the event that all elements in the population obey that law.)

To correct this problem, Jeffreys argued that the prior probability that all elements of the population have
the property, Pr(R = N), must be some fixed value independent of N . He argued that this is reasonable,
asserting that any clearly stated natural law has a positive prior probability of being correct, and he made
several specific proposals (Jeffreys, 1961, Sec. 3.2 ([12])) for the choice of prior probability. The simplest
choice is to let Pr(R = N) = 1/2, and this is the choice arising from the reference analysis below. For a
recent review of Jeffreys’ ideas, see Robert, Chopin and Rousseau (2009) ([16]).
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Reference analysis. A solution to the natural induction problem that satisfies the scientific desiderata
described by Jeffreys may be obtained from a standard use of reference analysis, if the parameter of interest
is chosen to be whether or not R = N , rather than the actual value of R. The result, described below, can
also be phrased in terms of testing the hypothesis that R = N versus the alternative R 6= N .

Lemma 1 Define the parameter of interest (in the reference prior analysis) to be

φ =

{
φ0 if R = N (All +),
φ1 if 0 ≤ R < N .

Then the corresponding reference prior, πφ(R |N), of the unknown parameter R is

πφ(R |N) =

{
1
2 if R = N
1
2
f(R) f(N−R)

1−f(N) if 0 ≤ R < N ,

where f(y) is defined in (15).

PROOF. To have a representation of the unknown parameter R in terms of the quantity of interest φ and a
nuisance parameter λ, define

λ =

{
λ0 if R = N (All +),
R if 0 ≤ R < N .

The sampling distribution of the data r given φ = φ1 is still the density

Pr(r |φ = φ1, λ 6= λ0, n,N) = Hy(r |n,R,N),

but now R is restricted to the set {0, 1, . . . , N − 1}. The reference prior of a model with a restricted
parameter space is obtained as the restriction of the reference prior from the unrestricted model. Hence,
using the fact that

πr(N |N) =
Γ(N + 1/2)√
π Γ(N + 1)

= f(N),

the conditional reference prior of λ given φ = φ1 is the renormalized version of (14)

π(λ |φ = φ1, N) =
f(R) f(N −R)

1− f(N)
. (21)

On the other hand, π(λ = λ0 |φ = φ0, N) = 1 since, given φ = φ0, the nuisance parameter λ must be
equal to λ0. Moreover, φ has only two possible values and, therefore, its marginal reference prior is simply
π(φ = φ0) = π(φ = φ1) = 1/2. Hence, the joint reference prior of the unknown parameter R, when φ is
the quantity of interest, is πφ(R |N) = π(λ |φ,N)π(φ), which yields the conclusion. �

Using this prior, the required reference posterior probability of the event {All +} that all N elements
in the population are conforming (R = N), given that all r elements in a random sample of size n are
conforming (r = n), is found in the following result.

Theorem 1

πφ(All + |n,N) =
(

1 +
f(n)− f(N)

1− f(N)

)−1

, (22)

where f(y) is defined in (15).
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PROOF. Note that

πφ( All + |n,N) = πφ(φ = φ0 | r = n,N)

=
1
2

Pr(r = n |φ = φ0, n,N)
1
2

Pr(r = n |φ = φ0, n,N) + 1
2

Pr(r = n |φ = φ1, n,N)

=
(
1 + Pr(r = n |φ = φ1, n,N)

)−1 ,

since Pr(r = n |φ = φ0, n,N) is obviously one. By the total probability theorem,

Pr(n |φ = φ1, n,N) =
N−1∑
R=n

Pr(n |φ = φ1, R, n,N)πφ(R |φ = φ1, N)

and, using the fact that, for all N ,

Pr(r = n |n,N) =
N∑
R=n

Hy(n |n,R,N) πr(R |N,M) =
1√
π

Γ(n+ 1
2
)

Γ(n+ 1)
= f(n) ,

it is easily shown that

Pr(r = n |R < N,n,N) =
f(n)− f(N)

1− f(N)
.

The conclusion is immediate. �

Hence, for large population sizes, f(N) ≈ 0 and, as a consequence, the reference posterior probability,
πφ(R = N | r = n,N), that all N elements in the population are conforming, given that all elements in a
sample of size n are conforming, is then essentially independent of N and given by

πφ(All + |n,N) ≈
(
1 + f(n)

)−1 =
(

1 +
1√
π

Γ(n+ 1
2
)

Γ(n+ 1)

)−1

, (23)

which, for moderately large n, may further be approximated by

πφ(All + |n,N) ≈
√
n

π−1/2 +
√
n

. (24)

For instance, with n = 100 and N = 1000 the exact value of the required probability, given by (22), is
πφ(R = N | r = n,N) = 0.9623, and the two approximations (23) and (24), respectively, yield 0.9467
and 0.9466.

Equation (22) may be compared with the result which one would obtain if a conventional uniform
conditional prior

π1(λ |φ = φ1, N) = π1(R |N − 1) =
1
N

,

had been used instead of the structured conditional reference prior (21). It may be shown (Bernardo,
1985 ([6]), Bernardo and Smith, 1994, p. 322 ([8])) that this yields

π1(All + |n,N) =
(

1 +
1

n+ 1

(
1− n

N

))−1

, (25)

which is always larger than (22). For instance, with n = 50 and N = 100, the result in Theorem 1 yields
πφ(All + |n = 50, N = 100) = 0.9263, while the use of (25) yields π1(All + |n = 50, N = 100) =
0.9903, a much larger value. Thus the reference probability is considerably more conservative.

N =∞ and hypothesis testing. As mentioned earlier, as N →∞, the hypergeometric Hy(r |n,R,N)
model converges to the binomial Bi(r |n, p) model, with p = limN→∞R/N . In this infinite population
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setting, the model that all elements in the population have the specified property can be stated in the lan-
guage of hypothesis testing as H0 ≡ {p = 1}. The natural induction problem is thus formally that of
finding the posterior probability of H0 when all n observations have the property (i.e., are successes in the
binomial model).

The reference prior assigns probability 1/2 to both H0 ≡ {p = 1} and H1 ≡ {p < 1} and, condi-
tional on H1, assigns p the Be(p | 1

2
, 1

2
) reference prior. A straightforward computation then yields that the

posterior probability of H0, given that the first n observations all have the specified property, is equal to

Pr(p = 1 |n) =
(

1 +
1√
π

Γ(n+ 1
2
)

Γ(n+ 1)

)−1

=
(
1 + f(n)

)−1
(26)

which, curiously, is the same expression as the approximation to the reference posterior probability
πφ(All + |n,N) obtained for large N in (23).

