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MODERN BAYESIAN INFERENCE:
FOUNDATIONS AND OBJECTIVE METHODS

José M. Bernardo

The field of statistics includes two major paradigms: frequentist and Bayesian.
Bayesian methods provide a complete paradigm for both statistical inference and
decision making under uncertainty. Bayesian methods may be derived from an
axiomatic system and provide a coherent methodology which makes it possible to
incorporate relevant initial information, and which solves many of the difficulties
which frequentist methods are known to face. If no prior information is to be
assumed, a situation often met in scientific reporting and public decision making,
a formal initial prior function must be mathematically derived from the assumed
model. This leads to objective Bayesian methods, objective in the precise sense that
their results, like frequentist results, only depend on the assumed model and the
data obtained. The Bayesian paradigm is based on an interpretation of probability
as a rational conditional measure of uncertainty, which closely matches the sense of
the word ‘probability’ in ordinary language. Statistical inference about a quantity
of interest is described as the modification of the uncertainty about its value in
the light of evidence, and Bayes’ theorem specifies how this modification should
precisely be made.

1 INTRODUCTION

Scientific experimental or observational results generally consist of (possibly many)
sets of data of the general form D = {x1, . . . ,xn}, where the xi’s are somewhat
“homogeneous” (possibly multidimensional) observations xi. Statistical methods
are then typically used to derive conclusions on both the nature of the process
which has produced those observations, and on the expected behaviour at future
instances of the same process. A central element of any statistical analysis is the
specification of a probability model which is assumed to describe the mechanism
which has generated the observed data D as a function of a (possibly multidimen-
sional) parameter (vector) ω ∈ Ω, sometimes referred to as the state of nature,
about whose value only limited information (if any) is available. All derived sta-
tistical conclusions are obviously conditional on the assumed probability model.

Unlike most other branches of mathematics, frequentist methods of statistical
inference suffer from the lack of an axiomatic basis; as a consequence, their pro-
posed desiderata are often mutually incompatible, and the analysis of the same
data may well lead to incompatible results when different, apparently intuitive

Handbook of the Philosophy of Science. Volume 7: Philosophy of Statistics.
Volume editors: Prasanta S. Bandyopadhyay and Malcolm R. Forster. General Editors: Dov M.
Gabbay, Paul Thagard and John Woods.
c© 2011 Elsevier B.V. All rights reserved.
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procedures are tried; see Lindley [1972] and Jaynes [1976] for many instructive
examples. In marked contrast, the Bayesian approach to statistical inference is
firmly based on axiomatic foundations which provide a unifying logical structure,
and guarantee the mutual consistency of the methods proposed. Bayesian meth-
ods constitute a complete paradigm to statistical inference, a scientific revolution
in Kuhn’s sense.

Bayesian statistics only require the mathematics of probability theory and the
interpretation of probability which most closely corresponds to the standard use of
this word in everyday language: it is no accident that some of the more important
seminal books on Bayesian statistics, such as the works of de Laplace [1812],
Jeffreys [1939] or de Finetti [1970] are actually entitled “Probability Theory”.
The practical consequences of adopting the Bayesian paradigm are far reaching.
Indeed, Bayesian methods (i) reduce statistical inference to problems in probability
theory, thereby minimizing the need for completely new concepts, and (ii) serve
to discriminate among conventional, typically frequentist statistical techniques, by
either providing a logical justification to some (and making explicit the conditions
under which they are valid), or proving the logical inconsistency of others.

The main result from these foundations is the mathematical need to describe
by means of probability distributions all uncertainties present in the problem. In
particular, unknown parameters in probability models must have a joint probabil-
ity distribution which describes the available information about their values; this
is often regarded as the characteristic element of a Bayesian approach. Notice
that (in sharp contrast to conventional statistics) parameters are treated as ran-
dom variables within the Bayesian paradigm. This is not a description of their
variability (parameters are typically fixed unknown quantities) but a description
of the uncertainty about their true values.

A most important particular case arises when either no relevant prior infor-
mation is readily available, or that information is subjective and an “objective”
analysis is desired, one that is exclusively based on accepted model assumptions
and well-documented public prior information. This is addressed by reference
analysis which uses information-theoretic concepts to derive formal reference prior
functions which, when used in Bayes’ theorem, lead to posterior distributions en-
capsulating inferential conclusions on the quantities of interest solely based on the
assumed model and the observed data.

In this article it is assumed that probability distributions may be described
through their probability density functions, and no distinction is made between
a random quantity and the particular values that it may take. Bold italic roman
fonts are used for observable random vectors (typically data) and bold italic greek
fonts are used for unobservable random vectors (typically parameters); lower case is
used for variables and calligraphic upper case for their dominion sets. Moreover,
the standard mathematical convention of referring to functions, say f and g of
x ∈ X , respectively by f(x) and g(x), will be used throughout. Thus, π(θ|D,C)
and p(x|θ, C) respectively represent general probability densities of the unknown
parameter θ ∈ Θ given data D and conditions C, and of the observable random
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vector x ∈ X conditional on θ and C. Hence, π(θ|D,C) ≥ 0,
∫
Θ π(θ|D,C)dθ =

1, and p(x|θ, C) ≥ 0,
∫
X p(x|θ, C) dx = 1. This admittedly imprecise notation

will greatly simplify the exposition. If the random vectors are discrete, these
functions naturally become probability mass functions, and integrals over their
values become sums. Density functions of specific distributions are denoted by
appropriate names. Thus, if x is a random quantity with a normal distribution of
mean µ and standard deviation σ, its probability density function will be denoted
N(x|µ,σ).

Bayesian methods make frequent use of the the concept of logarithmic diver-
gence, a very general measure of the goodness of the approximation of a probability
density p(x) by another density p̂(x). The Kullback-Leibler, or logarithmic diver-
gence of a probability density p̂(x) of the random vector x ∈ X from its true
probability density p(x), is defined as κ{p̂(x)|p(x)} =

∫
X p(x) log{p(x)/p̂(x)} dx.

It may be shown that (i) the logarithmic divergence is non-negative (and it is
zero if, and only if, p̂(x) = p(x) almost everywhere), and (ii) that κ{p̂(x)|p(x)} is
invariant under one-to-one transformations of x.

This article contains a brief summary of the mathematical foundations of
Bayesian statistical methods (Section 2), an overview of the paradigm (Section
3), a detailed discussion of objective Bayesian methods (Section 4), and a descrip-
tion of useful objective inference summaries, including estimation and hypothesis
testing (Section 5).

Good introductions to objective Bayesian statistics include Lindley [1965], Zell-
ner [1971], and Box and Tiao [1973]. For more advanced monographs, see [Berger,
1985; Bernardo and Smith, 1994].

2 FOUNDATIONS

A central element of the Bayesian paradigm is the use of probability distribu-
tions to describe all relevant unknown quantities, interpreting the probability of
an event as a conditional measure of uncertainty, on a [0, 1] scale, about the oc-
currence of the event in some specific conditions. The limiting extreme values 0
and 1, which are typically inaccessible in applications, respectively describe im-
possibility and certainty of the occurrence of the event. This interpretation of
probability includes and extends all other probability interpretations. There are
two independent arguments which prove the mathematical inevitability of the use
of probability distributions to describe uncertainties; these are summarized later
in this section.

2.1 Probability as a Rational Measure of Conditional Uncertainty

Bayesian statistics uses the word probability in precisely the same sense in which
this word is used in everyday language, as a conditional measure of uncertainty as-
sociated with the occurrence of a particular event, given the available information
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and the accepted assumptions. Thus, Pr(E|C) is a measure of (presumably ratio-
nal) belief in the occurrence of the event E under conditions C. It is important to
stress that probability is always a function of two arguments, the event E whose
uncertainty is being measured, and the conditions C under which the measure-
ment takes place; “absolute” probabilities do not exist. In typical applications,
one is interested in the probability of some event E given the available data D, the
set of assumptions A which one is prepared to make about the mechanism which
has generated the data, and the relevant contextual knowledge K which might be
available. Thus, Pr(E|D,A,K) is to be interpreted as a measure of (presumably
rational) belief in the occurrence of the event E, given data D, assumptions A and
any other available knowledge K, as a measure of how “likely” is the occurrence
of E in these conditions. Sometimes, but certainly not always, the probability of
an event under given conditions may be associated with the relative frequency of
“similar” events in “similar” conditions. The following examples are intended to
illustrate the use of probability as a conditional measure of uncertainty.

Probabilistic diagnosis. A human population is known to contain 0.2% of
people infected by a particular virus. A person, randomly selected from that pop-
ulation, is subject to a test which is from laboratory data known to yield positive
results in 98% of infected people and in 1% of non-infected, so that, if V de-
notes the event that a person carries the virus and + denotes a positive result,
Pr(+|V ) = 0.98 and Pr(+|V ) = 0.01. Suppose that the result of the test turns out
to be positive. Clearly, one is then interested in Pr(V |+, A,K), the probability that
the person carries the virus, given the positive result, the assumptions A about the
probability mechanism generating the test results, and the available knowledge K
of the prevalence of the infection in the population under study (described here by
Pr(V |K) = 0.002). An elementary exercise in probability algebra, which involves
Bayes’ theorem in its simplest form (see Section 3), yields Pr(V |+, A,K) = 0.164.
Notice that the four probabilities involved in the problem have the same interpre-
tation: they are all conditional measures of uncertainty. Besides, Pr(V |+, A,K)
is both a measure of the uncertainty associated with the event that the particular
person who tested positive is actually infected, and an estimate of the proportion
of people in that population (about 16.4%) that would eventually prove to be
infected among those which yielded a positive test. 1

Estimation of a proportion. A survey is conducted to estimate the proportion
θ of individuals in a population who share a given property. A random sample of
n elements is analyzed, r of which are found to possess that property. One is then
typically interested in using the results from the sample to establish regions of [0, 1]
where the unknown value of θ may plausibly be expected to lie; this information
is provided by probabilities of the form Pr(a < θ < b|r, n,A,K), a conditional
measure of the uncertainty about the event that θ belongs to (a, b) given the
information provided by the data (r, n), the assumptions A made on the behaviour
of the mechanism which has generated the data (a random sample of n Bernoulli
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trials), and any relevant knowledge K on the values of θ which might be available.
For example, after a political survey in which 720 citizens out of a random sample
of 1500 have declared their support to a particular political measure, one may
conclude that Pr(θ < 0.5|720, 1500, A,K) = 0.933, indicating a probability of
about 93% that a referendum on that issue would be lost. Similarly, after a
screening test for an infection where 100 people have been tested, none of which has
turned out to be infected, one may conclude that Pr(θ < 0.01|0, 100, A,K) = 0.844,
or a probability of about 84% that the proportion of infected people is smaller
than 1%. 1

Measurement of a physical constant. A team of scientists, intending to es-
tablish the unknown value of a physical constant µ, obtain data D = {x1, . . . , xn}
which are considered to be measurements of µ subject to error. The probabili-
ties of interest are then typically of the form Pr(a < µ < b|x1, . . . , xn, A,K), the
probability that the unknown value of µ (fixed in nature, but unknown to the sci-
entists) lies within an interval (a, b) given the information provided by the data
D, the assumptions A made on the behaviour of the measurement mechanism,
and whatever knowledge K might be available on the value of the constant µ.
Again, those probabilities are conditional measures of uncertainty which describe
the (necessarily probabilistic) conclusions of the scientists on the true value of µ,
given available information and accepted assumptions. For example, after a class-
room experiment to measure the gravitational field with a pendulum, a student
may report (in m/sec2) something like Pr(9.788 < g < 9.829|D,A,K) = 0.95,
meaning that, under accepted knowledge K and assumptions A, the observed data
D indicate that the true value of g lies within 9.788 and 9.829 with probability
0.95, a conditional uncertainty measure on a [0,1] scale. This is naturally com-
patible with the fact that the value of the gravitational field at the laboratory
may well be known with high precision from available literature or from precise
previous experiments, but the student may have been instructed not to use that
information as part of the accepted knowledge K. Under some conditions, it is
also true that if the same procedure were actually used by many other students
with similarly obtained data sets, their reported intervals would actually cover the
true value of g in approximately 95% of the cases, thus providing a frequentist
calibration of the student’s probability statement. 1

Prediction. An experiment is made to count the number r of times that an
event E takes place in each of n replications of a well defined situation; it is
observed that E does take place ri times in replication i, and it is desired to forecast
the number of times r that E will take place in a similar future situation. This
is a prediction problem on the value of an observable (discrete) quantity r, given
the information provided by data D, accepted assumptions A on the probability
mechanism which generates the ri’s, and any relevant available knowledge K.
Computation of the probabilities {Pr(r|r1, . . . , rn, A,K)}, for r = 0, 1, . . ., is thus
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required. For example, the quality assurance engineer of a firm which produces
automobile restraint systems may report something like Pr(r = 0|r1 = . . . = r10 =
0, A,K) = 0.953, after observing that the entire production of airbags in each of
n = 10 consecutive months has yielded no complaints from their clients. This
should be regarded as a measure, on a [0, 1] scale, of the conditional uncertainty,
given observed data, accepted assumptions and contextual knowledge, associated
with the event that no airbag complaint will come from next month’s production
and, if conditions remain constant, this is also an estimate of the proportion of
months expected to share this desirable property.

A similar problem may naturally be posed with continuous observables. For
instance, after measuring some continuous magnitude in each of n randomly chosen
elements within a population, it may be desired to forecast the proportion of items
in the whole population whose magnitude satisfies some precise specifications. As
an example, after measuring the breaking strengths {x1, . . . , x10} of 10 randomly
chosen safety belt webbings to verify whether or not they satisfy the requirement
of remaining above 26 kN, the quality assurance engineer may report something
like Pr(x > 26|x1, . . . , x10, A,K) = 0.9987. This should be regarded as a measure,
on a [0, 1] scale, of the conditional uncertainty (given observed data, accepted
assumptions and contextual knowledge) associated with the event that a randomly
chosen safety belt webbing will support no less than 26 kN. If production conditions
remain constant, it will also be an estimate of the proportion of safety belts which
will conform to this particular specification.

