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Chapter 2
Objective Bayesian Inference with Applications

It is natural to start a review of research frontiers in Bayesian analysis with a dis-
cussion of research challenges related to prior choices. In particular, in this chapter
we discuss the definition of reference priors in some non-standard settings as well
as the use of reference priors to define objective Bayesian testing.

2.1 Bayesian Reference Analysis of the Hardy-Weinberg
Equilibrium

José M. Bernardo and Vera Tomazella

An important problem in genetics, testing whether or not a trinomial population
is in Hardy-Weinberg equilibrium, is analyzed from an objective Bayesian per-
spective. The corresponding precise hypothesis testing problem is considered from
a decision-theoretical viewpoint, where the null hypothesis is rejected if the null
model is expected to be too far from the true model in the logarithmic divergence
(Kullback-Leibler) sense. The quantity of interest in this problem is the divergence
of the null model from the true model; as a consequence, the analysis is made using
the reference prior for the trinomial model which corresponds to that divergence
being the parameter of interest. The results are illustrated using examples both with
simulated data and with data previously analyzed in the relevant literature.
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2 2 Objective Bayesian Inference with Applications

2.1.1 Problem Statement

2.1.1.1 The Hardy-Weinberg (HW) Equilibrium in Genetics

At a single autosomal locus with two alleles, a diploid individual has three possible
genotypes, typically denoted {AA,aa,Aa}, with (unknown) population frequencies
{α1,α2,α3}, where 0 < αi < 1 and ∑3

i=1 αi = 1.
The population is said to be in HW equilibrium if there exists a probability p =

P(A), 0 < p < 1, such that {α1,α2,α3} = {p2,(1− p)2,2p(1− p)}. To determine
whether or not a population is in HW equilibrium, which is often the case when
random mating takes place, is an important problem in biology.

Given a random sample of size n from the population, and observed {n1,n2,n3}
individuals (with n = n1 + n2 + n3) from each of the three possible genotypes
{AA,aa,Aa}, the question is whether or not these data support the hypothesis of
HW equilibrium.

This is an important example of precise hypothesis in the sciences, for HW equi-
librium corresponds to a zero measure set within the original parameter space.

2.1.1.2 Statistical Formulation

Since ∑3
i=1 αi = 1, there are only two independent parameters. In terms of the pop-

ulation frequencies α1 and α2 of the two pure genotypes AA and aa, the relevant
statistical model is the trinomial

Tri(n1,n2|n,α1,α2) =
n!

n1! n2! (n−n1−n2)!
αn1

1 αn2
2 (1−α1−α2)n−n1−n2

with 0 < α1 < 1, 0 < α2 < 1, and 0 < α1 +α2 < 1 and, in conventional language, it
is required to test the null hypothesis

H0 = {(α1,α2); α1 = p2,α2 = (1− p)2, 0 < p < 1}.

This is the parametric form of the equation of the line
√α1 +

√α2 = 1, represented
with a solid line in Figure 2.1, and it is a set of zero measure within the parameter
space, the simplex A = {(α1,α2); 0 < α1 < 1, 0 < α2 < 1, 0 < α1 +α2 < 1}.

Testing a trinomial population for HW equilibrium is a problem that has re-
ceived a fair amount of attention in the statistical literature. Main pointers include
the frequentist analysis of Haldane (1954), an “exact” test based on the distri-
bution p(n1,n2|H0,n1 − n2,n), and the Bayesian analysis of Lindley (1988) who
reparametrizes to

ψ(α1,α2) =
1
2

log
4 α1 α2

(1−α1−α2)2 ,

so that ψ = 0 when H0 is true, and then obtains approximations to the posterior
density of ψ , π(ψ|n1,n2,n3) for a range of different prior choices.
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FIGURE 2.1. Precise null (solid line) within the parameter space (shaded region).