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1.0
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ΠrHR=N È n, N=100L
PrHp=1 È nL

Figure 1. Reference posterior probabilities πφ(All + |n,N = 100) that all the elements from a finite popu-
lation of size N = 100 are conforming, given that all the elements from a random sample of size n are
conforming, for n = 0, 1, . . . , 100, (above) and its Bayes factor continuous (N = ∞) approximation (below).

Figure 1 shows the exact values of (22) for N = 100 and n = 0, 1, . . ., 100, along with the binomial
limiting case. Note that it is important to take the the population size, N , into account, except for very
large population sizes. For example, if r = 50 and N = 100, the exact value of the required reference
posterior probability that all elements in the population are conforming is πφ(All + |n,N) = 0.9617, but
the continuous approximation gives only Pr(p = 1 |n) = 0.9263.

5 Conclusions and an Example

The proposed solutions, based on reference prior theory, to the two originally posed problems can be sum-
marized as follows.

The Reference Rule of Succession. In a population of N elements, from which n have been randomly
sampled and been found to be conforming, the reference posterior probability that a new element, randomly
selected from among the remaining unobserved N − n elements, turns out to be conforming is

πr(+ | r = n, n,N) =
n+ 1/2
n+ 1

, (27)

which is independent of N and may be compared with Laplace’s (n+ 1)/(n+ 2).
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The Reference Law of Natural Induction. If it is assumed that the parameter of interest is whether or
not all elements of a population are conforming (i.e. that the property is a law of nature), then the reference
posterior probability of this law is

πφ(All + |n,N) =

1 +
1√
π

Γ(n+1/2)
Γ(n+1) −

1√
π

Γ(N+1/2)
Γ(N+1)

1− 1√
π

Γ(N+1/2)
Γ(N+1)

−1

. (28)

For very large N (or infinite populations), this is essentially identical to (26).
Example. Many years ago, when visiting the Charles Darwin research station of the Galápagos islands,

one of us (Bernardo) had a question posed by a zoologist. The zoologist had observed, and marked, 55
galápagos (tortoises) in one small island, all of which presented a particular shell modification, possibly
related to their adaptation to the island vegetation. The zoologist asked for the probability that all galápagos
in the island had that modification. He added that his sample was roughly random, and that he would
estimate the total galápagos population in that island to be between 150 and 250 individuals.

At the time, Bernardo quoted the solution (25) based on a conditional uniform prior, which yielded the
range [0.986, 0.989] (corresponding to the range of N ). The reference probabilities (28) give the smaller
values

πφ(All + |n = 55, N ∈ [150, 250]) ∈ [0.960, 0.970].

Note that these numbers are, nevertheless, appreciably higher than the limiting binomial approximation
Pr(p = 1 |n = 55) = 0.929, showing the importance of incorporating N into the analysis.

Finally, using (27), the zoologist could have been told that, if he went back to the island, he would have
a reference posterior probability

πr(+ | r = n, n = 55, N) = 0.991

that the first found unmarked galápago also presented a modified shell.
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Comments on:
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We would like to thank the editor of RACSAM, Professor Manuel López Pellicer, for the opportunity
he is offering to us of discussing this paper, and to congratulate Berger, Bernardo and Sun for an interesting
and thought provoking paper.

The paper is motivated by the observation that the uniform prior for R, say π(R|N) = 1/(N + 1),
R = 0, . . ., N , gives poor results. It is shown that the posterior probability that all the N elements of
the population are conforming, conditional on the event that all the observed n elements in the sample
are conforming, is very small for N large, whatever moderate the sample size n should be. Then, a more
reasonable prior π(R|M) is provided on the ground of being compatible with the Jeffreys prior for the
parameter θ of the Binomial limiting distribution with parameters (n, θ), where θ = limR→∞,N→∞R/N .
We enjoyed reading this clear argumentation.

However, in the abstract it is recognized that “Bayesian solutions to this problem may be very sensitive
to the choice of the prior, and there is no consensus as to the appropriate prior to use. ” It seems to us that
the natural consequence of this assertion —that we share— is to consider a class of priors and reporting
their posterior answers, instead of considering the posterior answer for the single reference prior for R. In
this discussion we try to add the robustness analysis that we feel is missing in the paper.

For simplicity we will consider the limiting Binomial distribution Bi(r|n, θ), and the two problems
addressed in the paper. Firstly, the testing problem

H0 : θ = 1 versus H1 : θ ∈ [0, 1],

conditional on the dataset r = n, the event that all the elements of the sample are +. Secondly, the
computation of the posterior predictive probability that a new observation is + , conditional on r = n.

The naive objective model selection formulation of this testing problem is that of choosing between the
reduced sampling model

M0 : Bi(n|n, θ = 1)

and the full sampling model with the Jeffreys prior for θ, that is

M1 :
{

Bi(n|n, θ), πJ(θ) =
1
π
θ−1/2(1− θ)−1/2

}
.

However, the Jeffreys prior does not concentrate its probability mass around the null with the conse-
quence that those θ close to zero are privileged by the Jefrreys priors when being compared with the null
θ = 1. This is not reasonable, and many authors claim for a different prior to be used for testing that
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should be concentrated around the null. See, for instance, Jeffreys (1961, Chapter 5) ([8]), Gûnel and
Dickey (1974) ([9]), who note that this is the “Savage continuity condition”, Berger and Sellke (1987) ([3]),
Casella and Berger (1987) ([4]), Morris (1987) ([12]), Berger (1994) ([2]), Casella and Moreno (2009) ([5]).

The point is how to define an objective class of priors that concentrate mass around the null. Fortunately,
an answer to this question is provided by the class of intrinsic priors (Berger and Pericchi 1996 ([1]), Moreno
et al. 1998 ([10])). This objective class of priors has been proved to behave extremely well for model
selection in different contexts (Casella and Moreno 2006 ([5]), Consonni and La Roca 2008 ([7]), Moreno
and Girón 2008 ([11])). The intrinsic priors for θ depend on a hyperparameter m that controls the degree of
concentration of the priors around the null, and it ranges from 1 to n, so as to not exceed the concentration
of the likelihood of θ (Casella and Moreno 2009 ([5])). For the above model selection problem standard
calculations render the intrinsic prior class as the set of beta distributions Be(m+ 1/2, 1/2), that is

πI(θ|m) =
Γ(m+ 1)

Γ(m+ 1/2)Γ(1/2)
θm−1/2(1− θ)−1/2, m = 1, 2, . . . , n.

