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Summary

Hypothesis testing is formulated form a decision theoretical viewpoint. The
combined use of intrinsic discrepancy, an invariant information-based loss
function, and conventional reference priors provides an objective Bayesian
solution to precise hypothesis testing problems which easily integrates with
the standard formulation of objective Bayesian point and region estimation.
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1. PRECISE HYPOTHESIS TESTING

Let z be the available data which are assumed to have been generated as one random
observation from model Mz = {p(z |ω),z ∈ Z,ω ∈ Ω}. Often, but not always,
data will consist of a random sample z = {x1, . . . ,xn} from some distribution
q(x |ω), with x ∈ X ; in this case p(z |ω) =

Qn
i=1 q(xi |ω) and Z = Xn. Let θ(ω)

be the vector of interest. Without loss of generality, the model may explicitly be
expressed in terms of θ so thatMz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}, where λ is
some appropriately chosen nuisance parameter vector. Let π(θ,λ) = π(λ |θ)π(θ)
be the assumed prior, and let π(θ |z) be the corresponding marginal posterior dis-
tribution of θ. Appreciation of the inferential contents of π(θ |z) may be enhanced
by providing both point and region estimates of the vector of interest θ, and by
declaring whether or not some context suggested specific value θ0 is compatible
with the observed data z (precise hypothesis testing). A large number of Bayesian
estimation and hypothesis testing procedures have been proposed in the literature.
We argue that their choice is better made in decision theoretical terms.

Let `{θ0, (θ,λ)} describe, as a function of the (unknown) parameter values (θ,λ)
which have generated the available data, the loss to be suffered if, working with
model Mz, the value θ0 were used as a proxy for the unknown value of θ. Point
estimation, region estimation and hypothesis testing procedures may all be appro-
priately described as specific decision problems using a common prior distribution
and a common loss function of this type. The results, which are obviously all condi-
tional on the assumed modelMz, may dramatically depend on the particular choices
made for both the prior and the loss functions but, given the available data z, they
all only depend on those through the corresponding posterior expected loss,
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`(θ0 |z) =

Z
Θ

Z
Λ

`{θ0, (θ,λ)}π(θ,λ |z) dθdλ. (1)

As a function of θ0 ∈ Θ, the expected loss `(θ0 |z) provides a direct measure of the
relative unacceptability of all possible values of the quantity of interest in the light
of the information provided by the data.

In this paper, we will concentrate on precise hypothesis testing, with objective
reference priors. For a more general perspective and many examples, see Bernardo
(2011) and references therein.

1.1. Decision Theoretic Formulation

Consider a value θ0 of the vector of interest which deserves special consideration,
either because assuming θ = θ0 would noticeably simplify the model, or because
there are additional context specific arguments suggesting that θ = θ0 Intuitively,
the value θ0 should be judged to be incompatible with the observed data z if the
posterior expected loss `(θ0 |z) of using θ0 as a proxy for θ is too large. This notion
is now made precise.

Formally, testing the hypothesis H0 ≡ {θ = θ0} may be described as a de-
cision problem where the action space A = {a0, a1} contains only two elements:
to accept (a0) or to reject (a1) the hypothesis under scrutiny. Foundations re-
quire specification of a loss function `h{ai, (θ,λ)} measuring the consequences of
accepting or rejecting H0 as a function of the actual parameter values. By as-
sumption, a0 means to act as if H0 were true, that is to work with the model
M0 = {p(z |θ0,λ0),z ∈ Z,λ0 ∈ Λ}, while a1 means to reject this simplification
and to keep working with model Mz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}. Alter-
natively, an already established model M0 may have been embedded into a more
general model Mz, constructed to include promising departures from θ = θ0, and
it is required to verify whether presently available data z are still compatible with
θ = θ0, or whether the extension to θ ∈ Θ is really necessary. Given the available
data z, the optimal action will be to reject the hypothesis considered if (and only
if) the expected posterior loss of accepting (a0) is larger than that of rejecting (a1),
so that