2.1.2 Objective Precise Bayesian Testing

2.1.2.1 The Decision Problem and the Intrinsic Loss Function

If data z are assumed to have been generated from the probability model M ≡
{pz(·|φ ,ω), z∈Z , φ ∈Φ , ω ∈Ω}, then testing whether of not the observed data z
are compatible with the precise hypothesis H0 = {φ = φ0} may be seen as a simple
decision problem with only two alternatives:

1. a0: To accept H0, and work as if data were generated from the reduced model
M0 ≡ {pz(·|φ0,ω), z ∈Z , ω ∈Ω}; and

2. a1: To reject H0, and keep working with the assumed model M .

Foundations then dictate (see, e.g., Bernardo and Smith, 1994, Chapter 2 and refer-
ences therein) that one must

1. Specify a loss function !{ai,(φ ,ω)}, i = 0,1.
2. Specify a prior function p(φ ,ω), on Φ×Ω , and use Bayes to obtain

p(φ ,ω|z) ∝ p(z|φ ,ω) p(φ ,ω).

3. Reject H0 if, and only if, l(a0|z) > l(a1|z), where

l(ai|z) =
∫

Φ

∫

Ω
!{ai,(φ ,ω)}p(φ ,ω|z)dφdω.

One should then reject H0 if, and only if, l(a0|z) > l(a1|z), hence if, and only if,
∫

Φ

∫

Ω
[ !{a0,(φ ,ω)}− !{a1,(φ ,ω)} ] p(φ ,ω|z)dφdω > 0,
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which only depends on the loss increase from rejecting H0, given by

∆(φ ,ω) = !{a0,(φ ,ω)}− !{a1,(φ ,ω)}.

Without loss of generality, the loss increase ∆(φ ,ω) may be written in the form
δ{φ0,(φ ,ω)}−d0, where

1. δ{φ0,(φ ,ω)} is the non-negative terminal loss to be suffered by accepting φ = φ0
as a function of (φ ,ω); and

2. d0 is the strictly positive utility of accepting H0 when it is true.

With this notation, one should reject the null if, and only if
∫

Φ

∫

Ω
δ{φ0,(φ ,ω)} p(φ ,ω|z) dφdω > d0,

that is, if (and only if) the null model is expected to be too divergent from the true
model.

For any one-to-one function ψ = ψ(φ) the conditions to reject φ = φ0 should
certainly be precisely the same as the conditions to reject ψ = ψ(φ0) (a property
unfortunately not satisfied by many published hypothesis testing procedures). This
requires the use of an invariant loss function.

Model-based loss functions are loss functions defined in terms of the discrepancy
measures between probability models. Within a family F ≡ {pz(·|ψ),ψ ∈Ψ}, the
loss suffered from using an estimate ψ̃ is of the form

!(ψ̃,ψ) = δ{pz(·|ψ̃), pz(·|ψ)},

defined in terms of the discrepancy of pz(·|ψ̃) from pz(·|ψ), rather than on the
discrepancy of ψ̃ from ψ . Model-based loss functions are obviously invariant under
one-to-one reparametrization.

A model-based loss function with unique additive properties and built in calibra-
tion, is the intrinsic loss function, defined as the minimum expected log-likelihood
ratio against the null:

δ{φ0,(φ ,ω)} = inf
ω0∈Ω

∫

Z
p(z|φ ,ω) log

p(z|φ ,ω)
p(z|φ0,ω0)

dz.

This may be also be described as the minimum (Kullback-Leibler) logarithmic di-
vergence of M0 from the assumed model.

2.1.2.2 Reference Analysis and Precise Hypothesis Testing

Given a model M ≡ {pz(·|φ ,ω), z ∈ Z , φ ∈ Φ , ω ∈ Ω}, the θ -reference prior
function πθ (φ ,ω) (see Bernardo, 2005, and references therein) is that which max-
imizes the missing information about θ = θ(φ ,ω). The corresponding marginal
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reference posterior π(θ |z) summarizes inferential statements about a quantity of
interest θ which only depend on the model assumed and the data obtained.