Often, additional information of future observations is provided by related co-
variates. For instance, after observing the outputs {y1, . . . ,yn} which correspond
to a sequence {x1, . . . ,xn} of different production conditions, it may be desired to
forecast the output y which would correspond to a particular set x of production
conditions. For instance, the viscosity of commercial condensed milk is required
to be within specified values a and b; after measuring the viscosities {y1, . . . , yn}
which correspond to samples of condensed milk produced under different physi-
cal conditions {x1, . . . ,xn}, production engineers will require probabilities of the
form Pr(a < y < b|x, (y1,x1), . . . , (yn,xn), A,K). This is a conditional measure
of the uncertainty (always given observed data, accepted assumptions and contex-
tual knowledge) associated with the event that condensed milk produced under
conditions x will actually satisfy the required viscosity specifications. 1

2.2 Statistical Inference and Decision Theory

Decision theory not only provides a precise methodology to deal with decision
problems under uncertainty, but its solid axiomatic basis also provides a powerful
reinforcement to the logical force of the Bayesian approach. We now summarize
the basic argument.

A decision problem exists whenever there are two or more possible courses of
action; let A be the class of possible actions. Moreover, for each a ∈ A, let Θa

be the set of relevant events which may affect the result of choosing a, and let
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c(a, θ) ∈ Ca, θ ∈ Θa, be the consequence of having chosen action a when event
θ takes place. The class of pairs {(Θa, Ca), a ∈ A} describes the structure of the
decision problem. Without loss of generality, it may be assumed that the possible
actions are mutually exclusive, for otherwise one would work with the appropriate
Cartesian product.

Different sets of principles have been proposed to capture a minimum collection
of logical rules that could sensibly be required for “rational” decision-making.
These all consist of axioms with a strong intuitive appeal; examples include the
transitivity of preferences (if a1 > a2 given C, and a2 > a3 given C, then a1 > a3

given C), and the sure-thing principle (if a1 > a2 given C and E, and a1 > a2 given
C and not E, then a1 > a2 given C). Notice that these rules are not intended as a
description of actual human decision-making, but as a normative set of principles
to be followed by someone who aspires to achieve coherent decision-making.

There are naturally different options for the set of acceptable principles (see e.g.
Ramsey 1926; Savage, 1954; DeGroot, 1970; Bernardo and Smith, 1994, Ch. 2 and
references therein), but all of them lead basically to the same conclusions, namely:

(i) Preferences among consequences should be measured with a real-valued
bounded utility function U(c) = U(a, θ) which specifies, on some numerical
scale, their desirability.

(ii) The uncertainty of relevant events should be measured with a set of probability
distributions {(π(θ|C, a), θ ∈ Θa), a ∈ A} describing their plausibility given
the conditions C under which the decision must be taken.

(iii) The desirability of the available actions is measured by their corresponding
expected utility

(1) U(a|C) =

∫

Θa

U(a, θ)π(θ|C, a) dθ, a ∈ A.

It is often convenient to work in terms of the non-negative loss function defined
by

(2) L(a, θ) = sup
a∈A

{U(a, θ)}− U(a, θ),

which directly measures, as a function of θ, the “penalty” for choosing a
wrong action. The relative undesirability of available actions a ∈ A is then
measured by their expected loss

(3) L(a|C) =

∫

Θa

L(a, θ)π(θ|C, a) dθ, a ∈ A.

Notice that, in particular, the argument described above establishes the need to
quantify the uncertainty about all relevant unknown quantities (the actual values
of the θ’s), and specifies that this quantification must have the mathematical
structure of probability distributions. These probabilities are conditional on the
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circumstances C under which the decision is to be taken, which typically, but not
necessarily, include the results D of some relevant experimental or observational
data.

It has been argued that the development described above (which is not ques-
tioned when decisions have to be made) does not apply to problems of statistical
inference, where no specific decision making is envisaged. However, there are two
powerful counterarguments to this. Indeed, (i) a problem of statistical inference
is typically considered worth analyzing because it may eventually help make sen-
sible decisions; a lump of arsenic is poisonous because it may kill someone, not
because it has actually killed someone [Ramsey, 1926], and (ii) it has been shown
[Bernardo, 1979a] that statistical inference on θ actually has the mathematical
structure of a decision problem, where the class of alternatives is the functional
space

(4) A =

{
π(θ|D); π(θ|D) > 0,

∫

Θ
π(θ|D) dθ = 1

}

of the conditional probability distributions of θ given the data, and the utility
function is a measure of the amount of information about θ which the data may
be expected to provide.

2.3 Exchangeability and Representation Theorem

Available data often take the form of a set {x1, . . . ,xn} of “homogeneous” (pos-
sibly multidimensional) observations, in the precise sense that only their values
matter and not the order in which they appear. Formally, this is captured by the
notion of exchangeability. The set of random vectors {x1, . . . ,xn} is exchangeable if
their joint distribution is invariant under permutations. An infinite sequence {xj}
of random vectors is exchangeable if all its finite subsequences are exchangeable.
Notice that, in particular, any random sample from any model is exchangeable
in this sense. The concept of exchangeability, introduced by de Finetti [1937], is
central to modern statistical thinking. Indeed, the general representation theorem
implies that if a set of observations is assumed to be a subset of an exchange-
able sequence, then it constitutes a random sample from some probability model
{p(x|ω),ω ∈ Ω}, x ∈ X , described in terms of (labeled by) some parameter vec-
tor ω; furthermore this parameter ω is defined as the limit (as n → ∞) of some
function of the observations. Available information about the value of ω in prevail-
ing conditions C is necessarily described by some probability distribution π(ω|C).

For example, in the case of a sequence {x1, x2, . . .} of dichotomous exchangeable
random quantities xj ∈ {0, 1}, de Finetti’s representation theorem establishes that
the joint distribution of (x1, . . . , xn) has an integral representation of the form

(5) p(x1, . . . , xn|C) =

∫ 1

0

n∏

i=1

θxi(1 − θ)1−xi π(θ|C) dθ, θ = lim
n→∞

r

n
,
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where r =
∑

xj is the number of positive trials. This is nothing but the joint dis-
tribution of a set of (conditionally) independent Bernoulli trials with parameter θ,
over which some probability distribution π(θ|C) is therefore proven to exist. More
generally, for sequences of arbitrary random quantities {x1,x2, . . .}, exchangeabil-
ity leads to integral representations of the form

(6) p(x1, . . . ,xn|C) =

∫

Ω

n∏

i=1

p(xi|ω)π(ω|C) dω,

where {p(x|ω),ω ∈ Ω} denotes some probability model, ω is the limit as n → ∞ of
some function f(x1, . . . ,xn) of the observations, and π(ω|C) is some probability
distribution over Ω. This formulation includes “nonparametric” (distribution free)
modelling, where ω may index, for instance, all continuous probability distributions
on X . Notice that π(ω|C) does not describe a possible variability of ω (since ω
will typically be a fixed unknown vector), but a description on the uncertainty
associated with its actual value.

Under appropriate conditioning, exchangeability is a very general assumption,
a powerful extension of the traditional concept of a random sample. Indeed, many
statistical analyses directly assume data (or subsets of the data) to be a random
sample of conditionally independent observations from some probability model,
so that p(x1, . . . ,xn|ω) =

∏n
i=1 p(xi|ω); but any random sample is exchangeable,

since
∏n

i=1 p(xi|ω) is obviously invariant under permutations. Notice that the ob-
servations in a random sample are only independent conditional on the parameter
value ω; as nicely put by Lindley, the mantra that the observations {x1, . . . ,xn} in
a random sample are independent is ridiculous when they are used to infer xn+1.
Notice also that, under exchangeability, the general representation theorem pro-
vides an existence theorem for a probability distribution π(ω|C) on the parameter
space Ω, and that this is an argument which only depends on mathematical prob-
ability theory.

Another important consequence of exchangeability is that it provides a formal
definition of the parameter ω which labels the model as the limit, as n → ∞, of
some function f(x1, . . . ,xn) of the observations; the function f obviously depends
both on the assumed model and the chosen parametrization. For instance, in the
case of a sequence of Bernoulli trials, the parameter θ is defined as the limit, as
n → ∞, of the relative frequency r/n. It follows that, under exchangeability, the
sentence “the true value of ω” has a well-defined meaning, if only asymptotically
verifiable. Moreover, if two different models have parameters which are function-
ally related by their definition, then the corresponding posterior distributions may
be meaningfully compared, for they refer to functionally related quantities. For
instance, if a finite subset {x1, . . . , xn} of an exchangeable sequence of integer ob-
servations is assumed to be a random sample from a Poisson distribution Po(x|λ),
so that E[x|λ] = λ, then λ is defined as limn→∞{x̄n}, where x̄n =

∑
j xj/n; sim-

ilarly, if for some fixed non-zero integer r, the same data are assumed to be a
random sample for a negative binomial Nb(x|r, θ), so that E[x|θ, r] = r(1 − θ)/θ,
then θ is defined as limn→∞{r/(x̄n + r)}. It follows that θ ≡ r/(λ+ r) and, hence,
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θ and r/(λ + r) may be treated as the same (unknown) quantity whenever this
might be needed as, for example, when comparing the relative merits of these
alternative probability models.

3 THE BAYESIAN PARADIGM

The statistical analysis of some observed data D typically begins with some infor-
mal descriptive evaluation, which is used to suggest a tentative, formal probability
model {p(D|ω), ω ∈ Ω} assumed to represent, for some (unknown) value of ω, the
probabilistic mechanism which has generated the observed data D. The arguments
outlined in Section 2 establish the logical need to assess a prior probability distri-
bution π(ω|K) over the parameter space Ω, describing the available knowledge K
about the value of ω prior to the data being observed. It then follows from standard
probability theory that, if the probability model is correct, all available informa-
tion about the value of ω after the data D have been observed is contained in
the corresponding posterior distribution whose probability density, π(ω|D,A,K),
is immediately obtained from Bayes’ theorem,

(7) π(ω|D,A,K) =
p(D|ω)π(ω|K)∫

Ω p(D|ω)π(ω|K) dω
,

where A stands for the assumptions made on the probability model. It is this
systematic use of Bayes’ theorem to incorporate the information provided by the
data that justifies the adjective Bayesian by which the paradigm is usually known.
It is obvious from Bayes’ theorem that any value of ω with zero prior density
will have zero posterior density. Thus, it is typically assumed (by appropriate
restriction, if necessary, of the parameter space Ω) that prior distributions are
strictly positive (as Savage put it, keep the mind open, or at least ajar). To simplify
the presentation, the accepted assumptions A and the available knowledge K are
often omitted from the notation, but the fact that all statements about ω given
D are also conditional to A and K should always be kept in mind.

EXAMPLE 1 Bayesian inference with a finite parameter space. Let p(D|θ), θ ∈
{θ1, . . . , θm}, be the probability mechanism which is assumed to have generated
the observed data D, so that θ may only take a finite number of values. Using
the finite form of Bayes’ theorem, and omitting the prevailing conditions from the
notation, the posterior probability of θi after data D have been observed is

(8) Pr(θi|D) =
p(D|θi) Pr(θi)∑m

j=1 p(D|θj) Pr(θj)
, i = 1, . . . ,m.

For any prior distribution p(θ) = {Pr(θ1), . . . ,Pr(θm)} describing available knowl-
edge about the value of θ, Pr(θi|D) measures how likely should θi be judged, given
both the initial knowledge described by the prior distribution, and the information
provided by the data D.
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Figure 1. Posterior probability of infection Pr(V |+) given a positive test, as a
function of the prior probability of infection Pr(V )

An important, frequent application of this simple technique is provided by prob-
abilistic diagnosis. For example, consider the simple situation where a particu-
lar test designed to detect a virus is known from laboratory research to give a
positive result in 98% of infected people and in 1% of non-infected. Then, the
posterior probability that a person who tested positive is infected is given by
Pr(V |+) = (0.98 p)/{0.98 p + 0.01 (1 − p)} as a function of p = Pr(V ), the prior
probability of a person being infected (the prevalence of the infection in the pop-
ulation under study). Figure 1 shows Pr(V |+) as a function of Pr(V ).

As one would expect, the posterior probability is only zero if the prior proba-
bility is zero (so that it is known that the population is free of infection) and it
is only one if the prior probability is one (so that it is known that the population
is universally infected). Notice that if the infection is rare, then the posterior
probability of a randomly chosen person being infected will be relatively low even
if the test is positive. Indeed, for say Pr(V ) = 0.002, one finds Pr(V |+) = 0.164,
so that in a population where only 0.2% of individuals are infected, only 16.4% of
those testing positive within a random sample will actually prove to be infected:
most positives would actually be false positives.

In this section, we describe in some detail the learning process described by
Bayes’ theorem, discuss its implementation in the presence of nuisance parameters,
show how it can be used to forecast the value of future observations, and analyze
its large sample behaviour.

3.1 The Learning Process

In the Bayesian paradigm, the process of learning from the data is systematically
implemented by making use of Bayes’ theorem to combine the available prior
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information with the information provided by the data to produce the required
posterior distribution. Computation of posterior densities is often facilitated by
noting that Bayes’ theorem may be simply expressed as

(9) π(ω|D) ∝ p(D|ω)π(ω),

(where ∝ stands for ‘proportional to’ and where, for simplicity, the accepted as-
sumptions A and the available knowledge K have been omitted from the notation),
since the missing proportionality constant [

∫
Ω p(D|ω)π(ω) dω]−1 may always be

deduced from the fact that π(ω|D), a probability density, must integrate to one.
Hence, to identify the form of a posterior distribution it suffices to identify a ker-
nel of the corresponding probability density, that is a function k(ω) such that
π(ω|D) = c(D) k(ω) for some c(D) which does not involve ω. In the examples
which follow, this technique will often be used.

An improper prior function is defined as a positive function π(ω) such that∫
Ω π(ω) dω is not finite. Equation (9), the formal expression of Bayes’ theo-

rem, remains technically valid if π(ω) is an improper prior function provided that∫
Ω p(D|ω)π(ω) dω < ∞, thus leading to a well defined proper posterior density

π(ω|D) ∝ p(D|ω)π(ω). In particular, as will later be justified (Section 4) it also
remains philosophically valid if π(ω) is an appropriately chosen reference (typically
improper) prior function.