R
Θ

R
Λ

[`h{a0, (θ,λ)} − `h{a1, (θ,λ)}]π(θ,λ |z) dθdλ > 0. Hence, only the
loss difference ∆`h{θ0, (θ,λ)} = `h{a0, (θ,λ)}− `h{a1, (θ,λ)}, which measures the
advantage of rejecting H0 ≡ {θ = θ0} as a function of the parameter values, must be
specified. The hypothesis H0 should be rejected whenever the expected advantage
of rejecting is positive. Without loss of generality, the function ∆`h may be written
in the form

∆`h{θ0, (θ,λ)} = `{θ0, (θ,λ)} − `0
where, as mentioned above (and precisely as in estimation problems), `{θ0, (θ,λ)}
describes the non-negative loss to be suffered if θ0 were used as a proxy for θ.
Since `{θ0, (θ0,λ)} = 0, so that ∆`h{θ0, (θ0,λ)} = −`0, the value `0 > 0 describes
(in the same loss units) the context-dependent non-negative advantage of accepting
θ = θ0 when it is true. With this formulation, the optimal action is to reject θ = θ0

whenever the expected value of `{θ0, (θ,λ)}− `0 is positive, i.e., whenever `(θ0 |z),
the posterior expectation of `{θ0, (θ,λ)}, is larger than `0. Thus, as intuition sug-
gested, the solution to the precise hypothesis testing decision problem posed is found
in terms of the value of the expected loss `(θ0 |z) of using θ0 as a proxy for the
unknown value of θ.
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Using the zero-one loss function, `{θ0, (θ,λ)} = 0 if θ = θ0, and `{θ0, (θ,λ)} = 1
otherwise, so that the loss advantage of rejecting θ0 is a constant whenever θ 6= θ0

and zero otherwise, leads to rejecting H0 if (and only if) Pr(θ = θ0 |z) < p0 for
some context-dependent p0. Notice that, using this particular loss function, if one
is to avoid a systematic rejection of H0 (whatever the data), the prior probability
Pr(θ = θ0) must be strictly positive. If θ is a continuous parameter this requires the
use of a non-regular “sharp” prior, concentrating a positive probability mass at θ0.
With no mention of the (rather näıve) loss structure which is implicit in the formu-
lation, this type of solution was early advocated by Jeffreys (1961). Notice however,
that this formulation implies the use of radically different priors for hypothesis test-
ing than those used for estimation, and a different prior for each value to be tested.
Moreover, this formulation is known to lead to the difficulties associated to Lindley’s
paradox (Lindley, 1957; Bartlett, 1957; Robert, 1993).

There are many real world situations where there is really a concentration of
prior probability around particular value, and a sound Bayesian analysis should
then certainly use this information. Under some conditions, those situations may
well be described with a probability mass at a (measure zero) point. However, even
in these cases, robustness concerns suggest that it may well be worth exploring
the consequences of using a regular reference prior with the same data, if only to
verify the possible dependence of the conclusions reached on the particular prior
assumptions made.

Using the quadratic loss function leads to rejecting a θ0 value whenever its
Euclidean distance to E[θ |z], the posterior expectation of θ, is sufficiently large.
Observe that the use of continuous loss functions (such as the quadratic loss) per-
mits the use in hypothesis testing of precisely the same priors that are used in
estimation, and the same prior for all values to be tested. In general, the Bayes
test criterion is not invariant under one-to-one transformations. Thus, if φ(θ) is a
one-to-one transformation of θ, rejecting θ = θ0 does not generally imply rejecting
φ(θ) = φ(θ0). Once more, invariant Bayes test procedures are available by using
invariant loss functions.

The threshold constant `0, which is used to decide whether or not an expected
loss is too large, is part of the specification of the decision problem, and should be
context-dependent. However, as shown below, a judicious choice of the loss function
leads to calibrated expected losses, where the relevant threshold constant has an
immediate, operational interpretation.