The Bayesian Reference Criterion (BRC) to test H0 ≡ {φ = φ0} is the solution
to the hypothesis testing decision problem corresponding to the intrinsic loss and
the relevant reference prior. It only requires computing the intrinsic test statistic,
defined as the reference posterior expectation,

d(H0|z) =
∫ ∞

0
δ π(δ |z)dδ ,

of the intrinsic discrepancy loss δ (φ ,ω) = δ{φ0, (φ ,ω)}, which is in this case of
the quantity of interest.

The intrinsic test statistic is a direct measure of evidence against H0, in a log-
likelihood ratio scale, which is independent of the sample size, the dimensionality of
the problem, and the parametrization used. For further details and many examples,
see Bernardo (2005) and references therein.

2.1.3 Testing for Hardy-Weinberg Equilibrium

2.1.3.1 The Quantity of Interest

Within the trinomial model,

Tri{n1,n2|n,α1,α2} =
n!

n1! n2! (n−n1−n2)!
αn1

1 αn2
2 (1−α1−α2)n−n1−n2 ,

the logarithmic divergence of a member Tri{n1,n2|n, p2
0,(1− p0)2} of the null

H0 = {(α1,α2); α1 = p2,α2 = (1− p)2, 0 < p < 1}

from the assumed model Tri{n1,n2|n,α1,α2} is

k{p0|α1,α2} = E(n1,n2|α1,α2)

[
log

Tri{n1,n2|n,α1,α2}
Tri{n1,n2|n, p2

0,(1− p0)2}

]

which, after some algebra, reduces to

n[(α2−α1−1) log(p0)+(α1−α2−1) log(1− p0)−(1−α1−α2) log(2)−H{α}],

where H{α} = −α1 logα1−α2 logα2− (1−α1−α2) log(1−α1−α2) is the en-
tropy of α = {α1,α2,1−α1−α2}. The last expression is minimized, for 0 < p0 < 1,
when p0 = (1+α1−α2)/2, and substitution yields the intrinsic loss function,

δ{H0,(α1,α2)} = inf
0<p0<1

k{p0|α1,α2} = nθ(α1,α2),
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where

θ(α1,α2) = 2 H{ω,1−ω}−H{α1,α2,1−α1−α2}− (1−α1−α2) log(2),

and ω = ω(α1,α2) = (1 + α1 −α2)/2 is the value of p for a trinomial popula-
tion Tri{n1,n2|n, p2,(1− p)2} in HW equilibrium which is closest, in the logarith-
mic divergence sense, to the trinomial population Tri{n1,n2|n,α1,α2}. The func-
tion δ{H0,(α1,α2)} measures the discrepancy of the null from the trinomial model
Tri{·|n,α1,α2}.

FIGURE 2.2. The quantity of interest, θ = θ(α1,α2).

The quantity of interest in this problem is clearly the function θ = θ(α1,α2)
since δ{H0,(α1,α2)} = n θ(α1,α2) precisely measures how far the null H0 is from
the assumed model. In particular, the population is in HW equilibrium if, and only
if, θ = 0, in which case,

√α1 +
√α2 = 1 or α2 = (1−√α1)2. Figure 2.2 provides

a 3D plot of the surface θ(α1,α2)}. It is zero for all HW equilibrium values and
achieves its maximum value, log(2), at both (0,0) and (1/2,1/2). Hence, in this
problem, the intrinsic loss is a bounded function.