Therefore, in the above model selection problem the Jeffreys prior should be replaced with the intrinsic
prior, and M0 should be compared with

M1 : {Bi(n|n, θ), πI(θ|m),m = 1, 2, . . . , n}.

We note that as m increases the intrinsic prior concentrates more around the null. Certainly, when the null
is compared with models located in a small neighborhood of the null, one expects from the model selection
problem an answer with more uncertainty than when the null is compared with models located far from it.

The posterior probability of the null for the intrinsic priors is given by

Pr(All + |n,m) =
(

1 +
Γ(m+ 1)Γ(n+m+ 1/2)
Γ(m+ 1/2)Γ(n+m+ 1)

)−1

, m = 1, ..., n.

Likewise, the posterior probability that a new observation is + , conditional on r = n, is given by the total
probability theorem as

Pr(+|n,m) =
1∑

i=0

Pr(+|Mi, n,m)P (Mi|n,m),

where Pr(+|M0, n,m) = 1, and

Pr(+|M1, n,m) =
n+m+ 1/2
n+m+ 1

.

Example 1 Assuming that the galápagos population in the island is large enough, we obtain that

min
m=1,...,55

Pr(All + |n = 55,m) = Pr(All + |n = 55,m = 55) = 0.586,

and
max

m=1,...,55
Pr(All + |n = 55,m) = Pr(All + |n = 55,m = 1) = 0.869,

while
Pr(+|n = 55,m) ' 0.998

for m = 1, 2, . . ., 55.

This example illustrates something about robustness that is well known: the posterior probability of an
event is typically much less sensitive to the prior than the tests are. The posterior probability that a new
observation is + , conditional on r = n, that we have obtained is similar to that given in the paper, but the
report for the testing problem given in the paper and that given by us are rather different.
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This very fine paper is valuable because it produces challenging and interesting results in a problem that
is at the heart of statistics. The real populations that occur in the world are all finite and the infinities that
we habitually invoke are constructs, albeit useful but essentially artificial. Another reason for being excited
about the work is that it opens the way to further Bayesian studies of the practice of sampling procedures,
where several features, and not just one as here, are being investigated.

The authors make much use of the term ‘objective’; what does this mean? My dictionary gives at least
two, rather different, meanings: “exterior to the mind” and “aim”. The authors would appear to use both
meanings in the same sentence when they say, at the end of Section 1, “A formal objective Bayesian solution
. . . is the main objective of this paper”. My opinion is that all statistics is subjective, the subject being the
scientist analysing the data, so that the contrary position needs clarification. There is also a confusion for
me with the term ‘reference prior’, a term that I have queried in earlier discussions.

An unstated assumption that R and n are independent, given N , has crept into (2) where Pr(R |N)
should be Pr(R |n,N). The assumption may not be trivial, as when the sampling procedure is to continue
until the first non-conforming element is found. Another assumption made is that N is fixed, despite the
fact that, in the example of the tortoises, it is unknown. I would welcome some clarification of the role of
the sampling procedure.

Perhaps the most interesting section in the paper is 3, where the use of Jeffreys’s prior (12), or (13),
superficially very close to the uniform (roughly 1/2 a confirmation and 1/2 non-confirmation) gives such
different results from it. For example (20) can be written πr(En) = 2n+1

2n+2 . Thus Jeffreys gives the same
result as Laplace but for twice the sample size. Again in the hierarchical model πr(All + |n,N) is about√
n/N , equation (13), whereas with the uniform it is about n/N , equation (9), the larger value presumably

being due to the prior on θ attaching higher probability than the uniform to values near 1. We therefore
have the unexpected situation where an apparently small change in the prior results in an apparently large
change in at least some aspects of the posterior.

There are many issues here that merit further study and we should be grateful to the authors for the
stimulus to employ their original ideas to do this.

Dennis V. Lindley
Royal Statistical Society’s Guy Medal in Gold in 2002.
University College London, UK
ThomBayes@aol.com
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Brunero Liseo

I really enjoyed reading the paper. It shed new and clear light to some issues which stand at the core of
the statistical reasoning.

In standard statistical models, where the parameter space is a subset of Rk for some integer k, reference
priors, and to some extent, Jeffreys’ priors, offer a way to find a compromise between Bayesian and classical
goals of statistics. Usually such a solution lies at the boundary of the Bayesian world, i.e. the objective priors
to be used in order to get good frequentist behaviour are in general improper. A remarkable exception is
however the objective prior for the probability of success θ in a sequence of Bernoulli trials.

Finite populations problems can hardly be approximated by an “infinite population” scenario and, apart
from the computational burden, difficulties arise in figuring out what the “boundary of the Bayesian world”
would be in these situations. In other words, it is not clear whether a compromise between Bayesian and
frequentist procedures is at all possible in finite populations. This paper is then welcome in providing some
evidence that, at least, an objective Bayesian analysis of such class of problems is indeed meaningful.

In the rest of the discussion I will focus on the Law of natural induction, that is how to evaluate the
probability that all the N elements in a population are conforming, given that all the n elements in the
sample are. Let R be the unknown number of conforming elements in the population.

The Authors criticize the use of a uniform prior for R and argue that a version of the reference prior,
based on the idea of embedding (Berger, Bernardo and Sun, 2009 ([1])), provides more appropriate results.
I agree with this conclusion, although the differences are not dramatic. Both uniform and reference priors
for R are “symmetric around N/2”; besides that, the hypothesis R = N does not play a special role: for
instance, the two hypotheses R = N and R = 0 are given the same weight under both priors; also the cases
R = N and R = N − 1 have approximately the same prior (and posterior. . . ) probability both under the
uniform and the reference prior. These conclusions are perfectly reasonable for an estimation problem when
no prior information on R is available. However, the Authors argue that the small value of Pr(All + |n,N)
“clearly conflicts with the common perception from scientists that, as n increases, Pr(All + |n,N) should
converge to one, whatever the value of N might be”. This is the crucial point and brings into the discussion
the role of models in Statistics. The uniform and the reference prior approaches are not able to catch the
idea that R = N and R close to N may be two dramatically different descriptions of the phenomenon:
if we are interested in the number of individuals in a population which do not show a genetic mutation,
R = N would imply the absence of the mutation with completely different scientific implications from
those related to any other value of R.

If the hypothesis R = N has a “physical meaning” then I would have no doubt that the correct anal-
ysis to perform is the one described in Section 4. This analysis would make Jeffreys and other objective
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Bayesians happy, since it clearly distinguishes between the statistical “meaning” of the hypothesis R = N
and the meaning of other hypotheses, such as R = 0 or R = N − 1.