2. THE INTRINSIC DIVERGENCE LOSS

Conditional on model Mz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}, the required loss
function `{θ0, (θ,λ)} should describe, in terms of the unknown parameter values
(θ,λ) which have generated the available data, the loss to be suffered if, working
with modelMz, the value θ0 were used as a proxy for θ. It may näıvely appear that
what is needed is just some measure of the discrepancy between θ0 and θ. However,
since all parameterizations are arbitrary, what is really required is some measure of
the discrepancy between the models labelled by θ and by θ0. By construction, such
a discrepancy measure will be independent of the particular parameterization used.
Robert (1996) coined the word intrinsic to refer to those model-based loss functions.
They are always invariant under one-to-one reparameterizations.

A reasonable measure of the dissimilarity δ{pz, qz} between two probability
densities p(z) and q(z) for a random vector z ∈ Z should surely be non-negative,
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zero if (and only if), p(z) = q(z) almost everywhere, and preferably symmetric.
Moreover it should be invariant under one-to-one transformations of z; indeed, if
y = y(z) is such a transformation and J is the appropriate Jacobian, py = pz/|J |,
and qy = qz/|J | are expressions of precisely the same uncertainties and, therefore,
one should certainly have δ{pz, qz} = δ{py, qy}. Finally, it should also be possible to
use δ to compare densities with strictly nested supports, since many approximations
are precisely obtained by restricting the original support to some strict subspace.
These desiderata are all satisfied by the intrinsic discrepancy (Bernardo and Rueda,
2002), a divergence measure which has both an information theoretical justification,
and a simple operational interpretation in terms of average log-density ratios.

Definition 1 The intrinsic discrepancy δ{p1, p2} between two probability distribu-
tions for the random vector z with densities p1(z), z ∈ Z1, and p2(z), z ∈ Z2, is

δ{p1, p2} = min [κ{p1 | p2}, κ{p2 | p1} ] (2)

where κ{pj | pi} =
R

Zi
pi(z) log[pi(z)/pj(z)] dz is the Kullback-Leibler (KL) directed

logarithmic divergence of pj from pi. The intrinsic discrepancy between a probability
distribution p and a family of distributions F = {qi, i ∈ I} is the intrinsic discrep-
ancy between p and the closest of them,

δ{p,F} = inf
q∈F

δ{p, q}.

The intrinsic discrepancy δ{p1, p2} is the minimum average log density ratio
of one density over the other, and has an operative interpretation as the minimum
amount of information (in natural information units or nits) expected to be required
to discriminate between p1 and p2. This may be used to define an appropriate loss
function for the decision problem considered in this paper as the intrinsic discrepancy
between the model, labelled by (θ,λ), and the family M0 of models which satisfy
the hypothesis to be tested:

Definition 2 ConsiderMz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}. The intrinsic dis-
crepancy loss of using θ0 as a proxy for θ is the intrinsic discrepancy between the true
model and the class of models with θ = θ0, M0 = {p(z |θ0,λ0),z ∈ Z,λ0 ∈ Λ},

`δ{θ0, (θ,λ) |Mz} = δ{pz(· |θ,λ),M0} = inf
λ0∈Λ

δ{pz(· |θ0,λ0), pz(· |θ,λ)}. (3)

Notice the complete generality of Definition 2; this may be used with either
discrete or continuous data models (in the discrete case, the integrals in Definition 1
will obviously be sums), and with either discrete or continuous parameter spaces of
any dimensionality.

The intrinsic discrepancy loss has many attractive invariance properties. For
any one-to-one reparameterization of the form φ = φ(θ) and ψ = ψ(θ,λ),

`δ{θ0, (θ,λ) |Mz} = `δ{φ0, (φ,ψ) |Mz},
so that the use of this loss function will lead to estimation and hypothesis testing
procedures which are invariant under those transformations. Moreover, if t = t(z)
is a sufficient statistic for modelMz, one may equivalently work with the marginal
model Mt = {p(t |θ,λ), t ∈ T ,θ ∈ Θ,λ ∈ Λ} since, in that case,
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`δ{θ0, (θ,λ) |Mz} = `δ{θ0, (θ,λ) |Mt}.