2.1.3.2 The Reference Prior

To obtain the joint reference prior πθ (α1,α2) when θ = θ(α1,α2) is the quantity of
interest, a complementary parameter ω = ω(α1,α2) must be chosen, so that (θ ,ω)
is a one-to-one transformation of (α1,α2). A convenient choice is the function
ω(α1,α2) = (1 + α1−α2)/2, which occurs in the expression of δ{H0,(α1,α2)}
obtained above. The reference prior in this parametrization when θ is the param-
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eter of interest is then obtained as πθ (θ ,ω) = π(ω|θ)π(θ). Finally, the required
reference prior in the original parametrization is obtained as

πθ (α1,α2) = |J(α1,α2)|πθ (θ(α1,α2),ω(α1,α2)),

where J(α1,α2) =
(

∂θ ∂ω
∂α1 ∂α2

)
is the corresponding Jacobian matrix.

The required transformation, represented in Figure 2.6, is delicate. Indeed, the
Jacobian determinant |J(α1,α2)| = log(1−α1−α2)− 1

2 log(4α1 α2) is null at the
HW line, positive below, negative above, and diverges at the simplex borders. A one-
to-one transformation is only obtained in each of the two separate regions defined by
the equilibrium line. Thus a one-to-one transformation is {α1,α2} ⇐⇒ {θ ,ω,λ}
where λ ∈ {1,2} indicates region, with λ = 1 when

√α1 +
√α2 < 1, and λ = 2

when
√α1 +

√α2 > 1. Formally,

πθ (α1,α2) = πθ (α1,α2|λ = 1)+πθ (α1,α2|λ = 2).

The joint reference priors in each of the two regions must be be separately computed.
This model is regular. Hence, the reference prior π(ω|θ)π(θ) may be found in

terms of the relevant Fisher information matrix. In the original parametrization, the
inverse of Fisher matrix F1 is

F−1
1 (α1,α2) =

(
α1(1−α1) −α1 α2
−α1 α2 α1(1−α1)

)
,

so that, in the new parametrization, Fisher matrix is F2 such that

F−1
2 (θ ,ω) = J(α1,α2) ·F−1

1 (α1,α2) · Jt(α1,α2),

evaluated with the inverse functions α1(θ ,ω) and α2(θ ,ω). Fisher matrix F2 has a
complex, but analytical expression, in terms of α1 and α2, but the inverse functions
αi(θ ,ω) must be numerically computed.

The reference prior π(ω|θ)π(θ) may be found in terms of H = F2 and V = F−1
2

(Berger and Bernardo, 1992a), from

π(ω|θ) ∝ h1/2
22 (θ ,ω)

and
π(θ) ∝ exp

[∫

Ω(θ)
π(ω|θ) log{v−1/2

11 (θ ,ω)} dω
]
.

Lower region: R1 = {(α1,α1);
√α1 +

√α2 ≤ 1}. The reference conditional priors
are numerically found to be approximate the Beta densities (see Figure 2.3)

π1(ω|θ)≈ 1
ω1(θ)−ω0(θ)

Be
(

ω−ω0(θ)
ω1(θ)−ω0(θ)

∣∣∣∣
1
2
,

1
2

)
, ω0(θ) < ω < ω1(θ),

where ω0(θ) and ω1(θ) are respectively the inverse functions of
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θ1(ω) = (2ω−1) log(2ω−1)−2ω log(ω), 1/2 < ω < 1,

θ0(ω) = (1−2ω) log(1−2ω)−2(1−ω) log(1−ω), 0 < ω < 1/2.
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FIGURE 2.3. Conditional reference priors of ω ∈ (ω0(θ),ω1(θ)), in the lower region of the pa-
rameter space, for θ = 0.05,0.20 and 0.40.

Using the analytical approximation for the conditional reference priors, the
marginal reference prior for the quantity of interest results

π1(θ)≈ 1
log(2)

Be
(

θ
log(2)

∣∣∣∣
1
2
,

1
2

)
, 0 < θ < log(2).

0 0.2 0.4 0.6 log!2"
0.

0.5

1.

Π1!Θ , Ω"

Ω

Θ

FIGURE 2.4. Contour plot of the joint reference prior π1(θ ,ω) in the lower region.
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The joint reference prior for this region is then π1(θ ,ω) = π1(ω|θ)π1(θ). The
contour plot of this joint refernce prior is shown in Figure 2.4. Notice that these
reference priors are all proper.