Considered as a function of ω, l(ω, D) = p(D|ω) is often referred to as the
likelihood function. Thus, Bayes’ theorem is simply expressed in words by the
statement that the posterior is proportional to the likelihood times the prior. It
follows from equation (9) that, provided the same prior π(ω) is used, two dif-
ferent data sets D1 and D2, with possibly different probability models p1(D1|ω)
and p2(D2|ω) but yielding proportional likelihood functions, will produce identical
posterior distributions for ω. This immediate consequence of Bayes theorem has
been proposed as a principle on its own, the likelihood principle, and it is seen by
many as an obvious requirement for reasonable statistical inference. In particular,
for any given prior π(ω), the posterior distribution does not depend on the set
of possible data values, or the sample space. Notice, however, that the likelihood
principle only applies to inferences about the parameter vector ω once the data
have been obtained. Consideration of the sample space is essential, for instance,
in model criticism, in the design of experiments, in the derivation of predictive
distributions, and in the construction of objective Bayesian procedures.

Naturally, the terms prior and posterior are only relative to a particular set of
data. As one would expect from the coherence induced by probability theory, if
data D = {x1, . . . ,xn} are sequentially presented, the final result will be the same
whether data are globally or sequentially processed. Indeed, π(ω|x1, . . . ,xi+1) ∝
p(xi+1|ω)π(ω|x1, . . . ,xi), for i = 1, . . . , n − 1, so that the “posterior” at a given
stage becomes the “prior” at the next.

In most situations, the posterior distribution is “sharper” than the prior so that,
in most cases, the density π(ω|x1, . . . ,xi+1) will be more concentrated around the
true value of ω than π(ω|x1, . . . ,xi). However, this is not always the case: oc-
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casionally, a “surprising” observation will increase, rather than decrease, the un-
certainty about the value of ω. For instance, in probabilistic diagnosis, a sharp
posterior probability distribution (over the possible causes {ω1, . . . ,ωk} of a syn-
drome) describing, a “clear” diagnosis of disease ωi (that is, a posterior with a
large probability for ωi) would typically update to a less concentrated posterior
probability distribution over {ω1, . . . ,ωk} if a new clinical analysis yielded data
which were unlikely under ωi.

For a given probability model, one may find that a particular function of the data
t = t(D) is a sufficient statistic in the sense that, given the model, t(D) contains all
information about ω which is available in D. Formally, t = t(D) is sufficient if (and
only if) there exist nonnegative functions f and g such that the likelihood function
may be factorized in the form p(D|ω) = f(ω, t)g(D). A sufficient statistic always
exists, for t(D) = D is obviously sufficient; however, a much simpler sufficient
statistic, with a fixed dimensionality which is independent of the sample size,
often exists. In fact this is known to be the case whenever the probability model
belongs to the generalized exponential family, which includes many of the more
frequently used probability models. It is easily established that if t is sufficient,
the posterior distribution of ω only depends on the data D through t(D), and may
be directly computed in terms of p(t|ω), so that, π(ω|D) = p(ω|t) ∝ p(t|ω)π(ω).

Naturally, for fixed data and model assumptions, different priors lead to different
posteriors. Indeed, Bayes’ theorem may be described as a data-driven probability
transformation machine which maps prior distributions (describing prior knowl-
edge) into posterior distributions (representing combined prior and data knowl-
edge). It is important to analyze whether or not sensible changes in the prior
would induce noticeable changes in the posterior. Posterior distributions based
on reference “noninformative” priors play a central role in this sensitivity analysis
context. Investigation of the sensitivity of the posterior to changes in the prior
is an important ingredient of the comprehensive analysis of the sensitivity of the
final results to all accepted assumptions which any responsible statistical study
should contain.

EXAMPLE 2 Inference on a binomial parameter. If the data D consist of n
Bernoulli observations with parameter θ which contain r positive trials, then
p(D|θ, n) = θr(1 − θ)n−r, so that t(D) = {r, n} is sufficient. Suppose that
prior knowledge about θ is described by a Beta distribution Be(θ|α,β), so that
π(θ|α,β) ∝ θα−1(1 − θ)β−1. Using Bayes’ theorem, the posterior density of θ is
π(θ|r, n,α,β) ∝ θr(1 − θ)n−r θα−1(1 − θ)β−1 ∝ θr+α−1(1 − θ)n−r+β−1, the Beta
distribution Be(θ|r + α, n − r + β).

Suppose, for example, that in the light of precedent surveys, available infor-
mation on the proportion θ of citizens who would vote for a particular political
measure in a referendum is described by a Beta distribution Be(θ|50, 50), so that
it is judged to be equally likely that the referendum would be won or lost, and it
is judged that the probability that either side wins less than 60% of the vote is
0.95.
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Figure 2. Prior and posterior densities of the proportion θ of citizens that would
vote in favour of a referendum

A random survey of size 1500 is then conducted, where only 720 citizens declare
to be in favour of the proposed measure. Using the results above, the corresponding
posterior distribution is then Be(θ|770, 830). These prior and posterior densities
are plotted in Figure 2; it may be appreciated that, as one would expect, the effect
of the data is to drastically reduce the initial uncertainty on the value of θ and,
hence, on the referendum outcome. More precisely, Pr(θ < 0.5|720, 1500,H,K) =
0.933 (shaded region in Figure 2) so that, after the information from the survey has
been included, the probability that the referendum will be lost should be judged
to be about 93%.

The general situation where the vector of interest is not the whole parameter
vector ω, but some function θ = θ(ω) of possibly lower dimension than ω, will now
be considered. Let D be some observed data, let {p(D|ω),ω ∈ Ω} be a probability
model assumed to describe the probability mechanism which has generated D, let
π(ω) be a probability distribution describing any available information on the value
of ω, and let θ = θ(ω) ∈ Θ be a function of the original parameters over whose
value inferences based on the data D are required. Any valid conclusion on the
value of the vector of interest θ will then be contained in its posterior probability
distribution π(θ|D) which is conditional on the observed data D and will naturally
also depend, although not explicitly shown in the notation, on the assumed model
{p(D|ω),ω ∈ Ω}, and on the available prior information encapsulated by π(ω).
The required posterior distribution p(θ|D) is found by standard use of probability
calculus. Indeed, by Bayes’ theorem, π(ω|D) ∝ p(D|ω)π(ω). Moreover, let λ =
λ(ω) ∈ Λ be some other function of the original parameters such that ψ = {θ,λ}
is a one-to-one transformation of ω, and let J(ω) = (∂ψ/∂ω) be the corresponding
Jacobian matrix. Naturally, the introduction of λ is not necessary if θ(ω) is a
one-to-one transformation of ω. Using standard change-of-variable probability
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techniques, the posterior density of ψ is

(10) π(ψ|D) = π(θ,λ|D) =

[
π(ω|D)

|J(ω)|

]

ω=ω(ψ)

and the required posterior of θ is the appropriate marginal density, obtained by
integration over the nuisance parameter λ,

(11) π(θ|D) =

∫

Λ
π(θ,λ|D) dλ.

Notice that elimination of unwanted nuisance parameters, a simple integration
within the Bayesian paradigm is, however, a difficult (often polemic) problem for
frequentist statistics.

Sometimes, the range of possible values of ω is effectively restricted by contex-
tual considerations. If ω is known to belong to Ωc ⊂ Ω, the prior distribution is
only positive in Ωc and, using Bayes’ theorem, it is immediately found that the
restricted posterior is

(12) π(ω|D,ω ∈ Ωc) =
π(ω|D)∫
Ωc

π(ω|D)
, ω ∈ Ωc,

and obviously vanishes if ω /∈ Ωc. Thus, to incorporate a restriction on the possi-
ble values of the parameters, it suffices to renormalize the unrestricted posterior
distribution to the set Ωc ⊂ Ω of parameter values which satisfy the required
condition. Incorporation of known constraints on the parameter values, a simple
renormalization within the Bayesian pardigm, is another very difficult problem for
conventional statistics. For further details on the elimination of nuisance param-
eters see [Liseo, 2005].

EXAMPLE 3 Inference on normal parameters. Let D = {x1, . . . xn} be a random
sample from a normal distribution N(x|µ,σ). The corresponding likelihood func-
tion is immediately found to be proportional to σ−n exp[−n{s2+(x̄−µ)2}/(2σ2)],
with nx̄ =

∑
i xi, and ns2 =

∑
i(xi−x̄)2. It may be shown (see Section 4) that ab-

sence of initial information on the value of both µ and σ may formally be described
by a joint prior function which is uniform in both µ and log(σ), that is, by the
(improper) prior function π(µ,σ) = σ−1. Using Bayes’ theorem, the corresponding
joint posterior is

(13) π(µ,σ|D) ∝ σ−(n+1) exp[−n{s2 + (x̄ − µ)2}/(2σ2)].

Thus, using the Gamma integral in terms of λ = σ−2 to integrate out σ,

(14) π(µ|D) ∝
∫ ∞

0
σ−(n+1) exp

[
− n

2σ2
[s2 + (x̄ − µ)2]

]
dσ ∝ [s2 + (x̄ − µ)2]−n/2,

which is recognized as a kernel of the Student density St(µ|x̄, s/
√

n − 1, n − 1).
Similarly, integrating out µ,
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Figure 3. Posterior density π(g|m, s, n) of the value g of the gravitational field,
given n = 20 normal measurements with mean m = 9.8087 and standard deviation
s = 0.0428, (a) with no additional information, and (b) with g restricted to Gc =
{g; 9.7803 < g < 9.8322}. Shaded areas represent 95%-credible regions of g

(15) π(σ|D) ∝
∫ ∞

−∞
σ−(n+1) exp

[
− n

2σ2
[s2 + (x̄ − µ)2]

]
dµ ∝ σ−n exp

[
−ns2

2σ2

]
.

Changing variables to the precision λ = σ−2 results in π(λ|D) ∝ λ(n−3)/2ens2λ/2, a
kernel of the Gamma density Ga(λ|(n−1)/2, ns2/2). In terms of the standard de-
viation σ this becomes π(σ|D) = p(λ|D)|∂λ/∂σ| = 2σ−3Ga(σ−2|(n−1)/2, ns2/2),
a square-root inverted gamma density.

A frequent example of this scenario is provided by laboratory measurements
made in conditions where central limit conditions apply, so that (assuming no ex-
perimental bias) those measurements may be treated as a random sample from
a normal distribution centered at the quantity µ which is being measured, and
with some (unknown) standard deviation σ. Suppose, for example, that in an ele-
mentary physics classroom experiment to measure the gravitational field g with a
pendulum, a student has obtained n = 20 measurements of g yielding (in m/sec2)
a mean x̄ = 9.8087, and a standard deviation s = 0.0428. Using no other informa-
tion, the corresponding posterior distribution is π(g|D) = St(g|9.8087, 0.0098, 19)
represented in Figure 3(a). In particular, Pr(9.788 < g < 9.829|D) = 0.95, so that,
with the information provided by this experiment, the gravitational field at the
location of the laboratory may be expected to lie between 9.788 and 9.829 with
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probability 0.95.
Formally, the posterior distribution of g should be restricted to g > 0; however,

as immediately obvious from Figure 3a, this would not have any appreciable effect,
due to the fact that the likelihood function is actually concentrated on positive g
values.

Suppose now that the student is further instructed to incorporate into the anal-
ysis the fact that the value of the gravitational field g at the laboratory is known
to lie between 9.7803 m/sec2 (average value at the Equator) and 9.8322 m/sec2

(average value at the poles). The updated posterior distribution will the be

(16) π(g|D, g ∈ Gc) =
St(g|m, s/

√
n − 1, n)∫

g∈Gc
St(g|m, s/

√
n − 1, n)

, g ∈ Gc,

represented in Figure 3(b), where Gc = {g; 9.7803 < g < 9.8322}. One-dimen-
sional numerical integration may be used to verify that Pr(g > 9.792|D, g ∈ Gc) =
0.95. Moreover, if inferences about the standard deviation σ of the measurement
procedure are also requested, the corresponding posterior distribution is found to
be π(σ|D) = 2σ−3Ga(σ−2|9.5, 0.0183). This has a mean E[σ|D] = 0.0458 and
yields Pr(0.0334 < σ < 0.0642|D) = 0.95.

3.2 Predictive Distributions

Let D = {x1, . . . ,xn}, xi ∈ X , be a set of exchangeable observations, and con-
sider now a situation where it is desired to predict the value of a future obser-
vation x ∈ X generated by the same random mechanism that has generated the
data D. It follows from the foundations arguments discussed in Section 2 that
the solution to this prediction problem is simply encapsulated by the predictive
distribution p(x|D) describing the uncertainty on the value that x will take, given
the information provided by D and any other available knowledge. Suppose that
contextual information suggests the assumption that data D may be considered
to be a random sample from a distribution in the family {p(x|ω),ω ∈ Ω}, and let
π(ω) be a prior distribution describing available information on the value of ω.
Since p(x|ω, D) = p(x|ω), it then follows from standard probability theory that

(17) p(x|D) =

∫

Ω
p(x|ω)π(ω|D) dω,

which is an average of the probability distributions of x conditional on the (un-
known) value of ω, weighted with the posterior distribution of ω given D.

If the assumptions on the probability model are correct, the posterior predictive
distribution p(x|D) will converge, as the sample size increases, to the distribution
p(x|ω) which has generated the data. Indeed, the best technique to assess the
quality of the inferences about ω encapsulated in π(ω|D) is to check against the
observed data the predictive distribution p(x|D) generated by π(ω|D). For a good
introduction to Bayesian predictive inference, see Geisser [1993].
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EXAMPLE 4 Prediction in a Poisson process. Let D = {r1, . . . , rn} be a random
sample from a Poisson distribution Pn(r|λ) with parameter λ, so that p(D|λ) ∝
λte−λn, where t =

∑
ri. It may be shown (see Section 4) that absence of initial

information on the value of λ may be formally described by the (improper) prior
function π(λ) = λ−1/2. Using Bayes’ theorem, the corresponding posterior is

(18) π(λ|D) ∝ λte−λn λ−1/2 ∝ λt−1/2e−λn,

the kernel of a Gamma density Ga(λ|, t + 1/2, n), with mean (t + 1/2)/n. The
corresponding predictive distribution is the Poisson-Gamma mixture

(19) p(r|D) =

∫ ∞

0
Pn(r|λ)Ga(λ|, t +

1

2
, n) dλ =

nt+1/2

Γ(t + 1/2)

1

r!