In such a situation, formula (28) (or 26) seems a perfectly reasonable “objective Bayesian” answer to
the Law of Natural Induction: it is monotonically increasing in n for fixed N and monotonically decreasing
in N for fixed n.

So the final question is: can we consider all the scientific questions equivalent to those leading to for-
mula (28)? Should not we take into account the common perception from scientists as a guide to choice
the best statistical formalization of the problem? To make the point, what happens if a reasonable working
model in a specific application, is of the type “R close to N”? This is not an infrequent situation; consider,
for example, surveys on human or animal populations in order to detect the presence of rare events. In such
cases, strong prior information about R might be available and one would rather prefer to perform a refer-
ence analysis conditional on some partial prior information, along the lines of Sun and Berger (1998 ([2]),
Reference priors with partial information, Biometrika [2]).
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1 Introduction

Berger, Bernardo and Sun’s thought-provoking paper offersa Bayesian resolution to the difficult philo-
sophical problem raised by inductive inference. In a nutshell, the philosophical problem plaguing inductive
inference is that no finite number of past occurrences of an event can prove its continuing occurrence in
the future. It is thus natural to seek probabilistic reassurance for our instinctive feeling that an event re-
peatedly observed in the past must be more likely to recur than an event that happened only infrequently.
Consequently, as the authors note, the “rule of succession”and the “natural law of induction” have en-
gaged the attention of philosophers, scientists, mathematicians and statisticians for centuries. And rightly
so because—despite philosophical qualms about induction—science cannot progress without inductive in-
ferences. The vintage of the induction problem testifies to its difficulty and the pervasiveness of inductive
inferences in science reinforces our ongoing efforts to strengthen its underlying logic and fortify its foun-
dations through statistical reasoning. These circumstances necessitate diverse approaches to establish a
rigorously justifiable framework for inductive inference.

Berger et al. have made a sophisticated contribution to the literature on rigorously justifying inductive
inference, and they have innovatively illuminated an illustrious path blazed by none other than Laplace
himself. At the risk of appearing mean-spirited, my main complaint with their solution is the technical
virtuosity demanded by their methodology. The mathematical complexities of finding a reference prior are
daunting enough to dissuade all but the most lion-hearted inventuring on the search. Given the importance
of the problem that Berger et al. address, it may be worthwhile to dredge up an existing solution that seems
to be unknown in the statistics literature. In that spirit, Iwill discuss an alternative approach that produces
one of the key results that Berger et al. derive through theirreference prior. My approach has the merit of
being considerably simpler and more flexible at the expense of possibly not satisfying all the four desiderata
listed in Bernardo (2005) ([2]) for objective posteriors, but it does quickly produce a central result in Berger
et al. and offers insights into the value of additional replications—an issue that lies at the heart of inductive
inference and scientific inquiry. First a few thoughts on therelevance of replications to the topic at hand.
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2 Inductive inference and replications

Bernardo (1979) ([3]) defines a reference posterior in termsof limiting operations carried out on the amount
of information about the unknown parameter, obtained from successive independentreplications of an
experiment. Bernardo’s definition of reference priors through replications resonates well with a key guiding
principle of good scientific research. Replications are theheart and soul of rigorous scientific work—
findings that are replicated independently by investigators increase our confidence in the results (Cohen
1990 ([4])). Thus, replications play a fundamental role both in the mathematical definition of a reference
posterior and in the scientific process. Clearly, replications are intimately related to inductive inference. It
would thus seem conceptually attractive, if, as a by-product of modifying the Laplace Rule of Succession
to strengthen its logical basis, we are also able to figure outthe optimal informational role of replications.

3 Improving the Laplace rule of succession

Using a reference prior: The solution proposed by Berger et al. to the limitations of the Laplace Rule
of succession is displayed in equations (20) and (27) of their paper. Using their notation, the authors’ result
is that:

πu(En) =
n + 1/2

n + 1
(1)

which yields faster convergence to unity than the Laplace Rule. The Laplace Rule yields the probability
πu(En) = n+1

n+2 . To obtain equation (1), Berger et al. use a hypergeometric model (equation (4) in their
paper) together with the reference prior shown in equation (13) of their paper. Equation (13) is obtained by
using the Jeffreys prior (equation (12) in Berger et al.) in conjunction with an asymptotic argument which is
justified on the basis of exchangeability, as the authors have shown elsewhere. Their logic is sophisticated
and beautiful but the price paid for such beauty is that the resultant derivations are arduous. Indeed, Berger
and Bernardo (1992) ([1]) themselves admit that the generalreference prior method “is typically very hard
to implement.” Under these circumstances, perhaps the search for a simpler approach is defensible and
meritorious of some attention.

Using a beta prior: In Raman (1994) ([7]), I show that the following rule of succession generalizes the
Laplace Rule. Suppose thatp is the probability that a scientific theory is true, and assume that the prior for
p is Be(p |α, β); if we subsequently obtain ‘n’ confirmations of the theory, then, using the notationbn(En)
to suggest its beta-binomial roots, the probability of observing an additional confirmation is given by,

bn(En) =
α + n

α + β + n
(2)

Equation (2) follows easily from a result in DeGroot (1975 ([5]), p. 265) guaranteeing equivalence of
the sequential updating ofBe(p |α, β) with the updating ofBe(p |α, β), conditional on having observed
“n” successes. The Jeffreys priorf(p) = 1

π
1√

p(1−p)
, 0 < p < 1, is a special case resulting from the choice

α = β = 1

2
in the priorBe(p |α, β). For that choice of prior, equation (2) reduces to the equation (20) of

the Berger et al. paper:

Forα = β = 1/2, bn(En) =
n + 1/2

n + 1
(3)

Polya (1954) ([6]) recommends a number of properties that an“induction-justifying” rule ought to
have—and the beta-binomial rule (equation (2) above) exhibits those desiderata.

Using a general prior, not necessarily beta: It would be natural to object that the above deriva-
tion is driven by a specific prior—the Beta distribution. However, in Raman (2000) ([8]), I show that a
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generalized rule of succession can be obtained for a generalclass of priors which includes the Beta distri-
bution as a special case. The generalized rule of successionincludes as special cases, the original Laplace
Rule, the Beta-Binomial rule and the rule derived in Berger et al. through a reference prior. The exact
result is the following: ifg(p) is a prior density function with a convergent Maclaurin series representation
g(p) ∼ ∑

i≥0 aip
i, then, using the notationgn to denote the rule of succession under this general prior

density,

gn =
∑

i≥0

ai

i + 1 + n

i + 2 + n
(4)

As special cases,a0 = 1, ai = 0, i ≥ 1, yields the Laplace rule of succession, the choice ofai as the
coefficients in a power-series expansion ofBe(p |α, β) results in the beta-binomial rule, which includes, as
a special case, the rule of succession for the Jeffreys’ prior derived in Berger et al. through a reference prior.
Clearly,gn may be viewed as a linear combination of beta-binomial rulesof succession or, with equal right,
as a linear combination of Laplacian rules of succession.