Upper region: R2 = {(α1,α1);
√α1 +

√α2 ≤ 1}. Similarly, in the region over the
HW equilibrium line, the reference conditional priors are numerically found to be

π2(ω|θ)≈ 1
ω1(θ)−ω0(θ)

Be
(

ω−ω0(θ)
ω1(θ)−ω0(θ)

∣∣∣∣
1
2
,

1
2

)
, ω0(θ) < ω < ω1(θ),

where ω1(θ) and ω0(θ) are respectively the inverse functions of

θ1(ω) =−ω log(ω)− (1−ω) log(1−ω), 1/2 < ω < 1

θ0(ω) =−ω log(ω)− (1−ω) log(1−ω), 0 < ω < 1/2.

The marginal reference prior for θ in the upper region is

π2(θ)≈ 1
log(2)

Be
( θ

log(2)

∣∣∣
1
2
,

1
2

)
, 0 < θ < log(2).

The joint reference prior for the upper region is then π2(θ ,ω) = π2(ω|θ)π2(θ).
Again, all these reference priors are all proper.
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FIGURE 2.5. Contour plots of the joint reference prior in the original parametrization and a Dirich-
let density with parameter (1/3,1/3,1/3).

Joint reference prior in the original parametrization. Returning to the orig-
inal parametrization and combining the results from the two regions produces
πθ (α1,α2), whose contour plot is represented in the left panel of Figure 2.5. For
comparison, the right panel represents the contour plot of a Dirichlet density with
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parameter vector (1/3,1/3,1/3). This could be used as an approximation if exact
computation is not needed.

2.1.3.3 Posterior Inference: Estimation and Testing

Joint reference posterior. For any data set, {n1,n2,n3}, where n1 and n2 are re-
spectively the number of observed pure genotypes AA and aa, and n3 is the number
of observed mixed genotypes Aa, the joint reference posterior is

πθ (α1,α1|n1,n2,n3) = c(n1,n2|n) Tri{n1,n2|n,α1,α2} πθ (α1,α2),

where n = n1 +n2 +n3 and

c(n1,n2|n) =
∫ 1

0

{∫ 1−α1

0
Tri{n1,n2|n,α1,α2} πθ (α1,α2) dα2

}
dα1,

a delicate numerical integral given the prior shape.
The posterior probabilities of the two non-equilibrium regions are

P[R1|n1,n2,n3] =
∫ 1

0

{∫ (1−√α1)2

0
πθ (α1,α1|n1,n2,n3) dα2

}
dα1,

and P[R2|n1,n2,n3] = 1−P[R1|n1,n2,n3].

0. 0.5 1.
0

0.5

1.

Α1

Α2

H0R1

0. 0.2 0.4 log!2"
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Θ

Ω

S1

FIGURE 2.6. Original and transformed parameter spaces.

Since the transformation between (α1,α2) and (θ ,ω) is not one-to-one, com-
puting the joint posterior density in terms of the (θ ,ω) requires identification of
the two possible inverse values α1(θ ,ω) and α2(θ ,ω). This is done in terms of
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S1 = Image(R1), where R1 is the region below H0, and S2 = Image(R2), where R2 is
the region above H0. Thus, if (θ ,ω) ∈ S1, which is contained in S2), then there are
two diffferent pairs of (α1,α2) values which map into (θ ,ω) (see Figure 2.6).

It follows that, for any data z = {n1,n2,n3},

π(θ ,ω|z) = π(θ ,ω|z,S1)P(R1|z)+π(θ ,ω|z,S2)P(R2|z)

π(θ ,ω|z,Si) =
π(α1,α2|z,Ri)

|J(α1,α2)|
, α j → α ji(θ ,ω), i = 1,2,

where {α1i,α2i} is the inverse function mapping Si into Ri.
The required marginal reference posterior for the quantity of interest θ is then

π(θ |z) =
∫

Ω(θ)
π(θ ,ω|z) dω.