Computations are often simplified by using the additive property of the intrinsic
discrepancy loss : if data consist of a random sample z = {x1, . . . ,xn} from some
underlying model Mx, so that Z = Xn, and p(z |θ,λ) =

Qn
i=1 p(xi |θ,λ), then

`δ{θ0, (θ,λ) |Mz} = n `δ{θ0, (θ,λ) |Mx}.

An interesting interpretation of the intrinsic discrepancy loss follows directly
from Definitions 1 and 2. Indeed, `δ{θ0, (θ,λ) |Mz} is just the minimum log-
likelihood ratio which may be expected under repeated sampling between the true
model, identified by (θ,λ), and the class of models which have θ = θ0. Thus, the
intrinsic discrepancy loss formalizes the use of the minimum average log-likelihood
ratio under sampling as a general loss function.

In particular, a suggested value θ0 for the vector of interest should be judged
to be incompatible with the observed data z if `δ(θ0 |z), the posterior expectation
of `δ{θ0, (θ,λ) |Mz}, is larger than a suitably chosen constant `0. For instance,
if for some arbitrary k, `0 = log[10k], then θ0 would be rejected whenever, given
the observed data, the minimum sampling average likelihood ratio against θ = θ0,
may be expected to be larger than about 10k. Conventional choices for `0 are
{log 100, log 1000, log 10000} ≈ {4.6, 6.9, 9.2}.

Under regularity conditions, the intrinsic discrepancy loss has an alternative
expression which is generally much simpler to compute:

Theorem 1 (Juárez, 2004, Sec. 2.4) If the support of p(z |θ,λ) is convex for all
(θ,λ), then the intrinsic discrepancy loss may also be written as

`δ{θ0, (θ,λ) |Mz} = min

»
inf
λ0∈Λ

κ{θ0,λ0 |θ,λ}, inf
λ0∈Λ

κ{θ,λ |θ0,λ0}
–
, (4)

where κ{θj ,λj |θi,λi} is the KL-divergence of pz(· |θj ,λj) from pz(· |θi,λi).

When there is no danger of confusion, Mz may be dropped from the notation
and `δ{θ0, (θ,λ) |Mz} may be written `δ{θ0, (θ,λ)}, but the dependence on the
model of intrinsic losses should always be kept in mind.

In the important case of a multivariate normal model with known covariance
matrix, the intrinsic discrepancy loss is proportional to the Mahalanobis distance:

Example 1 (Multivariate normal model). Let z = {x1, . . . ,xn} be a random sample
from a k-variate normal distribution N(x |µ,Σ) with known covariance matrix Σ. The KL

divergence of N(x |µj ,Σ) from N(x |µi,Σ) is κ{µj |µi,Σ} = 1
2

(µi − µj)tΣ−1(µi − µj).
Since this is symmetric, and the intrinsic discrepancy is additive,

δ{µ0,µ |Σ} =
n

2
(µ0 − µ)tΣ−1(µ0 − µ),

which is n/2 times the Mahalanobis distance between µ0 and µ.
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2.1. Approximations

Under regularity conditions, the result of Example 1 may be combined with con-
ventional asymptotic results to obtain large sample approximations to intrinsic dis-
crepancy losses

Theorem 2 (Bernardo, 2011) Let data z = {x1, . . . ,xn} consist of a random
sample from p(x |θ,λ), let F (θ,λ) be the corresponding Fisher matrix, and let
V (θ,λ) = F−1(θ,λ) be its inverse. Then, for large n and under conditions for
asymptotic normality,

`{θ0, (θ,λ) |Mz} ≈
n

2
(θ − θ0)tV −1

θθ (θ,λ)(θ − θ0),

where Vθθ is the submatrix of V (θ,λ) which corresponds to the vector of interest θ.