From an applied perspective, the Beta density’s flexibilityand tractability make it an attractive choice for
a prior; from a theoretical perspective, the above results show that it suffices for the purpose of generating
a more plausible rule of succession than the Laplacian rule,and, in fact, yields results that are identical to
Berger et al. Finally, although I do not delve into the topic here, the Beta prior permits derivation of an
adaptive controller that shows the value of performing an additional replication as a function of our prior
beliefs about the theory, the accumulated evidence in favorof the theory, the precision deemed necessary
and the cost of the replication (Raman 1994) ([7]).

Using the Jeffreys’ reference prior in Berger et al.: I should remark on the following property of
the Jeffreys’ reference prior which appears somewhat odd tome. WhenN = 1, it assigns a probability of
0.50, for R, which makes sense. Furthermore, asN → ∞, the probabilityπr(R |N) for R = N , tends
to 0 —a result which is attractive. However asN increases, at intermediate values ofN , the behavior of
πr(R |N) is somewhat odd forR = N . Let me explain.

Consider equation (13) in Berger et al.

πr(R |N) =
1

π

Γ(R + 1

2
) Γ(N − R + 1

2
)

Γ(R + 1)Γ(N − R + 1)
, R ∈ {0, 1, . . . , N}, (13)

soR = N implies

πr(R |N) =
1

π

Γ(N + 1

2
) Γ( 1

2
)

Γ(N + 1)
.

Consider the behavior of the above function asN grows large. The first derivative ofπr(N |N) is a
complicated expression involving the polygamma function,but if we plotπr(N |N) as a function of ‘N ’,
then we obtain insights. Plotting the function in Mathematica as a function ofN (see Figure 1), we find
thatπr(N |N) at first drops very steeply but that the rate of decline slows down dramatically forN > 20.
For example, for100 ≤ N ≤ 200, the probability drops from0.056 atN = 100 to 0.039 atN = 200.

Thusπr(N |N) is insensitive to new information for large but finite valuesof N , which is the case that
would be of greatest pragmatic interest in scientific theory-testing. It would be useful if the authors could
comment on the significance of this property for natural induction.

4 Conclusion

My thoughts on the elegant analysis of Berger et al. are driven by an entirely applied perspective. Conse-
quently, I seek the most parsimonious and mathematically tractable route to model-building. The alternative
approach I have described lacks the technical sophistication and mathematical rigor of the authors’ refer-
ence prior approach—its primary justification is its ease ofuse and pliability at addressing a broader set
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Figure 1. πr(N |N) as a function of N .

of issues (such as the development of an optimal controller to balance the tradeoffs involved in replicat-
ing experiments). I realize that these broader issues are not necessarily relevant to the authors—but even
so, I would argue that the authors may benefit from thinking about how reference priors can address these
questions better than my naı̈ve approach based on a mathematically convenient family of conjugate priors,
because their reflection on the applied concerns I have raised could lead to new results that would broaden
the scope and scientific impact of reference priors on researchers across multiple disciplines.

In conclusion, I applaud the authors for their innovative application of a powerful new technique to an
important and vexing problem of ancient vintage, and hope that some of their future work on reference
priors makes the methodology less mysterious, thereby disseminating their ideas to a wider audience and
paving the way for new applications based on reference priors.

References
[1] BERGER, J. O.AND BERNARDO, J. M., (1992). On the development of reference priors. inBayesian Statistics,

4. (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 35–60 (with
discussion).

[2] BERNARDO, J. M., (2005). Reference analysis, inHandbook of Statistics, 25, 17–90. D. K. Dey and C. R. Rao,
(eds.) Amsterdam: Elsevier.

[3] BERNARDO, J. M., (1979). Reference posterior distributions for Bayesian inference.J. Roy. Statist. Soc. B, 41,
113–147 (with discussion). Reprinted inBayesian Inference, 1 (G. C. Tiao and N. G. Polson, eds.) Oxford:
Edward Elgar, 229–263.

[4] COHEN, JACOB, (1990). Things I have Learned So Far,American Psychologist, 45, (December), 1304–1312.

[5] DEGROOT, MORRISH., (1975).Probability and Statistics, Reading, MA: Addison-Wesley.

[6] POLYA , GEORGE, (1968).Mathematics and Plausible Reasoning, Vol. 2, Princeton, NJ: Princeton University
Press.

[7] RAMAN , KALYAN , (1994). Inductive Inference And Replications:A BayesianPerspective,Journal of Consumer
Research, March,20, 633–643.

[8] RAMAN , KALYAN , (2000). The Laplace Rule of Succession Under A General Prior, Interstat, June, 1,
http://interstat.stat.vt.edu/interstat/articles/2000/abstracts/u00001.html-ssi.

Kalyan Raman
Medill IMC Department,
Northwestern University,
USA
k-raman@northwestern.edu

148



RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 103 (1), 2009, pp. 149–150
Estadı́stica e Investigación Operativa / Statistics and Operations Research
Comentarios / Comments

Comments on:
Natural Induction: An Objective Bayesian Approach

Christian P. Robert

This is a quite welcomed addition to the multifaceted literature on this topic of natural induction that
keeps attracting philosophers and epistemologists as much as statisticians. The authors are to be congratu-
lated on their ability to reformulate the problem in a new light that makes the law of natural induction more
compatible with the law of succession. Their approach furthermore emphasize the model choice nature of
the problem.

First, I have always been intrigued by the amount of attention paid to a problem which, while being
formally close to Bayes’ own original problem of the binomial posterior, did seem quite restricted in scope.
Indeed, the fact that the population size N is supposed to be known is a strong deterrent to see the problem
as realistic, as shown by the (neat!) Galapagos example. My first question is then to wonder how the
derivation of the reference prior by Berger, Bernardo, and Sun extends to the case when N is random, in
a rudimentary capture-recapture setting. An intuitive choice for πr(N) is 1/N (since N appears as a scale
parameter), but is (

R
r

) (
N−R
n−r

)(
N
n

) Γ(R+ 1/2)Γ(N −R+ 1/2)
R!(N −R)!