Γ(r + t + 1/2)

(1 + n)r+t+1/2
.

Suppose, for example, that in a firm producing automobile restraint systems, the
entire production in each of 10 consecutive months has yielded no complaint from
their clients. With no additional information on the average number λ of com-
plaints per month, the quality assurance department of the firm may report that
the probabilities that r complaints will be received in the next month of pro-
duction are given by equation (19), with t = 0 and n = 10. In particular,
p(r = 0|D) = 0.953, p(r = 1|D) = 0.043, and p(r = 2|D) = 0.003. Many other
situations may be described with the same model. For instance, if metereological
conditions remain similar in a given area, p(r = 0|D) = 0.953 would describe the
chances of no flash flood next year, given 10 years without flash floods in the area.

EXAMPLE 5 Prediction in a Normal process. Consider now prediction of a con-
tinuous variable. Let D = {x1, . . . , xn} be a random sample from a normal distri-
bution N(x|µ,σ). As mentioned in Example 3, absence of initial information on
the values of both µ and σ is formally described by the improper prior function
π(µ,σ) = σ−1, and this leads to the joint posterior density (13). The correspond-
ing (posterior) predictive distribution is

(20) p(x|D) =

∫ ∞

0

∫ ∞

−∞
N(x|µ,σ)π(µ,σ|D) dµdσ = St(x|x̄, s

√
n + 1

n − 1
, n − 1).

If µ is known to be positive, the appropriate prior function will be the restricted
function

(21) π(µ,σ) =

{
σ−1 if µ > 0
0 otherwise.

However, the result in equation (19) will still hold, provided the likelihood function
p(D|µ,σ) is concentrated on positive µ values. Suppose, for example, that in the
firm producing automobile restraint systems, the observed breaking strengths of
n = 10 randomly chosen safety belt webbings have mean x̄ = 28.011 kN and
standard deviation s = 0.443 kN, and that the relevant engineering specification
requires breaking strengths to be larger than 26 kN. If data may truly be assumed
to be a random sample from a normal distribution, the likelihood function is only
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appreciable for positive µ values, and only the information provided by this small
sample is to be used, then the quality engineer may claim that the probability that
a safety belt randomly chosen from the same batch as the sample tested would
satisfy the required specification is Pr(x > 26|D) = 0.9987. Besides, if production
conditions remain constant, 99.87% of the safety belt webbings may be expected
to have acceptable breaking strengths.

3.3 Asymptotic Behaviour

The behaviour of posterior distributions when the sample size is large is now con-
sidered. This is important for, at least, two different reasons: (i) asymptotic results
provide useful first-order approximations when actual samples are relatively large,
and (ii) objective Bayesian methods typically depend on the asymptotic properties
of the assumed model. Let D = {x1, . . . ,xn}, x ∈ X , be a random sample of size n
from {p(x|ω),ω ∈ Ω}. It may be shown that, as n → ∞, the posterior distribution
of a discrete parameter ω typically converges to a degenerate distribution which
gives probability one to the true value of ω, and that the posterior distribution of
a continuous parameter ω typically converges to a normal distribution centered at
its maximum likelihood estimate ω̂ (MLE), with a variance matrix which decreases
with n as 1/n.

Consider first the situation where Ω = {ω1,ω2, . . .} consists of a countable
(possibly infinite) set of values, such that the probability model which corre-
sponds to the true parameter value ωt is distinguishable from the others in the
sense that the logarithmic divergence κ{p(x|ωi)|p(x|ωt)} of each of the p(x|ωi)
from p(x|ωt) is strictly positive. Taking logarithms in Bayes’ theorem, defining
zj = log[p(xj |ωi)/p(xj |ωt)], j = 1, . . . , n, and using the strong law of large numbers
on the n conditionally independent and identically distributed random quantities
z1, . . . , zn, it may be shown that

(22) lim
n→∞

Pr(ωt|x1, . . . ,xn) = 1, lim
n→∞

Pr(ωi|x1, . . . ,xn) = 0, i .= t.

Thus, under appropriate regularity conditions, the posterior probability of the true
parameter value converges to one as the sample size grows.

Consider now the situation where ω is a k-dimensional continuous parameter.
Expressing Bayes’ theorem as π(ω|x1, . . . ,xn) ∝ exp{log[π(ω)]+

∑n
j=1 log[p(xj |ω)]},

expanding
∑

j log[p(xj |ω)] about its maximum (the MLE ω̂), and assuming reg-
ularity conditions (to ensure that terms of order higher than quadratic may be
ignored and that the sum of the terms from the likelihood will dominate the term
from the prior) it is found that the posterior density of ω is the approximate
k-variate normal

(23) π(ω|x1, . . . ,xn) ≈ Nk{ω̂,S(D, ω̂)}, S−1(D,ω) =

(
−

n∑

l=1

∂2 log[p(xl|ω)]

∂ωi∂ωj

)
.

A simpler, but somewhat poorer, approximation may be obtained by using the
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strong law of large numbers on the sums in (22) to establish that S−1(D, ω̂) ≈
nF(ω̂), where F(ω) is Fisher’s information matrix, with general element

(24) Fij(ω) = −
∫

X
p(x|ω)

∂2 log[p(x|ω)]

∂ωi∂ωj
dx,

so that

(25) π(ω|x1, . . . ,xn) ≈ Nk(ω|ω̂, n−1 F−1(ω̂)).

Thus, under appropriate regularity conditions, the posterior probability density of
the parameter vector ω approaches, as the sample size grows, a multivarite normal
density centered at the MLE ω̂, with a variance matrix which decreases with n as
n−1 .

EXAMPLE 2, continued. Asymptotic approximation with binomial data. Let
D = (x1, . . . , xn) consist of n independent Bernoulli trials with parameter θ, so
that p(D|θ, n) = θr(1 − θ)n−r. This likelihood function is maximized at θ̂ = r/n,
and Fisher’s information function is F (θ) = θ−1(1− θ)−1. Thus, using the results
above, the posterior distribution of θ will be the approximate normal,

(26) π(θ|r, n) ≈ N(θ|θ̂, s(θ̂)/
√

n), s(θ) = {θ(1 − θ)}1/2

with mean θ̂ = r/n and variance θ̂(1 − θ̂)/n. This will provide a reasonable
approximation to the exact posterior if (i) the prior π(θ) is relatively “flat” in the
region where the likelihood function matters, and (ii) both r and n are moderately
large. If, say, n = 1500 and r = 720, this leads to π(θ|D) ≈ N(θ|0.480, 0.013),
and to Pr(θ > 0.5|D) ≈ 0.940, which may be compared with the exact value
Pr(θ > 0.5|D) = 0.933 obtained from the posterior distribution which corresponds
to the prior Be(θ|50, 50). 1

It follows from the joint posterior asymptotic behaviour of ω and from the
properties of the multivariate normal distribution that, if the parameter vector is
decomposed into ω = (θ,λ), and Fisher’s information matrix is correspondingly
partitioned, so that

(27) F(ω) = F(θ,λ) = (Fθθ(θ,λ) Fθλ(θ,λ)Fλθ(θ,λ) Fλλ(θ,λ) )

and

(28) S(θ,λ) = F−1(θ,λ) = (Sθθ(θ,λ) Sθλ(θ,λ)Sλθ(θ,λ) Sλλ(θ,λ) ) ,

then the marginal posterior distribution of θ will be

(29) π(θ|D) ≈ N{θ|θ̂, n−1 Sθθ(θ̂, λ̂)},

while the conditional posterior distribution of λ given θ will be

(30) π(λ|θ, D) ≈ N{λ|λ̂− F−1
λλ (θ, λ̂)Fλθ(θ, λ̂)(θ̂ − θ), n−1 F−1

λλ (θ, λ̂)}.
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Notice that F−1
λλ = Sλλ if (and only if) F is block diagonal, i.e. if (and only if) θ

and λ are asymptotically independent.

EXAMPLE 3, continued. Asymptotic approximation with normal data. Let
D = (x1, . . . , xn) be a random sample from a normal distribution N(x|µ,σ). The
corresponding likelihood function p(D|µ,σ) is maximized at (µ̂, σ̂) = (x̄, s), and
Fisher’s information matrix is diagonal, with Fµµ = σ−2. Hence, the posterior
distribution of µ is approximately N(µ|x̄, s/

√
n); this may be compared with the

exact result π(µ|D) = St(µ|x̄, s/
√

n − 1, n − 1) obtained previously under the as-
sumption of no prior knowledge. 1

4 REFERENCE ANALYSIS

Under the Bayesian paradigm, the outcome of any inference problem (the posterior
distribution of the quantity of interest) combines the information provided by the
data with relevant available prior information. In many situations, however, either
the available prior information on the quantity of interest is too vague to warrant
the effort required to have it formalized in the form of a probability distribution,
or it is too subjective to be useful in scientific communication or public decision
making. It is therefore important to be able to identify the mathematical form
of a “noninformative” prior, a prior that would have a minimal effect, relative to
the data, on the posterior inference. More formally, suppose that the probability
mechanism which has generated the available data D is assumed to be p(D|ω),
for some ω ∈ Ω, and that the quantity of interest is some real-valued function
θ = θ(ω) of the model parameter ω. Without loss of generality, it may be assumed
that the probability model is of the form

(31) M = {p(D|θ,λ), D ∈ D, θ ∈ Θ,λ ∈ Λ}

p(D|θ,λ), where λ is some appropriately chosen nuisance parameter vector. As
described in Section 3, to obtain the required posterior distribution of the quantity
of interest π(θ|D) it is necessary to specify a joint prior π(θ,λ). It is now required
to identify the form of that joint prior πθ(θ,λ|M,P), the θ-reference prior, which
would have a minimal effect on the corresponding posterior distribution of θ,

(32) π(θ|D) ∝
∫

Λ
p(D|θ,λ)πθ(θ,λ|M,P) dλ,

within the class P of all the prior disributions compatible with whatever informa-
tion about (θ,λ) one is prepared to assume, which may just be the class P0 of
all strictly positive priors. To simplify the notation, when there is no danger of
confusion the reference prior πθ(θ,λ|M,P) is often simply denoted by π(θ,λ), but
its dependence on the quantity of interest θ, the assumed model M and the class
P of priors compatible with assumed knowledge, should always be kept in mind.

To use a conventional expression, the reference prior “would let the data speak
for themselves” about the likely value of θ. Properly defined, reference posterior
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distributions have an important role to play in scientific communication, for they
provide the answer to a central question in the sciences: conditional on the assumed
model p(D|θ,λ), and on any further assumptions of the value of θ on which there
might be universal agreement, the reference posterior π(θ|D) should specify what
could be said about θ if the only available information about θ were some well-
documented data D and whatever information (if any) one is prepared to assume
by restricting the prior to belong to an appropriate class P.

Much work has been done to formulate “reference” priors which would make the
idea described above mathematically precise. For historical details, see [Bernardo
and Smith, 1994, Sec. 5.6.2; Kass and Wasserman, 1996; Bernardo, 2005a] and
references therein. This section concentrates on an approach that is based on in-
formation theory to derive reference distributions which may be argued to provide
the most advanced general procedure available; this was initiated by Bernardo
[1979b; 1981] and further developed by Berger and Bernardo [1989; 1992a; 1982b;
1982c; 1997; 2005a; Bernardo and Ramón, 1998; Berger et al., 2009], and references
therein. In the formulation described below, far from ignoring prior knowledge, the
reference posterior exploits certain well-defined features of a possible prior, namely
those describing a situation were relevant knowledge about the quantity of interest
(beyond that universally accepted, as specified by the choice of P) may be held
to be negligible compared to the information about that quantity which repeated
experimentation (from a specific data generating mechanism M) might possibly
provide. Reference analysis is appropriate in contexts where the set of inferences
which could be drawn in this possible situation is considered to be pertinent.

Any statistical analysis contains a fair number of subjective elements; these
include (among others) the data selected, the model assumptions, and the choice
of the quantities of interest. Reference analysis may be argued to provide an
“objective” Bayesian solution to statistical inference problems in just the same
sense that conventional statistical methods claim to be “objective”: in that the
solutions only depend on model assumptions and observed data.

4.1 Reference Distributions

One parameter. Consider the experiment which consists of the observation of data
D, generated by a random mechanism p(D|θ) which only depends on a real-valued
parameter θ ∈ Θ, and let t = t(D) ∈ T be any sufficient statistic (which may
well be the complete data set D). In Shannon’s general information theory, the
amount of information Iθ{T,π(θ)} which may be expected to be provided by D,
or (equivalently) by t(D), about the value of θ is defined by

(33) Iθ{T,π(θ)} = κ {p(t)π(θ)|p(t|θ)π(θ)} = Et

[ ∫

Θ
π(θ|t) log

π(θ|t)
π(θ)

dθ

]
,

the expected logarithmic divergence of the prior from the posterior. This is natu-
rally a functional of the prior π(θ): the larger the prior information, the smaller
the information which the data may be expected to provide. The functional
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Iθ{T,π(θ)} is concave, non-negative, and invariant under one-to-one transforma-
tions of θ. Consider now the amount of information Iθ{T k,π(θ)} about θ which
may be expected from the experiment which consists of k conditionally indepen-
dent replications {t1, . . . , tk} of the original experiment. As k → ∞, such an
experiment would provide any missing information about θ which could possibly
be obtained within this framework; thus, as k → ∞, the functional Iθ{T k,π(θ)}
will approach the missing information about θ associated with the prior p(θ).
Intuitively, a θ-“noninformative” prior is one which maximizes the missing infor-
mation about θ. Formally, if πk(θ) denotes the prior density which maximizes
Iθ{T k,π(θ)} in the class P of s prior distributions which are compatible with ac-
cepted assumptions on the value of θ (which may well be the class P0 of all strictly
positive proper priors) then the θ-reference prior π(θ|M,P) is the limit as k → ∞
(in a sense to be made precise) of the sequence of priors {πk(θ), k = 1, 2, . . .}.

Notice that this limiting procedure is not some kind of asymptotic approxima-
tion, but an essential element of the definition of a reference prior. In particular,
this definition implies that reference distributions only depend on the asymptotic
behaviour of the assumed probability model, a feature which actually simplifies
their actual derivation.