The invariance of the intrinsic discrepancy loss under reparameterization may
be exploited to improve the approximation above, by simply choosing a parame-
terization where the asymptotic convergence to normality is faster. The following
result is a one-parameter example of this technique, which makes use of the variance
stabilization transformation.

Theorem 3 (Bernardo, 2005b) Let z = {x1, . . . , xn} be a random sample of size n

from model p(x | θ), and let θ̃n = θ̃n(z) be an asymptotically sufficient consistent
estimator of θ, whose sampling distribution is asymptotically normal with standard

deviation s(θ)/
√
n. Define φ(θ) =

R θ
s(y)−1dy. Then,

`{θ0, θ |Mz} =
n

2
[φ(θ0)− φ(θ)]2 + o(1).

3. REFERENCE ANALYSIS

Foundations indicate that the prior distribution should describe available prior
knowledge. In many situations however, either the available prior information on
the quantity of interest is too vague or too complex to warrant the effort required to
formalize it, or it is too subjective to be useful in scientific communication. An “ob-
jective” procedure is therefore often required, where the prior function is intended
to describe a situation where there is no relevant information about the quantity
of interest. Objectivity is an emotionally charged word, and it should be explic-
itly qualified whenever it is used. No statistical analysis is really objective, since
both the experimental design and the model assumed have very strong subjective in-
puts. However, frequentist procedures are often branded as “objective” just because
their conclusions are only conditional on the model assumed and the data obtained.
Bayesian methods where the prior function is directly derived from the assumed
model are objective is this limited, but precise sense. For lively discussions of this,
and related issues, see Bernardo (1997), Berger (2006), and ensuing discussions.

There is a vast literature devoted to the formulation of objective priors; relevant
pointers are included in Bernardo and Smith (1994, Sec. 5.6), Kass and Wasser-
man (1996), Datta and Mukerjee (2004), Bernardo (2005a), Berger (2006), Ghosh,
Delampady and Samanta (2006), and references therein. Reference analysis, intro-
duced by Bernardo (1979) and further developed by Berger and Bernardo (1989,
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1992a,b,c), Sun and Berger (1998) and Berger, Bernardo and Sun (2009, 2011a,b),
has been one of the most popular approaches for developing objective priors.

We will not repeat here arguments for reference analysis, but it may be worth
synthesizing the basic definition and briefly reviewing some recent developments.

Note first that the same mathematical concepts which lie behind the definition
of the intrinsic discrepancy provide the intuitive basis for the definition of refer-
ence priors. Indeed, for the one parameter modelM = {p(z | θ),z ∈ Z, θ ∈ Θ ⊂ <},
the intrinsic discrepancy I{pθ |M} = δ{p(z, θ), p(z) p(θ)} between the joint prior
p(z, θ) and the product of their marginals p(z) p(θ) is a functional of the prior p(θ)
which measures the association between the data and the parameter and hence, the
amount of information that, given prior p(θ), data z may be expected to provide
about θ. If one considers k independent observations from M then, as k increases,
I{pθ |Mk} will approach the missing information about θ which repeated sampling
from M could provide. If πk(θ) denotes the prior which maximizes I{pθ |Mk},
the sequence {πk(θ)}ki=1 will converge to that prior function which maximizes the
missing information about θ, and this is defined to be the reference prior π(θ |M).

Theorem 4 (Berger, Bernardo and Sun, 2009). Let z(k) = {z1, . . . ,zk} denote
k conditionally independent observations from Mz. Then, the reference prior is
defined as an appropriate limit of

πk(θ) ∝ exp
˘

Ez(k) | θ
ˆ

log ph(θ |z(k))
˜¯

(5)

where ph(θ |z(k)) ∝
Qk
i=1 p(zi | θ)h(θ) is the posterior which corresponds to any

arbitrarily chosen prior function h(θ) which makes the posterior proper for any z(k).