This will concentrate on its extreme value θ = 0 if, and only if, the population is in
approximate HW equilibrium.

Intrinsic test statistic. As described in Section 2.1.2, the intrinsic test statistic
d(H0|z) is the reference posterior expectation of δ{H0,(α1,α2)}, defined as the
minimum logarithmic divergence of the null model from the true model. Since
δ{H0,(α1,α2)} = n θ(α1,α2), the intrinsic statistic is simply

d(H0|z) = n
∫ log(2)

0
θ π(θ |z) dθ = n E[θ |z],

the reference posterior expectation of the quantity of interest times the sample
size. This is precisely the reference posterior expectation of the log-likelihood ratio
against the null and, therefore, d(H0|z) has an immediate meaning as an objective
measure of the evidence against the null provided by the data.

2.1.4 Examples

2.1.4.1 Simulations

Data simulated under HW equilibrium. A trinomial sample of size n = 30
from a population in HW equilibrium was simulated with P[A] = p = 0.3, so that
{α1,α2} = {p2,(1− p)2} = {0.09,0.49}, ω = p = 0.3, and θ = 0. The simulation
yielded {n1,n2,n3} = {2,15,13}.

Figure 2.7 represents the marginal reference posterior of δ = nθ which, as
expected, concentrates around the null value δ = 0, with d(H0|z) = n, E[θ |z] =
0.321 = log(1.38), so that the likelihood ratio against the null is expected to be only
about 1.38, and the null is accepted: one may safely proceed as if the population
where in HW equilibrium, suggesting random mating.
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0 1 2 3

Π !∆ " 2, 15, 13#

∆ # n Θ

FIGURE 2.7. Reference posterior distribution of δ = nθ with data simulated from a population in
HW equilibrium.

Data simulated under non-HW equilibrium. A trinomial sample of size n = 30
was simulated with {α1,α2} = {0.45,0.40}, so that ω = 0.525, θ = 0.269, and the
population is not in HW equilibrium. The simulation then yielded {n1,n2,n3} =
{12,12,6}.

0 5 10 15

Π !∆ " 12, 12, 6#

∆ # n Θ

FIGURE 2.8. Reference posterior distribution of δ = nθ with data simulated from a population not
in HW equilibrium.

As Figure 2.8 illustrates, the marginal reference posterior of δ = nθ has an inte-
rior mode, d(H0|z) = n, and E[θ |z] = 5.84 ≈ log(344), so that the likelihood ratio
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against the null is expected to be about 344. Thus, the null should certainly be re-
jected, and one should work under the assumption that the population is not in HW
equilibrium, thus suggesting non random mating.

2.1.4.2 An Example from the Literature

Lindley data. Lindley (1988) analyzed the data z = {0,90,10} from a Bayesian
viewpoint, noting that asymptotic results are scarcely satisfactory in this case, and
performing an analysis of the clear dependence of the results on the prior chosen.
This could be expected, for these data are somewhat extreme due to the fact that
there are no observations from the pure AA genotype. Conclusions from extreme
data are often very sensitive to the prior, and they cannot be usually be well approx-
imated with asymptotic arguments.

0 1 2 3

Π !∆ " 0, 90, 10#

∆ # n Θ

FIGURE 2.9. Marginal reference posterior distribution of δ = nθ for Lindley (1988) data.

Reference analysis has been known to perform fine in many other problems with
extreme data. This provides yet another example. As Figure 2.9 illustrates, it is
found that π(δ |z), the reference posterior density of the expected discrepancy from
the null is again very concentrated around the null value δ = 0. Indeed, d(H0|z) = n,
E[θ |z] = 0.51 = log(1.66) and hence the likelihood ratio against the null may the
expected to be just about 1.66.

We must therefore conclude that the HW equilibrium hypothesis is compatible
with these data.