EXAMPLE 6 Maximum entropy. If θ may only take a finite number of values,
so that the parameter space is Θ = {θ1, . . . , θm} and π(θ) = {p1, . . . , pm}, with
pi = Pr(θ = θi), and there is no topology associated to the parameter space Θ,
so that the θi’s are just labels with no quantitative meaning, then the missing
information associated to {p1, . . . , pm} reduces to

(34) lim
k→∞

Iθ{T k,π(θ)} = H(p1, . . . , pm) = −
∑m

i=1
pi log(pi),

that is, the entropy of the prior distribution {p1, . . . , pm}.
Thus, in the non-quantitative finite case, the reference prior π(θ|M,P) is that

with maximum entropy in the class P of priors compatible with accepted assump-
tions. Consequently, the reference prior algorithm contains “maximum entropy”
priors as the particular case which obtains when the parameter space is a finite
set of labels, the only case where the original concept of entropy as a measure of
uncertainty is unambiguous and well-behaved. In particular, if P is the class P0

of all priors over {θ1, . . . , θm}, then the reference prior is the uniform prior over
the set of possible θ values, π(θ|M,P0) = {1/m, . . . , 1/m}.

Formally, the reference prior function π(θ|M,P) of a univariate parameter θ is
defined to be the limit of the sequence of the proper priors πk(θ) which maximize
Iθ{T k,π(θ)} in the precise sense that, for any value of the sufficient statistic
t = t(D), the reference posterior, the intrinsic1 limit π(θ|t) of the corresponding
sequence of posteriors {πk(θ|t)}, may be obtained from π(θ|M,P) by formal use
of Bayes theorem, so that π(θ|t) ∝ p(t|θ)π(θ|M,P).

1A sequence {πk(θ|t)} of posterior distributions converges intrinsically to a limit π(θ|t) if the
sequence of expected intrinsic discrepancies Et[δ{πk(θ|t),π(θ|t)}] converges to 0, where δ{p, q} =
min{k(p|q), k(q|p)}, and k(p|q) =

R

Θ q(θ) log[q(θ)/p(θ)]dθ. For details, see [Berger et al., 2009].



286 José M. Bernardo

Reference prior functions are often simply called reference priors, even though
they are usually not probability distributions. They should not be considered as
expressions of belief, but technical devices to obtain (proper) posterior distribu-
tions which are a limiting form of the posteriors which could have been obtained
from possible prior beliefs which were relatively uninformative with respect to
the quantity of interest when compared with the information which data could
provide.

If (i) the sufficient statistic t = t(D) is a consistent estimator θ̃ of a continuous
parameter θ, and (ii) the class P contains all strictly positive priors, then the
reference prior may be shown to have a simple form in terms of any asymptotic
approximation to the posterior distribution of θ. Notice that, by construction, an
asymptotic approximation to the posterior does not depend on the prior. Specifi-
cally, if the posterior density π(θ|D) has an asymptotic approximation of the form
π(θ|θ̃, n), the (unrestricted) reference prior is simply

(35) π(θ|M,P0) ∝ π(θ|θ̃, n)

∣∣∣∣
θ̃=θ

.

One-parameter reference priors are invariant under reparametrization; thus, if
ψ = ψ(θ) is a piecewise one-to-one function of θ, then the ψ-reference prior is
simply the appropriate probability transformation of the θ-reference prior.

EXAMPLE 7 Jeffreys’ prior. If θ is univariate and continuous, and the poste-
rior distribution of θ given {x1 . . . , xn} is asymptotically normal with standard
deviation s(θ̃)/

√
n, then, using (34), the reference prior function is π(θ) ∝ s(θ)−1.

Under regularity conditions (often satisfied in practice, see Section 3.3), the pos-
terior distribution of θ is asymptotically normal with variance n−1 F−1(θ̂), where
F (θ) is Fisher’s information function and θ̂ is the MLE of θ. Hence, the reference
prior function in these conditions is π(θ|M,P0) ∝ F (θ)1/2, which is known as Jef-
freys’ prior. It follows that the reference prior algorithm contains Jeffreys’ priors
as the particular case which obtains when the probability model only depends on
a single continuous univariate parameter, there are regularity conditions to guar-
antee asymptotic normality, and there is no additional information, so that the
class of possible priors is the set P0 of all strictly positive priors over Θ. These
are precisely the conditions under which there is general agreement on the use of
Jeffreys’ prior as a “noninformative” prior.

EXAMPLE 2, continued. Reference prior for a binomial parameter. Let data
D = {x1, . . . , xn} consist of a sequence of n independent Bernoulli trials, so that
p(x|θ) = θx(1 − θ)1−x, x ∈ {0, 1}; this is a regular, one-parameter continuous
model, whose Fisher’s information function is F (θ) = θ−1(1 − θ)−1. Thus, the
reference prior π(θ) is proportional to θ−1/2(1− θ)−1/2, so that the reference prior
is the (proper) Beta distribution Be(θ|1/2, 1/2). Since the reference algorithm
is invariant under reparametrization, the reference prior of φ(θ) = 2 arc sin

√
θ is

π(φ) = π(θ)/|∂φ/∂/θ| = 1; thus, the reference prior is uniform on the variance-
stabilizing transformation φ(θ) = 2arc sin

√
θ, a feature generally true under reg-
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Figure 4. Posterior distribution of the proportion of infected people in the popu-
lation, given the results of n = 100 tests, none of which were positive

ularity conditions. In terms of θ, the reference posterior is π(θ|D) = π(θ|r, n) =
Be(θ|r + 1/2, n − r + 1/2), where r =

∑
xj is the number of positive trials.

Suppose, for example, that n = 100 randomly selected people have been tested
for an infection and that all tested negative, so that r = 0. The reference posterior
distribution of the proportion θ of people infected is then the Beta distribution
Be(θ|0.5, 100.5), represented in Figure 4. It may well be known that the infection
was rare, leading to the assumption that θ < θ0, for some upper bound θ0; the
(restricted) reference prior would then be of the form π(θ) ∝ θ−1/2(1 − θ)−1/2

if θ < θ0, and zero otherwise. However, provided the likelihood is concentrated
in the region θ < θ0, the corresponding posterior would virtually be identical to
Be(θ|0.5, 100.5). Thus, just on the basis of the observed experimental results, one
may claim that the proportion of infected people is surely smaller than 5% (for
the reference posterior probability of the event θ > 0.05 is 0.001), that θ is smaller
than 0.01 with probability 0.844 (area of the shaded region in Figure 4), that it is
equally likely to be over or below 0.23% (for the median, represented by a vertical
line, is 0.0023), and that the probability that a person randomly chosen from the
population is infected is 0.005 (the posterior mean, represented in the figure by
a black circle), since Pr(x = 1|r, n) = E[θ|r, n] = 0.005. If a particular point
estimate of θ is required (say a number to be quoted in the summary headline) the
intrinsic estimator suggests itself (see Section 5); this is found to be θ∗ = 0.0032
(represented in the figure with a white circle). Notice that the traditional solution
to this problem, based on the asymptotic behaviour of the MLE, here θ̂ = r/n = 0
for any n, makes absolutely no sense in this scenario. 1

One nuisance parameter. The extension of the reference prior algorithm to the
case of two parameters follows the usual mathematical procedure of reducing the
problem to a sequential application of the established procedure for the single
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parameter case. Thus, if the probability model is p(t|θ,λ), θ ∈ Θ, λ ∈ Λ and
a θ-reference prior πθ(θ,λ|M,P) is required, the reference algorithm proceeds in
two steps:

(i) Conditional on θ, p(t|θ,λ) only depends on the nuisance parameter λ and,
hence, the one-parameter algorithm may be used to obtain the conditional
reference prior π(λ|θ,M,P).

(ii) If π(λ|θ,M,P) is proper, this may be used to integrate out the nuisance pa-
rameter thus obtaining the one-parameter integrated model p(t|θ) =∫
Λ p(t|θ,λ)π(λ|θ,M,P) dλ, to which the one-parameter algorithm may be

applied again to obtain π(θ|M,P). The θ-reference prior is then
πθ(θ,λ|M,P) = π(λ|θ,M,P)π(θ|M,P), and the required reference poste-
rior is π(θ|t) ∝ p(t|θ)π(θ|M,P).

If the conditional reference prior is not proper, then the procedure is performed
within an increasing sequence {Λi} of subsets converging to Λ over which π(λ|θ) is
integrable. This makes it possible to obtain a corresponding sequence of θ-reference
posteriors {πi(θ|t} for the quantity of interest θ, and the required reference pos-
terior is the corresponding intrinsic limit π(θ|t) = limi πi(θ|t).

A θ-reference prior is then defined as a positive function πθ(θ,λ) which may
be formally used in Bayes’ theorem as a prior to obtain the reference poste-
rior, i.e. such that, for any sufficient t ∈ T (which may well be the whole data
set D) π(θ|t) ∝

∫
Λ p(t|θ,λ)πθ(θ,λ) dλ. The approximating sequences should

be consistently chosen within a given model. Thus, given a probability model
{p(x|ω),ω ∈ Ω} an appropriate approximating sequence {Ωi} should be chosen
for the whole parameter space Ω. Thus, if the analysis is done in terms of, say,
ψ = {ψ1,ψ2} ∈ Ψ(Ω), the approximating sequence should be chosen such that
Ψi = ψ(Ωi). A natural approximating sequence in location-scale problems is
{µ, log σ} ∈ [−i, i]2.

The θ-reference prior does not depend on the choice of the nuisance parameter
λ; thus, for any ψ = ψ(θ,λ) such that (θ,ψ) is a one-to-one function of (θ,λ), the θ-
reference prior in terms of (θ,ψ) is simply πθ(θ,ψ) = πθ(θ,λ)/|∂(θ,ψ)/∂(θ,λ)|, the
appropriate probability transformation of the θ-reference prior in terms of (θ,λ).
Notice, however, that the reference prior may depend on the parameter of interest;
thus, the θ-reference prior may differ from the φ-reference prior unless either φ is
a piecewise one-to-one transformation of θ, or φ is asymptotically independent of
θ. This is an expected consequence of the fact that the conditions under which
the missing information about θ is maximized are not generally the same as the
conditions which maximize the missing information about an arbitrary function
φ = φ(θ,λ).

The non-existence of a unique “noninformative prior” which would be appro-
priate for any inference problem within a given model was established by Dawid,
Stone and Zidek [1973], when they showed that this is incompatible with consis-
tent marginalization. Indeed, if given the model p(D|θ,λ), the reference posterior
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of the quantity of interest θ, π(θ|D) = π(θ|t), only depends on the data through
a statistic t whose sampling distribution, p(t|θ,λ) = p(t|θ), only depends on θ,
one would expect the reference posterior to be of the form π(θ|t) ∝ π(θ) p(t|θ) for
some prior π(θ). However, examples were found where this cannot be the case if
a unique joint “noninformative” prior were to be used for all possible quantities of
interest.

EXAMPLE 8 Regular two dimensional continuous reference prior functions. If the
joint posterior distribution of (θ,λ) is asymptotically normal, then the θ-reference
prior may be derived in terms of the corresponding Fisher’s information matrix,
F(θ,λ). Indeed, if

(36) F(θ,λ) =

(
Fθθ(θ,λ) Fθλ(θ,λ)
Fθλ(θ,λ) Fλλ(θ,λ)

)
, and S(θ,λ) = F−1(θ,λ),

then the unrestricted θ-reference prior is πθ(θ,λ|M,P0) = π(λ|θ)π(θ), where

(37) π(λ|θ) ∝ F 1/2
λλ (θ,λ), λ ∈ Λ.

If π(λ|θ) is proper,

(38) π(θ) ∝ exp
{∫

Λ
π(λ|θ) log[S−1/2

θθ (θ,λ)] dλ
}
, θ ∈ Θ.

If π(λ|θ) is not proper, integrations are performed on an approximating sequence
{Λi} to obtain a sequence {πi(λ|θ)πi(θ)}, (where πi(λ|θ) is the proper renormaliza-
tion of π(λ|θ) to Λi) and the θ-reference prior πθ(θ,λ) is defined as its appropriate

limit. Moreover, if (i) both F 1/2
λλ (θ,λ) and S−1/2

θθ (θ,λ) factorize, so that

(39) S−1/2
θθ (θ,λ) ∝ fθ(θ) gθ(λ), F 1/2

λλ (θ,λ) ∝ fλ(θ) gλ(λ),

and (ii) the parameters θ and λ are variation independent, so that Λ does not
depend on θ, then the θ-reference prior is simply πθ(θ,λ) = fθ(θ) gλ(λ), even if
the conditional reference prior π(λ|θ) = π(λ) ∝ gλ(λ) (which will not depend on
θ) is actually improper.

EXAMPLE 3, continued. Reference priors for the normal model. The information
matrix which corresponds to a normal model N(x|µ,σ) is

(40) F(µ,σ) =

(
σ−2 0
0 2σ−2

)
, S(µ,σ) = F−1(µ,σ) =

(
σ2 0
0 1

2σ
2

)
;

hence F 1/2
σσ (µ,σ) =

√
2σ−1 = fσ(µ) gσ(σ), with gσ(σ) = σ−1, and thus π(σ|µ) =

σ−1. Similarly, S−1/2
µµ (µ,σ) = σ−1 = fµ(µ) gµ(σ), with fµ(µ) = 1, and thus

π(µ) = 1. Therefore, the µ-reference prior is πµ(µ,σ|M,P0) = π(σ|µ)π(µ) = σ−1,
as already anticipated. Moreover, as one would expect from the fact that F(µ,σ)
is diagonal and also anticipated, it is similarly found that the σ-reference prior is
πσ(µ,σ|M,P0) = σ−1, the same as before.
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Suppose, however, that the quantity of interest is not the mean µ or the stan-
dard deviation σ, but the standardized mean φ = µ/σ. Fisher’s information ma-
trix in terms of the parameters φ and σ is F(φ,σ) = J t F(µ,σ)J , where J =
(∂(µ,σ)/∂(φ,σ)) is the Jacobian of the inverse transformation; this yields

(41) F(φ,σ) =

(
1 φσ−1

φσ−1 σ−2(2 + φ2)

)
, S(φ,σ) =

(
1 + 1

2φ
2 − 1

2φσ
− 1

2φσ
1
2σ

2

)
.