1
N

summable in both R and N? (Obviously, improperness of the posterior does not occur for a fixed N .)
As exposed in the paper, one reason for this special focus on natural induction may be that it leads to such

a different outcome when compared with the binomial situation. Another reason is certainly that Laplace
succession’s rule seems to summarise in the simplest possible problem the most intriguing nature of infer-
ence. And to attract its detractors, from the classical Hume’s (1748) ([1]) to the trendy Taleb’s (2007) ([2])
“black swan” argument (which is not the issue here, since the “black swan” criticism deals with the possi-
bility of model changes).

Second, the solution adopted in the paper follows Jeffreys’ approach and I find this perspective quite
meaningful for the problem at hand. Indeed, while N can be seen as (N − 1) + 1, i.e. as one of the N + 1
possible values forR, the consequence of havingR equal to eitherN or 0 lead to atomic distributions for the
number of successes. Thus, to distinguish those two values from the other makes sense even outside a testing
perspective. In Jeffreys’ (1939) original formulation, both extreme values, 0 and N , are kept separate, with
a prior probability k between 1/3 and 1/2. I thus wonder why the authors moved away from this original
perspective. The computation for this scenario does not seem much harder since πr(0|N) = f(N) as well
and the equivalent of (22) would then be
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πφ(All + |n,N) =
(

1 +
k

1− 2k
f(n)− 2f(N)

1− 2f(N)

)−1

,

which is then (1 + 0.5f(n))−1 for N large. In this case, (24) is replaced with
√
n/(
√
n + 2/

√
π), not a

considerable difference.
In conclusion, I enjoyed very much reading this convincing analysis of a hard “simple problem”! It is

unlikely to close the lid on the debate surrounding the problem, especially by those more interested in the
philosophic side of it, but rephrasing natural induction as a model choice issue and advertising the relevance
of Jeffreys’ approach to this very problem have bearings beyond the “simple” hypergeometric model.
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Raúl Rueda

According to the authors: “The conventional use of a uniform prior for discrete parameters can ignore
the structure of the problem under consideration”. This motivates the introduction of a hierarchical structure

p(R |N) =
∫ 1

0

Bi(R |N, θ) Be(θ | 1/2, 1/2) dθ,

where Bi(R |N, θ) is the binomial ditribution with parameters (N, θ) and Be(θ | 1/2, 1/2) is the reference
prior for θ in this case.

However, it must be pointed out that the assumption of exchangeability to justify the hierarchical struc-
ture is also valid for the uniform prior, by replacing the Be(θ | 1/2, 1/2) distribution with a uniform in (0, 1)
yielding as a prior p[R] = 1/(N + 1).

Anyway, the reference Rule of Succession is essentially the same as Laplace’s, but there is a difference
in π[All + |n,N ] when n is small compared with N . This difference disappears when n→ N .

Even though the authors find equations (9) and (11) to be “dramatically different”, suggesting a contra-
dictory behaviour, this is perfectly possible for example, in the case of rare events, such a finding a person
who suffers from a desease with a prevalence of one in a million. If the conforming event is the absence
of the desease, then there is a high probability that we observe another conforming element given that all
elements in the sample are conforming. At the same time, the probability that all are conforming is close to
zero, so in this case (9) and (11) are both valid, and the behaviour of (22) becomes more difficult to accept.
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Universidad Autonoma Nacional de Mexico,
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S. L. Zabell

Berger, Bernardo, and Sun (BBS) briefly allude to exchangeability in their paper. Since I personally
find this the most natural way to view these types of questions, I begin by discussing their results from this
point of view.

Suppose X1, . . ., XN is a finite exchangeable sequence of 0s and 1s with respect to a probability P .
The simplest such probability assignment is the one corresponding to an urn UR,N with N balls, R 1s
and N − R 0s, where we drawn the balls out at random without replacement. Denote this hypergeometric
probability assignment by HR,N . If SN = X1 + · · ·+XN and pR = P (SN = R), then by exchangeability
P =

∑
R pRHR,N . Call this the finite de Finetti representation.

In general a finite exchangeable sequence X1, . . ., XN cannot be extended (and remain exchangeable),
but if it can be indefinitely extended then it admits an integral representation: for some probability measure
Q on the unit interval one has

P (SN = R) =
∫ 1

0

(
N

R

)
pR(1− p)N−R dQ(p);

this is the celebrated de Finetti representation theorem.
Thus P can be thought of arising in two apparently different, but actually stochastically equivalent

ways: 1) choose a p-coin according to Q, and toss it N times, or 2) choose an urn UR,N according to pR,
and then draw the balls out at random from it without replacement.

In Laplace’s famous 1774 paper he took the first route, adopting the flat dQ(p) = dp. This special prior
has, as BBS note, the interesting properties that P (SN = R) = 1/(N + 1), for 0 ≤ R ≤ N ; and for any
n < N , P (Xn+1 = 1|Sn = r) = (r + 1)/(n + 2); the “rule of succession”.

The classical Laplacean analysis raises a number of questions: the nature of p (presumably some form
of “physical probability”); the implicit presence of an (at least in principle) infinitely extendable sequence;
and exactly what is meant by Laplace’s idea of sampling with replacement from an infinite population.
So it was perhaps inevitable that someone would eventually ask about the corresponding state of affairs if
you sample without replacement from a finite population and make the natural assumption that all possible
fractions of 0s and 1s are equally likely.

This is what C. D. Broad did in 1918. But as the Bible tells us, “there is nothing new under the sun”. The
analysis of sampling without replacement from a finite population, using a uniform prior on the fraction of
“conformable elements”, had already been carried out more than a century earlier, by Prevost and L’Huilier
in 1797! In their direct attack on the problem it is necessary to prove a not entirely trivial combinatorial
identity in order to establish the rule of succession; see Todhunter (1865 ([2]), pp. 454–457), Zabell (1988).
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The result was a surprise: as Prevost and L’Huilier note, the rule of succession (r+1)/(n+2) (for a sample
of size n from a population of size N ) does not depend on N , and is the same of Laplace’s! As Todhunter
remarks, “The coincidence of the results obtained on the two different hypotheses is remarkable” (1865,
p. 457).

But in fact it is not remarkable; from the perspective of the finite de Finetti representation one does not
need to evaluate a tricky combinatorial sum, nor is the coincidence of the rules of succesion in any way
surprising. A finite exchangeable sequence X1, . . ., Xn is completely characterized by the probabilities
pR = P (SN = R); and so whether the process is generated by first picking p at random from the unit
interval and then tossing a p-coin N times, or by randomly selecting an urn UR,N and then drawing its balls
out one at a time without replacement, you get stochastically identical processes (because in both cases
P (SN = R) = 1/(1 + N)); it’s not just that the rules of succession coincide but everything is the same!