Theorem 4 implies that the reference prior at a particular point θ is proportional
to the logarithmic average of the posterior density which this point would have under
repeated sampling, if this θ value were the true parameter value. The parameter
values which could be expected to get relatively large asymptotic posterior densities
if they were true, will then precisely be those with relatively large reference prior
densities.

The result in Theorem 4 makes very simple the numerical derivation of a one-
parameter reference prior. One first chooses some formal prior h(θ), maybe one
for which exact or approximate posterior computation is easy, and a relatively large
number of replications k. For each particular θ value whose reference prior is desired,

one generates a collection {z(k)
1 , . . . , z

(k)
s } of s replications z

(k)
i = {zi1, . . . ,zik} of

size k from the original model p(z | θ), computes the corresponding s posterior den-

sities at θ, {ph(θ |z(k)
j )}sj=1, and approximates the reference prior at this point by

its logarithmic average,

π(θ) ≈ exp
n1

s

Xs

j=1
log ph(θ |z(k)

j )
o
. (6)

Under regularity conditions explicit formulae for the reference priors are readily
available. In particular, if the posterior distribution of θ given a random sample
of size n from p(x | θ) is asymptotically normal with standard deviation s(θ̃n)/

√
n,

where θ̃n is a consistent estimator of θ, then the reference prior is π(θ) = s(θ)−1.
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This includes as a particular case the famous Jeffreys-Perks prior (Jeffreys, 1946,
independently formulated by Perks, 1947)

π(θ) ∝ i(θ)1/2, i(θ) = Ex | θ[−∂2 log p(z | θ)/∂θ2]. (7)

Similarly, if p(x | θ) is a non regular model with a support S(θ) which depends on
the paramenter in the form S(θ) = {x; a1(θ) < x < a2(θ)}, where the ai(θ)’s are
monotone functions of θ and S(θ) is either increasing or decreasing then, under
regularity conditions (Ghosal and Samanta, 1997), the reference prior is

π(θ) ∝ Ex | θ[|∂ log p(z | θ)/∂θ|]. (8)

In multiparameter problems, reference priors depend of the quantity of interest,
a necessary feature in the construction of objective priors, if one is to prevent un-
acceptable behaviour in the posterior, such as marginalization paradoxes (Dawid,
Stone and Zidek, 1973) or strong inconsistencies (Stone, 1976).

If the model has more than one parameter, the required joint reference prior is
derived sequentially. Thus, if the model is p(z | θ, λ) and θ is the quantity of interest,
one works conditionally on θ and uses the one-parameter algorithm to derive the
conditional reference prior π(λ | θ). If this is proper, it is used to obtain the integrated
model p(z | θ) =

R
Λ
p(z | θ, λ)π(λ | θ) dλ, to which the one-parameter algorithm is ap-

plied again to obtain the marginal reference prior π(θ). The joint reference prior to
compute the reference posterior for θ is then defined to be π(λ | θ)π(θ). If π(λ | θ) is
not proper, one proceeds similarly within a compact approximation to the parameter
space (where all reference priors will be proper) and then derives the corresponding
limiting result.

In general, reference priors are sequentially derived with respect to an ordered
parameterization. Thus, given a model Mz = {p(z |ω),z ∈ Z,ω ∈ Ω} with m pa-
rameters, the reference prior with respect to a particular ordered parameterization
φ(ω) = {φ1, . . . , φm} (where the φi’s are ordered by inferential importance) is se-
quentially obtained as π(φ) = π(φm |φm−1, . . . , φ1)× · · · × π(φ2 |φ1)π(φ1). Unless
all reference priors turn out to be proper, the model must be endowed with an appro-
priate compact approximation to the parameter space {Ωj}∞j=1 ⊂ Ω, which should
remain the same for all reference priors obtained within the same model. Berger and
Bernardo (1992c) describe the relevant algorithm for regular multiparameter models
where asymptotic normality may be established. In typical applications, θ = φ1 will
be the quantity of interest, and the joint reference prior π(φ), which is often denoted
πθ(φ) to emphasize the role of θ, is a just a technical device to produce the desired
one-dimensional marginal reference posterior π(θ |z) of the quantity of interest.