Thus, S−1/2
φφ (φ,σ) ∝ (1 + 1

2φ
2)−1/2 and F 1/2

σσ (φ,σ) ∝ σ−1(2 + φ2)1/2. Hence,

using again the results in Example 8, πφ(φ,σ|M,P0) = (1 + 1
2φ

2)−1/2σ−1. In

the original parametrization, this is πφ(µ,σ|M,P0) = (1 + 1
2 (µ/σ)2)−1/2σ−2,

which is very different from πµ(µ,σ|M,P0) = πσ(µ,σ|M,P0) = σ−1. The cor-
responding reference posterior of φ is π(φ|x1, . . . , xn) ∝ (1+ 1

2φ
2)−1/2 p(t|φ) where

t = (
∑

xj)/(
∑

x2
j )

1/2, a one-dimensional (marginally sufficient) statistic whose
sampling distribution, p(t|µ,σ) = p(t|φ), only depends on φ. Thus, the reference
prior algorithm is seen to be consistent under marginalization. 1

Many parameters. The reference algorithm is easily generalized to an arbitrary
number of parameters. If the model is p(t|ω1, . . . ,ωm), a joint reference prior

(42) π(θm|θm−1, . . . , θ1) × . . . × π(θ2|θ1) × π(θ1)

may sequentially be obtained for each ordered parametrization {θ1(ω), . . . , θm(ω)}
of interest, and these are invariant under reparametrization of any of the θi(ω)’s.
The choice of the ordered parametrization {θ1, . . . , θm} precisely describes the
particular prior required, namely that which sequentially maximizes the miss-
ing information about each of the θi’s, conditional on {θ1, . . . , θi−1}, for i = m,
m − 1, . . . , 1.

EXAMPLE 9 Stein’s paradox. Let D be a random sample from a m-variate
normal distribution with mean µ = {µ1, . . . , µm} and unitary variance matrix. The
reference prior which corresponds to any permutation of the µi’s is uniform, and
this prior leads indeed to appropriate reference posterior distributions for any of
the µi’s, namely π(µi|D) = N(µi|x̄i, 1/

√
n). Suppose, however, that the quantity

of interest is θ =
∑

i µ2
i , the distance of µ to the origin. As showed by Stein

[1959], the posterior distribution of θ based on that uniform prior (or in any “flat”
proper approximation) has very undesirable properties; this is due to the fact that a
uniform (or nearly uniform) prior, although “noninformative” with respect to each
of the individual µi’s, is actually highly informative on the sum of their squares,
introducing a severe positive bias (Stein’s paradox). However, the reference prior
which corresponds to a parametrization of the form {θ,λ1, . . . ,λm−1} produces,
for any choice of the nuisance parameters λi = λi(µ), the reference posterior
π(θ|D) = π(θ|t) ∝ θ−1/2χ2(nt|m,nθ), where t =

∑
i x̄2

i , and this posterior is
shown to have the appropriate consistency properties.

Far from being specific to Stein’s example, the inappropriate behaviour in prob-
lems with many parameters of specific marginal posterior distributions derived
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from multivariate “flat” priors (proper or improper) is indeed very frequent. Hence,
sloppy, uncontrolled use of “flat” priors (rather than the relevant reference priors),
is very strongly discouraged.

Limited information Although often used in contexts where no universally
agreed prior knowledge about the quantity of interest is available, the reference
algorithm may be used to specify a prior which incorporates any acceptable prior
knowledge; it suffices to maximize the missing information within the class P of
priors which is compatible with such accepted knowledge. Indeed, by progressive
incorporation of further restrictions into P, the reference prior algorithm becomes
a method of (prior) probability assessment. As described below, the problem has
a fairly simple analytical solution when those restrictions take the form of known
expected values. The incorporation of other type of restrictions usually involves
numerical computations.

EXAMPLE 10 Univariate restricted reference priors. If the probability mecha-
nism which is assumed to have generated the available data only depends on a
univarite continuous parameter θ ∈ Θ ⊂ <, and the class P of acceptable priors is
a class of proper priors which satisfies some expected value restrictions, so that

(43) P =

{
π(θ); π(θ) > 0,

∫

Θ
π(θ) dθ = 1,

∫

Θ
gi(θ)π(θ) dθ = βi, i = 1, . . . ,m

}

then the (restricted) reference prior is

(44) π(θ|M,P) ∝ π(θ|M,P0) exp
[∑m

j=1
γi gi(θ)

]

where π(θ|M,P0) is the unrestricted reference prior and the γi’s are constants
(the corresponding Lagrange multipliers), to be determined by the restrictions
which define P. Suppose, for instance, that data are considered to be a random
sample from a location model centered at θ, and that it is further assumed that
E[θ] = µ0 and that Var[θ] = σ2

0 . The unrestricted reference prior for any regular
location problem may be shown to be uniform, so that here π(θ|M,P0) = 1.
Thus, the restricted reference prior must be of the form π(θ|M,P) ∝ exp{γ1θ +
γ2(θ − µ0)2}, with

∫
Θ θ π(θ|M,P) dθ = µ0 and

∫
Θ(θ − µ0)2 π(θ|M,P) dθ = σ2

0 .
Hence, π(θ|M,P) is the normal distribution with the specified mean and variance,
N(θ|µ0,σ0).

4.2 Frequentist Properties

Bayesian methods provide a direct solution to the problems typically posed in
statistical inference; indeed, posterior distributions precisely state what can be said
about unknown quantities of interest given available data and prior knowledge. In
particular, unrestricted reference posterior distributions state what could be said
if no prior knowledge about the quantities of interest were available.



292 José M. Bernardo

A frequentist analysis of the behaviour of Bayesian procedures under repeated
sampling may, however, be illuminating, for this provides some interesting connec-
tions between frequentist and Bayesian inference. It is found that the frequentist
properties of Bayesian reference procedures are typically excellent, and may be
used to provide a form of calibration for reference posterior probabilities.

Point Estimation It is generally accepted that, as the sample size increases, a
“good” estimator θ̃ of θ ought to get the correct value of θ eventually, that is to
be consistent. Under appropriate regularity conditions, any Bayes estimator φ∗

of any function φ(θ) converges in probability to φ(θ), so that sequences of Bayes
estimators are typically consistent. Indeed, it is known that if there is a consis-
tent sequence of estimators, then Bayes estimators are consistent. The rate of
convergence is often best for reference Bayes estimators.

It is also generally accepted that a “good” estimator should be admissible,
that is, not dominated by any other estimator in the sense that its expected loss
under sampling (conditional to θ) cannot be larger for all θ values than that
corresponding to another estimator. Any proper Bayes estimator is admissible;
moreover, as established by Wald [1950], a procedure must be Bayesian (proper or
improper) to be admissible. Most published admissibility results refer to quadratic
loss functions, but they often extend to more general loss funtions. Reference Bayes
estimators are typically admissible with respect to appropriate loss functions.

Notice, however, that many other apparently intuitive frequentist ideas on es-
timation have been proved to be potentially misleading. For example, given a
sequence of n Bernoulli observations with parameter θ resulting in r positive tri-
als, the best unbiased estimate of θ2 is found to be r(r−1)/{n(n−1)}, which yields
θ̃2 = 0 when r = 1; but to estimate the probability of two positive trials as zero,
when one positive trial has been observed, is less than sensible. In marked con-
trast, any Bayes reference estimator provides a reasonable answer. For example,
the intrinsic estimator of θ2 is simply (θ∗)2, where θ∗ is the intrinsic estimator of
θ described in Section 5.1. In particular, if r = 1 and n = 2 the intrinsic estimator
of θ2 is (as one would naturally expect) (θ∗)2 = 1/4.

Interval Estimation As the sample size increases, the frequentist coverage
probability of a posterior q-credible region typically converges to q so that, for
large samples, Bayesian credible intervals may (under regularity conditions) be in-
terpreted as approximate frequentist confidence regions: under repeated sampling,
a Bayesian q-credible region of θ based on a large sample will cover the true value
of θ approximately 100q% of times. Detailed results are readily available for uni-
variate problems. For instance, consider the probability model {p(D|ω),ω ∈ Ω},
let θ = θ(ω) be any univariate quantity of interest, and let t = t(D) ∈ T be any
sufficient statistic. If θq(t) denotes the 100q% quantile of the posterior distribution
of θ which corresponds to some unspecified prior, so that

(45) Pr[θ ≤ θq(t)|t] =

∫

θ≤θq(t)
π(θ|t) dθ = q,
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then the coverage probability of the q-credible interval {θ; θ ≤ θq(t)},

(46) Pr[θq(t) ≥ θ|ω] =

∫

θq(t)≥θ
p(t|ω) dt,

is such that

(47) Pr[θq(t) ≥ θ|ω] = Pr[θ ≤ θq(t)|t] + O(n−1/2).

This asymptotic approximation is true for all (sufficiently regular) positive priors.
However, the approximation is better, actually O(n−1), for a particular class of
priors known as (first-order) probability matching priors. For details on probablity
matching priors see Datta and Sweeting [2005] and references therein. Reference
priors are typically found to be probability matching priors, so that they provide
this improved asymptotic agreement. As a matter of fact, the agreement (in regular
problems) is typically quite good even for relatively small samples.

EXAMPLE 11 Product of normal means. Consider the case where independent
random samples {x1, . . . , xn} and {y1, . . . , ym} have respectively been taken from
the normal densities N(x|ω1, 1) and N(y|ω2, 1), and suppose that the quantity
of interest is the product of their means, φ = ω1ω2 (for instance, one may be
interested in inferences about the area φ of a rectangular piece of land, given
measurements {xi} and {yj} of its sides). Notice that this is a simplified version
of a problem that it is often encountered in the sciences, where one is interested
in the product of several magnitudes, all of which have been measured with error.
Using the procedure described in Example 8, with the natural approximating
sequence induced by (ω1,ω2) ∈ [−i, i]2, the φ-reference prior is found to be

(48) πφ(ω1,ω2|M,P0) ∝ (nω2
1 + mω2

2)−1/2,

very different from the uniform prior πω1(ω1,ω2|M,P0) = πω2(ω1,ω2|M,P0) = 1
which should be used to make objective inferences about either ω1 or ω2. The prior
πφ(ω1,ω2) may be shown to provide approximate agreement between Bayesian
credible regions and frequentist confidence intervals for φ; indeed, this prior (with
m = n) was originally suggested by Stein in the 1980’s to obtain such approximate
agreement. The same example was later used by Efron [1986] to stress the fact
that, even within a fixed probability model {p(D|ω),ω ∈ Ω}, the prior required to
make objective inferences about some function of the parameters φ = φ(ω) must
generally depend on the function φ. For further details on the reference analysis
of this problem, see [Berger and Bernardo, 1989].

The numerical agreement between reference Bayesian credible regions and fre-
quentist confidence intervals is actually perfect in special circumstances. Indeed,
as Lindley [1958] pointed out, this is the case in those problems of inference which
may be transformed to location-scale problems.

EXAMPLE 3, continued. Inference on normal parameters. Let D = {x1, . . . xn}
be a random sample from a normal distribution N(x|µ,σ). As mentioned before,
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the reference posterior of the quantity of interest µ is the Student distribution
St(µ|x̄, s/

√
n − 1, n−1). Thus, normalizing µ, the posterior distribution of t(µ) =√

n − 1(x̄−µ)/s, as a function of µ given D, is the standard Student St(t|0, 1, n−1)
with n− 1 degrees of freedom. On the other hand, this function t is recognized to
be precisely the conventional t statistic, whose sampling distribution is well known
to also be standard Student with n − 1 degrees of freedom. It follows that, for
all sample sizes, posterior reference credible intervals for µ given the data will
be numerically identical to frequentist confidence intervals based on the sampling
distribution of t.

A similar result is obtained in inferences about the variance. Thus, the reference
posterior distribution of λ = σ−2 is the Gamma distribution Ga(λ|(n−1)/2, ns2/2)
and, hence, the posterior distribution of r = ns2/σ2, as a function of σ2 given D, is
a (central) χ2 with n−1 degrees of freedom. But the function r is recognized to be
a conventional statistic for this problem, whose sampling distribution is well known
to also be χ2 with n − 1 degrees of freedom. It follows that, for all sample sizes,
posterior reference credible intervals for σ2 (or any one-to-one function of σ2) given
the data will be numerically identical to frequentist confidence intervals based on
the sampling distribution of r. 1

5 INFERENCE SUMMARIES

From a Bayesian viewpoint, the final outcome of a problem of inference about
any unknown quantity is nothing but the corresponding posterior distribution.
Thus, given some data D and conditions C, all that can be said about any func-
tion ω of the parameters which govern the model is contained in the posterior
distribution π(ω|D,C), and all that can be said about some function y of future
observations from the same model is contained in its posterior predictive distri-
bution p(y|D,C). Indeed, Bayesian inference may technically be described as a
decision problem where the space of available actions is the class of those poste-
rior probability distributions of the quantity of interest which are compatible with
accepted assumptions.

However, to make it easier for the user to assimilate the appropriate conclusions,
it is often convenient to summarize the information contained in the posterior dis-
tribution by (i) providing values of the quantity of interest which, in the light
of the data, are likely to be “close” to its true value and by (ii) measuring the
compatibility of the results with hypothetical values of the quantity of interest
which might have been suggested in the context of the investigation. In this sec-
tion, those Bayesian counterparts of traditional estimation and hypothesis testing
problems are briefly considered.

5.1 Estimation

In one or two dimensions, a graph of the posterior probability density of the quan-
tity of interest (or the probability mass function in the discrete case) immediately
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conveys an intuitive, “impressionist” summary of the main conclusions which may
possibly be drawn on its value. Indeed, this is greatly appreciated by users, and
may be quoted as an important asset of Bayesian methods. From a plot of its
posterior density, the region where (given the data) a univariate quantity of inter-
est is likely to lie is easily distinguished. For instance, all important conclusions
about the value of the gravitational field in Example 3 are qualitatively available
from Figure 3. However, this does not easily extend to more than two dimensions
and, besides, quantitative conclusions (in a simpler form than that provided by the
mathematical expression of the posterior distribution) are often required.