It is interesting to trace intellectual dependencies. Broad (1924 ([1]), Section 3) attributes his “interest
in the problems of probability and induction” to W. E. Johnson (a Cambridge logician who derived Carnap’s
“continuum of inductive methods” more than 20 years before Carnap did); and Broad’s 1918 analysis was
in turn an important influence on Sir Harold Jeffreys, who tells us that “It was the profound analysis in this
paper that led to the work of Wrinch and myself” (Jeffreys, 1961, p. 128).

One of the reasons Broad’s paper made such a splash at the time was his noting that although (under the
uniform prior) the probability that the next crow will be black, given all n crows to date have been black, is
nearly one if n is large, (n + 1)/(n + 2), the probability that all crows (in the finite population of N ) are
black, given the n so far are black, is small for n� N , namely (n + 1)/(N + 2).

This property was seen as a problem for any attempt at a mathematical explication of induction, and led
Wrinch and Jeffreys to write their papers. As BBS note, in Section 3.2 of his book Jeffreys makes the natural
suggestion to allocate some initial probability independent of N to natural laws. BBS say “The simplest
choice is to let Pr(R = N) = 1/2”; but as far as I can tell, Jeffreys usually puts the cases R = N and
R = 0 on an equal footing. So I would have liked to have seen some further discussion of this suggestion,
which clearly treats the cases asymmetrically (since of course if P (R = N) = P (R = 0) = 1/2, this
would account for all the probability).

There is, however, an interesting historical precedent for viewing matters from such an asymmet-
ric perspective. The Reverend Dr. Richard Price, in his discussion at the end of Bayes’s famous essay
(Bayes, 1764), considers the application of Bayes’s results to the problem of induction. Bayes’s version
of the rule of succession is different from Laplace’s (Bayes’s rule is 1 − 2−(n+1), a different answer to a
different question), but the point here is when Price thinks one should start counting. Bayes’s results, he
tells us, apply to

[A]n event about the probability of which, antecedently to trials, we know nothing, that it has
happened once, and that it is enquired what conclusion we may draw from hence with respect
to the probability of it’s happening on a second trial.

Note the requirement that the event will have already occurred once. Why? Imagining “a solid or die or
whose number of sides and constitution we know nothing”, Price explains:

The first throw only shews that it has the side then thrown ... . It will appear, therefore, that after
the first throw and not before, we should be in the circumstances required by the conditions of
the present problem, and that the whole effect of this throw would be to bring us into these
circumstances. That is: the turning the side first thrown in any subsequent single trial would
be an event about the probability or improbability of which we could form no judgment, and
of which we should know no more than that it lay somewhere between nothing and certainty.
With the second trial then our calculations must begin ... .

This leads Price to consider the famous (or infamous example?) of the rising of the sun:

Let us imagine to ourselves the case of a person just brought forth into this world and left
to collect from his observations the order and course of events what powers and causes take

154



Comments to the Berger, Bernardo and Sun paper

place in it. The Sun would, probably, be the first object that would engage his attention; but
after losing it the first night he would be entirely ignorant whether he should ever see it again.
He would therefore be in the condition of a person making a first experiment about an event
entirely unknown to him. But let him see a second appearance or one return of the Sun, and an
expectation would be raised in him of a second return ... .

I take it that one would adopt a reference prior only absent substantial background information. The in-
terest of Price’s remarks is they address in a serious way just how, that being the case, epistemic asymmetry
might still be natural. So, as indicated earlier, I would have been interested to see further discussion in BBS
of when the assignment P (R = N) = 1/2 is appropriate. If, for example, I am a doctor trying out a new
procedure or drug, then would I not want some “Jeffreys-like” prior probability assigned to both extremes?
Is the reference prior assignment of 1/2 most appropriate in “Price-like” situations?

One final question for BBS. Suppose there are t ≥ 3 possibilities (say a, b, c) rather than just the two
of conforming and non-conforming. Just as seeing all a thus far should increase the probability that all
elements of the population are a, so too seeing, say, only a and b but no c should increase the probability
that there are no c in the population. In general there are 2t−1 sub-simplexes to which one would like to
assign some positive probability. What would be the reference prior approach in this case?

In any case I would like to complement the authors on a most interesting and stimulating paper.
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J. O. Berger, J. M. Bernardo and D. Sun

We appreciate the positive general comments of most of the discussants. And, of course, we are grateful
for the interesting and thought-provoking additional insights and comments that they have provided. We
provide below a response to these comments.

Girón and Moreno. We certainly agree with Professors Girón and Moreno on the interest in sensitivity
of any Bayesian result to changes in the prior. That said, we also consider of considerable pragmatic
importance to be able to single out a unique, particular prior which may reasonably be proposed as the
reference prior for the problem under study, in the sense that the corresponding posterior of the quantity of
interest could be routinely used in practice when no useful prior information is available or acceptable. This
is precisely what we have tried to do for the twin problems of the rule of succession and the law of natural
induction.

The discussants consider the limiting binomial version of the Law of Natural Induction, and focused
on the version that can be stated in the language of hypothesis testing involving H0 ≡ {p = 1}. They
then noted that a popular objective Bayesian approach to hypothesis testing is to use intrinsic priors on
the alternative, which tend to be more concentrated about the null value than the Be(p | 1/2, 1/2) prior we
use. The notion is that, if a problem is posed as that of testing a ‘privileged’ null hypothesis, then realistic
alternatives will tend to be close to the null value, and the prior distribution – even in supposedly objective
procedures – should reflect this. Thus a strong case can be made for use of intrinsic priors in that setting.

The natural induction problem, however, is not a problem with a privileged null hypothesis in this sense;
there is no a-priori notion that values of p near 1 are more believable than other values. Hence we would
argue that, for the natural induction problem, the analysis we propose is the preferred objective procedure.

Lindley. As one would expect from a well known subjectivist, Professor Lindley questions our use of
the word objective. Although we certainly agree that any statistical analysis is really subjective (for the
crucial model assumptions are typically made from subjective choices) we use the term objective in the
precise sense that the Bayesian result obtained only depends on the model assumed and the data obtained
and, therefore, has precisely the same claim to objectivity that is often made of frequentist statistics. Un-
fortunately, Bayesian methods are still often disregarded because of the completely wrong impression that
they must use subjective priors; by use of the word objective we simply want to stress that Bayesianism
need not be rejected for this reason.