4. OBJECTIVE BAYESIAN HYPOTESIS TESTING

With the loss function chosen to be the intrinsic discrepancy loss, all that is required
to define an objective Bayesian testing procedure is to specify an objective prior
distribution. It will not come as a surprise that we recommend the use of a reference
prior. Thus, one must obtain the posterior expectation of the intrinsic discrepancy
loss with respect to the appropriate joint reference posterior

d(θ0 |z) =

Z
Θ

Z
Λ

`δ{θ0, (θ,λ) |Mz}π(θ,λ |z) dθdλ. (9)



Objective Bayesian Hypothesis Testing 9

and decide whether or not this is big enough to reject that θ = θ0. The function
d(θ0 |z) is the relevant intrinsic test statistic, a direct measure of the incompatibility
of θ0 with the data z in terms of the expected average log-likelihood ratio against
the null.

In one parameter problems, the reference prior is unique and the solution is
therefore conceptually immediate. The following toy example is intended to illus-
trate the general procedure:

Example 2 (Poisson data). Let z = {x1, . . . , xn} be a random sample prom a Poisson
model, so that p(x |λ) = Po(x |λ) = e−λλx/x!. This is a regular model, and using (7), the

reference prior is immediately found to be π(λ) = λ−1/2. This leads to the gamma reference

posterior π(λ |z) = π(λ | t, n) = Ga(λ | t+ 1/2, n) ∝ e−nλλt−1/2 , with t =
Pn
j=1 xj .

Using Definition 2 and the additive property of the intrinsic discrepancy, the intrinsic
discrepancy loss of using λ0 as a proxy for λ with a random sample of size n from a Poisson
distribution with parameter λ is

δ{λ0, λ |Mz} = n δ{λ0, λ |Mx} = n min


Ex |λ

»
log

Po(x |λ)

Po(x |λ0)

–
,Ex |λ0

»
log

Po(x |λ0)

Po(x |λ)

–ff
which immediately yields

δ{λ0, λ |Mz} =

(
n (λ− λ0 + λ0 log λ0

λ
) if λ0 ≤ λ,

n (λ0 − λ+ λ log λ
λ0

) if λ0 ≥ λ.
(10)

a non-negative concave function of λ and λ0, with minimum equal to zero when λ = λ0.
The intrinsic statistic d(λ0 |z) is the corresponding reference posterior expectation,

d(λ0 |z) =

Z ∞
0

δ{λ0, λ |Mz}Ga(λ | t+ 1/2, n) dλ. (11)

This has no simple analytical expression, but is easily computed by numerical integration.
Moreover, using Theorem 3 and the fact that the sampling distribution of the sufficient and

consistent mle, λ̂ = x̄ is asymptotically normal with standard deviation
√
λ/
√
n, one finds

d(λ0 |z) ≈
Z ∞

0

n

2

“
2
p
λ0 − 2

√
λ
”2

Ga(λ | t+ 1/2, n) dλ

= 1 + 2 t+ 2nλ0 − 4
p
nλ0

Γ(t+ 1)

Γ(t+ 1/2)
(12)

≈ 1 + 2 t+ 2nλ0 − 4
p
nλ0

„√
t+

1

8
√
t

«
. (13)

To illustrate the type of results obtained, a sample of size n = 25 was simulated from a
Poisson distribution with parameter λ = 2 resulting in t = 57. The corresponding reference
posterior density is plotted in the top panel of Figure 1. The expected intrinsic discrepancy
loss d(λ0 | t, n) (both computed from (11) (continuous line) and analytically approximated
with (13) (dashed line) are plotted in bottom panel of Figure 1. It may be appreciated
that, even with this rather small sample size, the approximation is quite good.