Point Estimation Let D be the available data, which are assumed to have been
generated by a probability model {p(D|ω),ω ∈ Ω}, and let θ = θ(ω) ∈ Θ be the
quantity of interest. A point estimator of θ is some function of the data θ̃ = θ̃(D)
which could be regarded as an appropriate proxy for the actual, unknown value of
θ. Formally, to choose a point estimate for θ is a decision problem, where the action
space is the class Θ of possible θ values. From a decision-theoretic perspective,
to choose a point estimate θ̃ of some quantity θ is a decision to act as though θ̃
were θ, not to assert something about the value of θ (although desire to assert
something simple may well be the reason to obtain an estimate). As prescribed by
the foundations of decision theory (Section 2), to solve this decision problem it is
necessary to specify a loss function L(θ̃, θ) measuring the consequences of acting
as if the true value of the quantity of interest were θ̃, when it is actually θ. The
expected posterior loss if θ̃ were used is

(49) L[θ̃|D] =

∫

Θ
L(θ̃, θ)π(θ|D) dθ,

and the corresponding Bayes estimator θ∗ is that function of the data, θ∗ = θ∗(D),
which minimizes this expectation.

EXAMPLE 12 Conventional Bayes estimators. For any given model and data, the
Bayes estimator obviously depends on the chosen loss function. The loss function
is context specific, and should be chosen in terms of the anticipated uses of the
estimate; however, a number of conventional loss functions have been suggested
for those situations where no particular uses are envisaged. These loss functions
produce estimates which may be regarded as simple descriptions of the location
of the posterior distribution. For example, if the loss function is quadratic, so
that L(θ̃, θ) = (θ̃ − θ)t(θ̃ − θ), then the Bayes estimator is the posterior mean
θ∗ = E[θ|D], assuming that the mean exists. Similarly, if the loss function is a
zero-one function, so that L(θ̃, θ) = 0 if θ̃ belongs to a ball or radius ε centered
in θ and L(θ̃, θ) = 1 otherwise, then the Bayes estimator θ∗ tends to the posterior
mode as the ball radius ε tends to zero, assuming that a unique mode exists. If θ is
univariate and the loss function is linear, so that L(θ̃, θ) = c1(θ̃ − θ) if θ̃ ≥ θ, and
L(θ̃, θ) = c2(θ− θ̃) otherwise, then the Bayes estimator is the posterior quantile of
order c2/(c1 + c2), so that Pr[θ < θ∗] = c2/(c1 + c2). In particular, if c1 = c2, the
Bayes estimator is the posterior median. The results derived for linear loss funtions



296 José M. Bernardo

clearly illustrate the fact that any possible parameter value may turn out be the
Bayes estimator: it all depends on the loss function describing the consequences
of the anticipated uses of the estimate.

EXAMPLE 13 Intrinsic estimation. Conventional loss functions are typically non-
invariant under reparametrization. It follows that the Bayes estimator φ∗ of a one-
to-one transformation φ = φ(θ) of the original parameter θ is not necessarily φ(θ∗)
(the univariate posterior median, which is invariant, is an interesting exception).
Moreover, conventional loss functions focus on the “distance” between the estimate
θ̃ and the true value θ, rather then on the “distance” between the probability
models they label. Inference-oriented loss functions directly focus on how different
the probability model p(D|θ,λ) is from its closest approximation within the family
{p(D|θ̃,λi),λi ∈ Λ}, and typically produce invariant solutions. An attractive
example is the intrinsic discrepancy, δ(θ̃, θ) defined as the minimum logarithmic
divergence between a probability model labeled by θ and a probability model
labeled by θ̃. When there are no nuisance parameters, this is given by

(50) δ(θ̃, θ) = min{κ(θ̃|θ),κ(θ|θ̃)}, κ(θi|θ) =

∫

T
p(t|θ) log

p(t|θ)
p(t|θi)

dt,

where t = t(D) ∈ T is any sufficient statistic (which may well be the whole data
set D). The definition is easily extended to problems with nuisance parameters;
in this case,

(51) δ(θ̃, θ,λ) = min
λi∈Λ

δ(θ̃,λi, θ,λ)

measures the logarithmic divergence from p(t|θ,λ) of its closest approximation
with θ = θ̃, and the loss function now depends on the complete parameter vec-
tor (θ,λ). Although not explicitly shown in the notation, the intrinsic discrep-
ancy function typically depends on the sample size n; indeed, when the data
consist of a random sample D = {x1, . . . ,xn} from some model p(x|θ) then
κ(θi|θ) = n

∫
X p(x|θ) log[p(x|θ)/p(x|θi)] dx so that the discrepancy associated with

the full model is simply n times the discrepancy which corresponds to a single
observation. The intrinsic discrepancy is a symmetric, non-negative loss func-
tion with a direct interpretation in information-theoretic terms as the minimum
amount of information which is expected to be necessary to distinguish between the
model p(D|θ,λ) and its closest approximation within the class {p(D|θ̃,λi),λi ∈ Λ}.
Moreover, it is invariant under one-to-one reparametrization of the parameter of
interest θ, and does not depend on the choice of the nuisance parameter λ. The
intrinsic estimator is naturally obtained by minimizing the reference posterior
expected intrinsic discrepancy

(52) d(θ̃|D) =

∫

Λ

∫

Θ
δ(θ̃, θ,λ)π(θ,λ|D) dθdλ.

Since the intrinsic discrepancy is invariant under reparametrization, minimizing
its posterior expectation produces invariant estimators. For further details on
intrinsic point estimation see [Bernardo and Juárez, 2003; Bernardo, 2006].
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EXAMPLE 2, continued. Intrinsic estimation of a binomial parameter. In the
estimation of a binomial proportion θ, given data D = (n, r), the Bayes reference
estimator associated with the quadratic loss (the corresponding posterior mean) is
E[θ|D] = (r + 1

2 )/(n+1), while the quadratic loss based estimator of, say, the log-
odds φ(θ) = log[θ/(1−θ)], is found to be E[φ|D] = ψ(r+ 1

2 )−ψ(n−r+ 1
2 ) (where

ψ(x) = d log[Γ(x)]/dx is the digamma function), which is not equal to φ(E[θ|D]).
The intrinsic loss function in this problem is

(53) δ(θ̃, θ) = n min{κ(θ̃|θ),κ(θ|θ̃)}, κ(θi|θ) = θ log
θ

θi
+ (1 − θ) log

1 − θ

1 − θi
,

and the corresponding intrinsic estimator θ∗ is obtained by minimizing the ex-
pected posterior loss d(θ̃|D) =

∫
δ(θ̃, θ)π(θ|D) dθ. The exact value of θ∗ may be

obtained by numerical minimization, but a very good approximation is given by
θ∗ ≈ (r + 1

3 )/(n + 2
3 ).

Since intrinsic estimation is an invariant procedure, the intrinsic estimator of the
log-odds will simply be the log-odds of the intrinsic estimator of θ. As one would
expect, when r and n− r are both large, all Bayes estimators of any well-behaved
function φ(θ) will cluster around φ(E[θ|D]). 1

Interval Estimation To describe the inferential content of the posterior distri-
bution of the quantity of interest π(θ|D) it is often convenient to quote regions
R ⊂ Θ of given probability under π(θ|D). For example, the identification of regions
containing 50%, 90%, 95%, or 99% of the probability under the posterior may be
sufficient to convey the general quantitative messages implicit in π(θ|D); indeed,
this is the intuitive basis of graphical representations of univariate distributions
like those provided by boxplots.

Any region R ⊂ Θ such that
∫

R π(θ|D)dθ = q (so that, given data D, the true
value of θ belongs to R with probability q), is said to be a posterior q-credible re-
gion of θ. Notice that this provides immediately a direct intuitive statement about
the unknown quantity of interest θ in probability terms, in marked contrast to the
circumlocutory statements provided by frequentist confidence intervals. Clearly,
for any given q there are generally infinitely many credible regions. A credible
region is invariant under reparametrization; thus, for any q-credible region R of θ,
φ(R) is a q-credible region of φ = φ(θ). Sometimes, credible regions are selected to
have minimum size (length, area, volume), resulting in highest probability density
(HPD) regions, where all points in the region have larger probability density than
all points outside. However, HPD regions are not invariant under reparametriza-
tion: the image φ(R) of an HPD region R will be a credible region for φ, but will
not generally be HPD; indeed, there is no compelling reason to restrict attention to
HPD credible regions. In one-dimensional problems, posterior quantiles are often
used to derive credible regions. Thus, if θq = θq(D) is the 100q% posterior quan-
tile of θ, then R = {θ; θ ≤ θq} is a one-sided, typically unique q-credible region,
and it is invariant under reparametrization. Indeed, probability centered q-credible
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regions of the form R = {θ; θ(1−q)/2 ≤ θ ≤ θ(1+q)/2} are easier to compute, and
are often quoted in preference to HPD regions.

EXAMPLE 3. Inference on normal parameters, continued. In the numerical ex-
ample about the value of the gravitational field described in Figure 3a, the interval
[9.788, 9.829] in the unrestricted posterior density of g is a HPD, 95%-credible re-
gion for g. Similarly, the interval [9.7803, 9.8322] in Figure 3b is also a 95%-credible
region for g, but it is not HPD. 1

Decision theory may also be used to select credible regions. Thus, lowest pos-
terior loss (LPL) regions, are defined as those where all points in the region have
smaller posterior expected loss than all points outside. Using the intrinsic discrep-
ancy as a loss function yields intrinsic credible regions which, as one would expect
from an invariant loss function, are coherent under one-to-one transformations.
For details, see [Bernardo, 2005b; 2007].

The concept of a credible region for a function θ = θ(ω) of the parameter vector
is trivially extended to prediction problems. Thus, a posterior q-credible region for
x ∈ X is a subset R of the sample space X with posterior predictive probability
q, so that

∫
R p(x|D)dx = q.

5.2 Hypothesis Testing

The reference posterior distribution π(θ|D) of the quantity of interest θ conveys
immediate intuitive information on those values of θ which, given the assumed
model, may be taken to be compatible with the observed data D, namely, those
with a relatively high probability density. Sometimes, a restriction θ ∈ Θ0 ⊂ Θ of
the possible values of the quantity of interest (where Θ0 may possibly consists of a
single value θ0) is suggested in the course of the investigation as deserving special
consideration, either because restricting θ to Θ0 would greatly simplify the model,
or because there are additional, context specific arguments suggesting that θ ∈ Θ0.
Intuitively, the hypothesis H0 ≡ {θ ∈ Θ0} should be judged to be compatible with
the observed data D if there are elements in Θ0 with a relatively high posterior
density. However, a more precise conclusion is often required and, once again, this
is made possible by adopting a decision-oriented approach. Formally, testing the
hypothesis H0 ≡ {θ ∈ Θ0} is a decision problem where the action space has only
two elements, namely to accept (a0) or to reject (a1) the proposed restriction. To
solve this decision problem, it is necessary to specify an appropriate loss function,
L(ai, θ), measuring the consequences of accepting or rejecting H0 as a function of
the actual value θ of the vector of interest. Notice that this requires the statement
of an alternative a1 to accepting H0; this is only to be expected, for an action is
taken not because it is good, but because it is better than anything else that has
been imagined.

Given data D, the optimal action will be to reject H0 if (and only if) the ex-
pected posterior loss of accepting,

∫
Θ L(a0, θ)π(θ|D) dθ, is larger than the expected

posterior loss of rejecting,
∫
Θ L(a1, θ)π(θ|D) dθ, that is, if (and only if)
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(54)

∫

Θ
[L(a0, θ) − L(a1, θ)]π(θ|D) dθ =

∫

Θ
∆L(θ)π(θ|D) dθ > 0.

Therefore, only the loss difference ∆L(θ) = L(a0, θ) − L(a1, θ), which measures
the advantage of rejecting H0 as a function of θ, has to be specified. Thus, as com-
mon sense dictates, the hypothesis H0 should be rejected whenever the expected
advantage of rejecting H0 is positive.

A crucial element in the specification of the loss function is a description of what
is actually meant by rejecting H0. By assumption a0 means to act as if H0 were
true, i.e. as if θ ∈ Θ0, but there are at least two options for the alternative action
a1. This may either mean (i) the negation of H0, that is to act as if θ /∈ Θ0 or,
alternatively, it may rather mean (ii) to reject the simplification implied by H0 and
to keep the unrestricted model, θ ∈ Θ, which is true by assumption. Both options
have been analyzed in the literature, although it may be argued that the problems
of scientific data analysis where hypothesis testing procedures are typically used
are better described by the second alternative. Indeed, an established model,
identified by H0 ≡ {θ ∈ Θ0}, is often embedded into a more general model,
{θ ∈ Θ, Θ0 ⊂ Θ}, constructed to include possibly promising departures from H0,
and it is required to verify whether presently available data D are still compatible
with θ ∈ Θ0, or whether the extension to θ ∈ Θ is really required.

EXAMPLE 14 Conventional hypothesis testing. Let π(θ|D), θ ∈ Θ, be the pos-
terior distribution of the quantity of interest, let a0 be the decision to work un-
der the restriction θ ∈ Θ0 and let a1 be the decision to work under the com-
plementary restriction θ /∈ Θ0. Suppose, moreover, that the loss structure has
the simple, zero-one form given by {L(a0, θ) = 0, L(a1, θ) = 1} if θ ∈ Θ0 and,
similarly, {L(a0, θ) = 1, L(a1, θ) = 0} if θ /∈ Θ0, so that the advantage ∆L(θ)
of rejecting H0 is 1 if θ /∈ Θ0 and it is −1 otherwise. With this loss function
it is immediately found that the optimal action is to reject H0 if (and only if)
Pr(θ /∈ Θ0|D) > Pr(θ ∈ Θ0|D). Notice that this formulation requires that
Pr(θ ∈ Θ0) > 0, that is, that the hypothesis H0 has a strictly positive prior
probability. If θ is a continuous parameter and Θ0 has zero measure (for instance
if H0 consists of a single point θ0), this requires the use of a non-regular “sharp”
prior concentrating a positive probability mass on Θ0. For details see [Kaas and
Rafetery, 1995] and references therein.