Professor Lindley is certainly right in pointing out that we have assumed that R and n are independent
given N , so that a more appropriate notation would have been Pr(R |n,N) rather than Pr(R |N). Indeed,
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an inverse sampling procedure would have produced different results. We have certainly worked conditional
on N so that, if N is not really known, a range of results must be quoted, as in the galápagos example.
That said, there are many important applications where N is actually known. For instance, in industrial
production, one may be interested in the probability that all items in a production of sizeN are conforming,
given that the elements of a random sample of size n are all conforming, and the value of N is typically
known in those cases.

As Professor Lindley interestingly points out, our rule of succession gives the same result as Laplace,
but for twice the sample size. Considering the practical implications of this fact (for instance when set-
ting insurance policies in the industrial situations described above), the situation is a good example of the
possible rewards in careful choice of the reference prior.

Liseo. As Professor Liseo points out, model choice priors (or precise hypothesis testing priors in the
language we use in the paper) must be different from those of estimation. Proposed hypothesis typically
have a precise physical meaning, and its possible validity has to be reflected in the prior. One may choose
to do this subjectively, or one may try an objective approach using a reference prior where the quantity of
interest is whether or not the hypothesis is true, as we have tried to do in the problem of natural induction.

Professor Liseo poses the question of what to do if the application suggests a hypothesis of the type “R
is close to N”. In line with the argument above we would suggest eliciting a value 0 < α < 1 such that the
closest integer to αN is close enough to N for the application in mind, and then use a marginal reference
prior with Pr(αN ≤ R ≤ N) = 1/2, and a conditional reference prior for R given 0 ≤ R < αN which
would be the conditional reference prior (14) renormalized to the set 0 ≤ R < αN .

Raman. Professor Raman is certainly right when he points out the fact that the derivation of reference
priors is often less than trivial (although, their use is often trivial, once someone has done the relevant
research and produced the appropriate answers.) That said, it is certainly interesting to be able to derive
some specific instances of the reference analysis results using simpler techniques. For instance, invariance
arguments provide simple and powerful techniques to provide objective priors (which are typically found
to be the same as those derived from reference analysis), but many important problems do not have the
required structure to use them; reference analysis provides a general argument, which does not depend of
particular properties of the problem under investigation.

As Professor Raman points out, the continuous version of our rule of succession is the particular case
which obtains if a conjugate Beta prior is used, and the particular case α = β = 1/2 is chosen; he further
outlines how this can interestingly be extended to the use of beta mixtures. The argument by Polya provides
some additional reasons to choose a conjugate prior in this problem, beyond mathematical expediency, but
one would need some special argument to select precisely α = β = 1/2, if one wanted to argue that
(n+ 1/2)/(n+ 1) is indeed the appropriate rule of succession.

Professor Raman seems surprised by the fast convergence to zero of the reference probability πr(N |N).
This is a reflection of the fact that, asN increases, its precise value does not matter much. Besides, reference
priors should not really be analyzed as prior probabilities (indeed, in continuous parameter problems those
are typically improper) but as technical devices to produce posterior probabilities. And it this the reference
posterior probabilities what should be carefully discussed for any possible data set.

Robert. Professor Robert focuses attention on extending the problem to consider the case where N is
unknown, a situation also mentioned by Professor Lindley. The objective Bayesian answer is indeed to
specify an objective prior for N and, as Professor Robert points out, the intuitive choice for an objective
prior for the scale-like parameter N would be π(N) = 1/N . Given the time restrictions imposed by the
Journal, we have not had time to explore the consequences of this choice, let alone to derive the appropriate
conditional reference prior for N , π(N |R), when R is the quantity of interest, but we certainly take note
of this problem for future research.

As Professor Robert points out, it is not difficult to implement Jeffreys suggestion for the prior prob-
abilities of R = 0 and R = N , together with the conditional reference prior for π(R |n,N) but, if one
is to follow the reference analysis approach, one should use a marginal reference prior of the quantity of
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interest, which here is whether or not R = N , and this leads to π(R = N) = π(R 6= N) = 1/2 rather than
to the values which Jeffreys suggested, namely π(R = 0) = π(R = N) = k, with 1/3 ≤ k ≤ 1/2. As
already raised in the response to Professors Girón and Moreno, the issue is partly one of when and how one
should formally admit subjective knowledge into objective procedures. By incorporating into the reference
analysis the knowledge thatR = N is a clearly important possibility, we went part way to Jeffreys solution.
It seemed to us, however, that the contexts in which the Laws are discussed are not contexts in whichR = 0
has any special believability.

Rueda. Professor Rueda is certainly right when he points out that the exchangeability argument only
implies a hierachical model with a a prior distribution π(θ), which could be the Be(θ | 1/2, 1/2) we use,
the uniform prior leading to Laplace rule, or any other proper prior for θ. Our particular choice for π(θ)
is motivated by the fact that this is the reference prior which corresponds to the implied integrated model
which, as argued in the paper, is the Binomial Bi(r |n, θ).

The very different behavior of (9) and (11) —and, correspondingly, (18) and (20)— as the population
size N increases is mathematically driven by nature of the priors used, with a prior probability for R = N
which depends on N and goes to 0 as N increases. If R is the only parameter of interest, these are indeed
the appropriate results for the problems considered. If, however, the quantity of interest is whether or not
R = N , then a prior probability for R = N which does not depend on N is required, and the results, (25)
and (22), are very noticeably different.

Zabell. We are very grateful to Professor Zabell for his authorative insights into the history of the
problems considered in this paper: we were not aware of the many precedents to Broad’s derivation of the
Laplace rule of succession for the finite case. We are similarly not aware of any previous derivation of the
reference rule of succession for the finite case given by Equation (19) (a result given by Perks (1947) for
the continuous case), but then, we would not be surprised if there is one!

As also noted by Professor Robert, Professor Zabell wonders about the advantages of using a symmetric
prior for Pr(R = 0) and Pr(R = N). As mentioned in our response to Professor Robert, such decisions
are indeed context dependent; there is subjectivity in terms of how one chooses to formalize a reference
analysis and, in a situation such as drug testing, we would certainly propose a different formulation than
that which we felt to be reasonable for the Laws.

As Professor Zabell correctly points out, one should only use a reference prior in the absence of pub-
lic, commonly accepted substantial background information. If there is such information, this should be
explicitly stated and be made part of the model. Often, this will take the form of a hierarchical model, and
then one would need an objective prior for the hyperparameter, possibly the reference prior associated to
the corresponding integrated model.

The extension of the results presented to more than two possibilities in the population is a very interest-
ing possible generalization. We expect that the same basic reference analysis techniques could be used for
this generalization.
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