Suppose that the value λ0 = 3 is to be tested. The corresponding intrinsic statistic is
d(3 |z) = 2.72 ≈ log(15); thus the average likelihood ratio against the H0 ≡ {λ = 3} may
be expected to be about 15, not really strong evidence against this value, even if this may
be seen to be in the right tail of the reference posterior of λ0. On the other hand, if the
value to test is λ0 = 3.5, the corresponding intrinsic statistic is d(3.5 |z) = 6.36 ≈ log(576);
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Figure 1: Posterior reference analysis of the parameter of a Poisson model.

hence the average likelihood ratio against this value may be expected to be about 576 and
the hypothesis H0 ≡ {λ = 3.5} should be rejected in most scenarios. Notice that, in marked
difference to conventional testing using Bayes factors, the same prior has been used to test
these two possible parameter values (as it would obviously be for any other value).

The following example illustrates the use of the methods described to derive a
new solution to a classical precise testing problem.

Example 3 (Equality of Normal means). Let z = {x,y} be two independent random
samples, x = {x1, . . . , xn} from N(x |µx, σ}, and y = {y1, . . . , ym} from N(x |µy , σ}, and
suppose that one in interested in comparing the two means. In particular, one may be
interested in testing whether or not the precise hypothesis H0 ≡ {µx = µy} is compatible
with available data z. Using the additive property of the intrinsic discrepancy loss and
the fact that the KL divergence between two normals distrubutions with the same vari-
ance is simply κ{µj , σ |µi, σ} = (µi − µj)

2/(2/σ2) to derive the logarithmic divergence
of p(z |µ0, µ0, σ0) from p(z |µx, µy , σ), and then minimizing over both µ0 and σ0 yields
infµ0∈<, σ0>0 κ{µ0, µ0, σ0 |µx, µy , σ} = knm θ2, where knm = 2nm/(m + n) is the har-
monic mean of the two sample sizes, and θ = (µx − µy)/σ is the standardized difference
between the two means. On the other hand, infµ0∈<, σ0>0 κ{µx, µy , σ |µ0, µ0, σ0} yields

[(m + n)/2] log[1 + (knm/(2(m + n))] θ2], which is always smaller. Hence, the intrinsic
discrepancy loss of accepting H0 is

`δ{H0, (µx, µy , σ)} = `δ{H0, θ |M} =
n+m

2
log
h
1 +

knm

2(n+m)
θ2
i
,

which reduces to n log[1 + θ2/4] when n = m. Here, the parameter of interest is θ.
Bernardo and Pérez (2007) find that the marginal reference posterior of θ only depends
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on the data through the sample sizes and t = t(z) = (x̄ − ȳ)/(s/
p

2/knm), where s is
the m.l.e. of σ. Therefore, the required marginal reference posterior of θ is π(θ |z) =
π(θ | t,m, n) ∝ p(t | θ)π(θ) where p(t | θ) is the noncentral Student sampling distribution

of t, and π(θ) = (1 + (knm/(4(m+ n)) θ2)−1/2 is the marginal reference prior for θ. The
posterior π(θ | t,m, n) may be used to provide point and interval estimates of θ, the stan-
dardized difference between the two means, and hence inferential statements about their
relative positions.

The relevant expected loss, d(H0 | t, n,m) =
R∞
−∞ `δ{H0, θ |M}π(θ | t, n,m) dθ, may be

used to test H0. This has no simple analytical expression, but its value may easily be
obtained by one-dimensional numerical integration. A good large sample approximation is

d(H0 | t, n,m) ≈
n+m

2
log
h
1 +

1

n+m
(1 + t2)

i
.

The sampling distribution of d(H0 | t, n,m) is asymptotically (1/2)[1 + χ2
1(λ)], where

χ2
1(λ) is a non-central chi-squared distribution with one degree of freedom and non-centrality

parameter λ = knmθ2/2. If follows that the expected value under sampling of d(H0 | t, n,m)
is equal to one when µx = µy , and increases linearly with the harmonic mean of the samples
when this is not true. Thus, the testing procedure is consistent.

For many more sophisticated examples of precise hypothesis testing, see Bernardo
(2011) and references therein.
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