EXAMPLE 15 Intrinsic hypothesis testing. Again, let π(θ|D), θ ∈ Θ, be the pos-
terior distribution of the quantity of interest, and let a0 be the decision to work
under the restriction θ ∈ Θ0, but let a1 now be the decision to keep the general, un-
restricted model θ ∈ Θ. In this case, the advantage ∆L(θ) of rejecting H0 as a func-
tion of θ may safely be assumed to have the form ∆L(θ) = δ(Θ0, θ)− δ∗, for some
δ∗ > 0, where (i) δ(Θ0, θ) is some measure of the discrepancy between the assumed
model p(D|θ) and its closest approximation within the class {p(D|θ0), θ0 ∈ Θ0},
such that δ(Θ0, θ) = 0 whenever θ ∈ Θ0, and (ii) δ∗ is a context dependent utility
constant which measures the (necessarily positive) advantage of being able to work
with the simpler model when it is true. Choices for both δ(Θ0, θ) and δ∗ which
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may be appropriate for general use will now be described.
For reasons similar to those supporting its use in point estimation, an attrac-

tive choice for the function d(Θ0, θ) is an appropriate extension of the intrinsic
discrepancy; when there are no nuisance parameters, this is given by

(55) δ(Θ0, θ) = inf
θ0∈Θ0

min{κ(θ0|θ), κ(θ|θ0)}

where κ(θ0|θ) =
∫

T p(t|θ) log{p(t|θ)/p(t|θ0)}dt, and t = t(D) ∈ T is any sufficient
statistic, which may well be the whole dataset D. As before, if the data D =
{x1, . . . ,xn} consist of a random sample from p(x|θ), then

(56) κ(θ0|θ) = n

∫

X
p(x|θ) log

p(x|θ)
p(x|θ0)

dx.

Naturally, the loss function δ(Θ0, θ) reduces to the intrinsic discrepancy δ(θ0, θ)
of Example 13 when Θ0 contains a single element θ0. Besides, as in the case of
estimation, the definition is easily extended to problems with nuisance parameters,
with

(57) δ(Θ0, θ,λ) = inf
θ0∈Θ0,λ0∈Λ

δ(θ0,λo, θ,λ).

The hypothesis H0 should be rejected if the posterior expected advantage of re-
jecting is

(58) d(Θ0|D) =

∫

Λ

∫

Θ
δ(Θ0, θ,λ)π(θ,λ|D) dθdλ > δ∗,

for some δ∗ > 0. As an expectation of a non-negative quantity, d(Θ0, D) is ob-
vioulsly nonnegative. Morovever, if φ = φ(θ) is a one-to-one transformation of θ,
then d(φ(Θ0), D) = d(Θ0, D) so that, as one should clearly require, the expected
intrinsic loss of rejecting H0 is invariant under reparametrization.

It may be shown that, as the sample size increases, the expected value of
d(Θ0, D) under sampling tends to one when H0 is true, and tends to infinity
otherwise; thus d(Θ0, D) may be regarded as a continuous, positive measure of
how inappropriate (in loss of information units) it would be to simplify the model
by accepting H0. In traditional language, d(Θ0, D) is a test statistic for H0 and
the hypothesis should be rejected if the value of d(Θ0, D) exceeds some critical
value δ∗. In sharp contrast to conventional hypothesis testing, this critical value
δ∗ is found to be a context specific, positive utility constant δ∗, which may pre-
cisely be described as the number of information units which the decision maker is
prepared to lose in order to be able to work with the simpler model H0, and does
not depend on the sampling properties of the probability model. The procedure
may be used with standard, continuous regular priors even in sharp hypothesis
testing, when Θ0 is a zero-measure set (as would be the case if θ is continuous and
Θ0 contains a single point θ0).

Naturally, to implement the test, the utility constant δ∗ which defines the rejec-
tion region must be chosen. Values of d(Θ0, D) of about 1 should be regarded as
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an indication of no evidence against H0, since this is precisely the expected value
of the test statistic d(Θ0, D) under repeated sampling from the null. If follows
from its definition that d(Θ0, D) is the reference posterior expectation of the log-
likelihood ratio against the null. Hence, values of d(Θ0, D) of about log[12] ≈ 2.5,
and log[150] ≈ 5 should be respectively regarded as an indication of mild evidence
against H0, and significant evidence against H0. In the canonical problem of test-
ing a value µ = µ0 for the mean of a normal distribution with known variance
(see below), these values correspond to the observed sample mean x̄ respectively
lying 2 or 3 posterior standard deviations from the null value µ0. Notice that, in
sharp contrast to frequentist hypothesis testing, where it is hazily recommended
to adjust the significance level for dimensionality and sample size, this provides an
absolute scale (in information units) which remains valid for any sample size and
any dimensionality.

For further details on intrinsic hypothesis testing see [Bernardo and Rueda,
2003; Bernardo and Pérez, 2007].

EXAMPLE 16 Testing the value of a normal mean. Let the data D = {x1, . . . , xn}
be a random sample from a normal distribution N(x|µ,σ), where σ is assumed to
be known, and consider the problem of testing whether these data are or are not
compatible with some specific sharp hypothesis H0 ≡ {µ = µ0} on the value of
the mean.

The conventional approach to this problem requires a non-regular prior which
places a probability mass, say p0, on the value µ0 to be tested, with the remaining
1 − p0 probability continuously distributed over <. If this prior is chosen to be
π(µ|µ .= µ0) = N(µ|µ0,σ0), Bayes theorem may be used to obtain the correspond-
ing posterior probability,

(59) Pr[µ0|D,λ] =
B01(D,λ) p0

(1 − p0) + p0 B01(D,λ)
,

(60) B01(D,λ) =
(
1 +

n

λ

)1/2
exp

[
−1

2

n

n + λ
z2

]
,

where z = (x̄ − µ0)/(σ/
√

n) measures, in standard deviations, the distance be-
tween x̄ and µ0 and λ = σ2/σ2

0 is the ratio of model to prior variance. The
function B01(D,λ), a ratio of (integrated) likelihood functions, is called the Bayes
factor in favour of H0. With a conventional zero-one loss function, H0 should
be rejected if Pr[µ0|D,λ] < 1/2. The choices p0 = 1/2 and λ = 1 or λ = 1/2,
describing particular forms of sharp prior knowledge, have been suggested in the
literature for routine use. The conventional approach to sharp hypothesis testing
deals with situations of concentrated prior probability; it assumes important prior
knowledge about the value of µ and, hence, should not be used unless this is an
appropriate assumption. Moreover [Bartlett, 1957], the resulting posterior proba-
bility is extremely sensitive to the specific prior specification. In most applications,
H0 is really a hazily defined small region rather than a point. For moderate sam-
ple sizes, the posterior probability Pr[µ0|D,λ] is an approximation to the posterior
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probability Pr[µ0 − ε < µ < µ0 − ε|D,λ] for some small interval around µ0 which
would have been obtained from a regular, continuous prior heavily concentrated
around µ0; however, this approximation always breaks down for sufficiently large
sample sizes. One consequence (which is immediately apparent from the last two
equations) is that for any fixed value of the pertinent statistic z, the posterior prob-
ability of the null, Pr[µ0|D,λ], tends to one as n → ∞. Far from being specific
to this example, this unappealing behaviour of posterior probabilities based on
sharp, non-regular priors generally known as Lindley’s paradox [Lindley, 1957] is
always present in the conventional Bayesian approach to sharp hypothesis testing.

The intrinsic approach may be used without assuming any sharp prior knowl-
edge. The intrinsic discrepancy is δ(µ0, µ) = n(µ − µ0)2/(2σ2), a simple trans-
formation of the standardized distance between µ and µ0. The reference prior
is uniform and the corresponding (proper) posterior distribution is π(µ|D) =
N(µ|x̄,σ/

√
n). The expected value of δ(µ0, µ) with respect to this posterior is

d(µ0, D) = (1 + z2)/2, where z = (x̄ − µ0)/(σ/
√

n) is the standardized distance
between x̄ and µ0. As foretold by the general theory, the expected value of d(µ0, D)
under repeated sampling is one if µ = µ0, and increases linearly with n if µ = µ0.
Moreover, in this canonical example, to reject H0 whenever |z| > 2 or |z| > 3, that
is whenever µ0 is 2 or 3 posterior standard deviations away from x̄, respectively
corresponds to rejecting H0 whenever d(µ0, D) is larger than 2.5, or larger than 5.

If σ is unknown, the reference prior is π(µ,σ) = σ−1, and the intrinsic discrep-
ancy becomes

(61) δ(µ0, µ,σ) =
n

2
log

[
1 +

(
µ − µ0

σ

)2]
.

The intrinsic test statistic d(µ0, D) is found as the expected value of δ(µ0, µ,σ)
under the corresponding joint referenceposterior distribution; this may be exactly
expressed in terms of hypergeometric functions, and is well approximated by

(62) d(µ0, D) ≈ 1

2
+

n

2
log

(
1 +

t2

n

)
,

where t is the traditional statistic t =
√

n − 1(x̄ − µ0)/s, ns2 =
∑

j(xj − x̄)2. For
instance, for samples sizes 5, 30 and 1000, and using the utility constant δ∗ = 5,
the hypothesis H0 would be rejected whenever |t| is respectively larger than 5.025,
3.240, and 3.007.

6 DISCUSSION

This article focuses on the basic concepts of the Bayesian paradigm, with special
emphasis on the derivation of “objective” methods, where the results only depend
on the data obtained and the model assumed. Many technical aspects have been
spared; the interested reader is referred to the bibliography for further information.
This final section briefly reviews the main arguments for an objective Bayesian
approach.
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6.1 Coherence

By using probability distributions to characterize all uncertainties in the problem,
the Bayesian paradigm reduces statistical inference to applied probability, thereby
ensuring the coherence of the proposed solutions. There is no need to investigate,
on a case by case basis, whether or not the solution to a particular problem is
logically correct: a Bayesian result is only a mathematical consequence of explic-
itly stated assumptions and hence, unless a logical mistake has been committed in
its derivation, it cannot be formally wrong. In marked contrast, conventional sta-
tistical methods are plagued with counterexamples. These include, among many
others, negative estimators of positive quantities, q-confidence regions (q < 1)
which consist of the whole parameter space, empty sets of “appropriate” solu-
tions, and incompatible answers from alternative methodologies simultaneously
supported by the theory.

The Bayesian approach does require, however, the specification of a (prior) prob-
ability distribution over the parameter space. The sentence “a prior distribution
does not exist for this problem” is often stated to justify the use of non-Bayesian
methods. However, the general representation theorem proves the existence of such
a distribution whenever the observations are assumed to be exchangeable (and, if
they are assumed to be a random sample then, a fortiori, they are assumed to be
exchangeable). To ignore this fact, and to proceed as if a prior distribution did
not exist, just because it is not easy to specify, is mathematically untenable.

6.2 Objectivity

It is generally accepted that any statistical analysis is subjective, in the sense that
it is always conditional on accepted assumptions (on the structure of the data, on
the probability model, and on the outcome space) and those assumptions, although
possibly well founded, are definitely subjective choices. It is, therefore, mandatory
to make all assumptions very explicit.

Users of conventional statistical methods rarely dispute the mathematical foun-
dations of the Bayesian approach, but claim to be able to produce “objective”
answers in contrast to the possibly subjective elements involved in the choice of
the prior distribution.

Bayesian methods do indeed require the choice of a prior distribution, and critics
of the Bayesian approach systematically point out that in many important situa-
tions, including scientific reporting and public decision making, the results must
exclusively depend on documented data which might be subject to independent
scrutiny. This is of course true, but those critics choose to ignore the fact that this
particular case is covered within the Bayesian approach by the use of reference
prior distributions which (i) are mathematically derived from the accepted proba-
bility model (and, hence, they are “objective” insofar as the choice of that model
might be objective) and, (ii) by construction, they produce posterior probability
distributions which, given the accepted probability model, only contain the infor-
mation about their values which data may provide and, optionally, any further
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contextual information over which there might be universal agreement.

6.3 Operational meaning

An issue related to objectivity is that of the operational meaning of reference
posterior probabilities; it is found that the analysis of their behaviour under re-
peated sampling provides a suggestive form of calibration. Indeed, Pr[θ ∈ R|D] =∫

R π(θ|D) dθ, the reference posterior probability that θ ∈ R, is both a measure of
the conditional uncertainty (given the assumed model and the observed data D)
about the event that the unknown value of θ belongs to R ⊂ Θ, and the limiting
proportion of the regions which would cover θ under repeated sampling condi-
tional on data “sufficiently similar” to D. Under broad conditions (to guarantee
regular asymptotic behaviour), all large data sets from the same model are “suffi-
ciently similar” among themselves in this sense and hence, given those conditions,
reference posterior credible regions are approximate frequentist confidence regions.

The conditions for this approximate equivalence to hold exclude, however, im-
portant special cases, like those involving “extreme” or “relevant” observations. In
very special situations, when probability models may be transformed to location-
scale models, there is an exact equivalence; in those cases reference posterior cred-
ible intervals are, for any sample size, exact frequentist confidence intervals.

6.4 Generality

In sharp contrast to most conventional statistical methods, which may only be ex-
actly applied to a handful of relatively simple stylized situations, Bayesian methods
are defined to be totally general. Indeed, for a given probability model and prior
distribution over its parameters, the derivation of posterior distributions is a well-
defined mathematical exercise. In particular, Bayesian methods do not require
any particular regularity conditions on the probability model, do not depend on
the existence of sufficient statistics of finite dimension, do not rely on asymptotic
relations, and do not require the derivation of any sampling distribution, nor (a
fortiori) the existence of a “pivotal” statistic whose sampling distribution is inde-
pendent of the parameters.

However, when used in complex models with many parameters, Bayesian meth-
ods often require the computation of multidimensional definite integrals and, for
a long time in the past, this requirement effectively placed practical limits on
the complexity of the problems which could be handled. This has dramatically
changed in recent years with the general availability of large computing power,
and the parallel development of simulation-based numerical integration techniues
like importance sampling or Markov chain Monte Carlo (MCMC). These methods
provide a structure within which many complex models may be analyzed using
generic software. MCMC is numerical integration using Markov chains. Monte
Carlo integration proceeds by drawing samples from the required distributions,
and computing sample averages to approximate expectations. MCMC methods
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draw the required samples by running appropriately defined Markov chains for a
long time; specific methods to construct those chains include the Gibbs sampler
and the Metropolis algorithm, originated in the 1950’s in the literature of statisti-
cal physics. The development of improved algorithms and appropriate diagnostic
tools to establish their convergence, remains a very active research area.

For an introduction to MCMC methods in Bayesian inference, see [Gilks et al.,
1996; Mira, 2005], and references therein.
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