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This article considers the development of objective prior distributions for discrete parameter spaces. Formal approaches to such
development—such as the reference prior approach—often result in a constant prior for a discrete parameter, which is questionable
for problems that exhibit certain types of structure. To take advantage of structure, this article proposes embedding the original problem in a
continuous problem that preserves the structure, and then using standard reference prior theory to determine the appropriate objective prior.
Four different possibilities for this embedding are explored, and applied to a population-size model, the hypergeometric distribution, the
multivariate hypergeometric distribution, the binomial-beta distribution, and the binomial distribution. The recommended objective priors
for the first, third, and fourth problems are new.
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1. INTRODUCTION

1.1 Background

Discrete parameter spaces have long posed a problem for ob-
jective Bayesian analysis, since the obvious objective prior for
a discrete parameter is often the constant prior; for instance, ap-
plying standard reference prior theory (cf. Bernardo and Smith
1994, p. 307) will always yield a uniform prior on a finite pa-
rameter space. If the parameter space is indeed finite and has
no structure, this is not a problem, it being hard to imagine how
anything other than the uniform distribution could be labeled
as objective. If the parameter space has structure, however, a
nonconstant objective prior is often desired, as the following
two examples show.

Example 1.1. A simple example of a structured discrete pa-
rameter problem is provided by observing a binomial random
variable x with probability density function (PDF) Bi(x | n, p),
where the sample size n is the unknown quantity of interest and
the success probability p is known. The parameter space is thus
the set N = {1, 2, . . .} of the natural numbers.

This problem is particularly interesting when p is also
unknown since it is well known from the literature (see, e.g.,
Kahn 1987) that the use of a constant prior density for n is then
inadequate, resulting in an improper posterior distribution for
standard objective priors for p (such as the Jeffreys-rule prior
or the uniform prior). Thus, we need to use the structure of the
binomial model to develop a more sensible objective prior for n.

Example 1.2. Consider the hypergeometric distribution for
a population of size N (known). The unknown parameter is R,
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the number of items in the population having a certain property,
which can take values {0, 1, . . . , N}. The data are r, the number
of items with the property out of a random sample of size n
(taken without replacement).

The parameter space is clearly finite, but reflects an obvious
structure through the hypergeometric distribution. Indeed, for
large N it is well known that the hypergeometric distribution
is essentially equivalent to the binomial distribution, with pa-
rameter p = R/N . The objective prior for R should thus be
compatible with the objective prior for p, which most schools of
objective Bayesian analysis take to be the nonuniform Jeffreys-
rule prior π (p) ∝ p−1/2(1 − p)−1/2.

There have been a number of proposals for objective priors
for specific discrete parameter problems, and we will refer to
these proposals when considering specific problems. There have
been a few general proposals. Jeffreys (1961) simply suggested
using 1/θ for any unbounded positive parameter θ , including
discrete. This choice has the appeal of having the largest polyno-
mial decay that retains impropriety. Rissanen (1983) proposed
a prior for positive integers that in some sense is the vaguest
proper prior. Barger and Bunge (2008) proposed using the for-
mal Jeffreys-rule method or the reference prior method, based
on an extension of the concept of an information matrix to dis-
crete parameter problems that was developed by Lindsay and
Roeder (1987). We discuss this interesting approach further in
Section 1.2.3.

Our preferred method of constructing objective priors is the
reference prior approach that seeks to choose that prior distri-
bution which maximizes the asymptotic missing information.
Because of the nature of the asymptotics in discrete parame-
ter spaces, however, the prior that will maximize the missing
information is the constant prior. And we have been unable to
find any modification of the approach—for example, adding
constraints on the problem—that yield anything other than the
constant prior.

Motivated by the hypergeometric example, we thus instead
approach the structured discrete parameter problems by embed-
ding the original model into a model with a continuous parame-
ter. In this continuous parameter problem, we can then apply the
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ordinary reference prior theory (Bernardo 1979, 2005; Berger
and Bernardo 1992; Berger, Bernardo, and Sun 2009a), and ap-
propriately discretize the resulting continuous reference prior
(if necessary).

1.2 Possible Embeddings

There does not appear to be a generally successful single
methodology for embedding a discrete parameter problem into
a continuous parameter problem. In this section, we discuss
four of the embedding methodologies that we have found to
be useful in dealing with discrete, structured parameter spaces.
In the remainder of Section 1, we will generically let θ denote
the unknown discrete parameter, taking values in a countable
discrete space #. In the later specific examples, we will revert
to using the natural notation for the example (e.g., n for the
binomial problem and R for the hypergeometric problem).

1.2.1 Approach 1: Assuming Parameters Are Continuous.
The simplest possibility is just to treat θ as a continuous
variable in the original model p(x | θ ). Typically, however,
C(θ ) =

∫
p(x | θ ) dx will not equal 1 for θ /∈ #, so that the

analysis would have to be with the density C(θ )−1p(x | θ ), and
it can be very difficult to work with a new normalizing fac-
tor. Sometimes, however, one can also treat the available data x
as continuous and analyze the resulting completely continuous
problem without an additional normalizing factor being intro-
duced. For example, suppose that x is uniform on the integers
{0, 1, . . . , θ}. Treating both θ and x as continuous variables, we
have that x is uniform on (0, θ ); no additional normalizing fac-
tor is introduced and we know that the reference prior for this
continuous problem is π (θ ) = 1/θ .

Even if making both x and θ continuous in the original density
does introduce an additional normalizing factor, it is often a
smooth function that can be handled within ordinary reference
prior analysis. The solution, however, is usually not available
in closed form. Furthermore, when a different normalization
factor is introduced, it is hard to argue that the new continuous
model has the same structure as the original discrete model, and
hence, the utilization of the continuous reference prior for the
discrete model is suspect. We thus do not recommend using this
simple embedding if a new (nonconstant) normalization factor
is introduced.

1.2.2 Approach 2: Introducing a Continuous Hierarchical
Hyperparameter. In some problems, it is natural to add a hier-
archical level of modeling to create a continuous hyperparameter
that can be analyzed with usual reference prior methods. As an
example, in the hypergeometric problem, Jeffreys (1946, 1961)
postulated that the unknown R arises as a binomial random vari-
able Bi(R | N,p) with p unknown. The problem can then be
reduced to finding the reference prior πR(p) for p, a continuous
parameter, and this can be used to determine the desired ob-
jective prior for R via π∗(R) =

∫
Bi(R | N,p)πR(p)dp. (If the

reference prior for the continuous hyperparameter is improper,
one would proceed with the usual reference prior device of ap-
proximating it by a series of priors restricted to an increasing
series of compact subsets, and taking the appropriate limit of
the resulting marginal priors for the parameter of interest.)

When such hierarchical modeling is possible and natural, the
case for the ensuing reference prior for the discrete parameter

seems rather compelling. Unfortunately, this situation is rather
uncommon. Also, it may be possible to introduce more than
one hierarchical model, resulting in different possible objective
priors. This seems unavoidable; different “hierarchical origins”
for the discrete parameter model may naturally result in different
priors.

1.2.3 Approach 3: Applying Reference Prior Theory With a
Consistent Estimator. This approach uses the usual method-
ology of reference prior theory, based on replication of the
experiment under study. In other words, one considers x(k) =
(x1, . . . , xk), where the xi are k independent replications of the
data x from the model under consideration. (As usual in the
reference prior theory, x will, itself, typically be a vector of
observations; the replication being considered is an imaginary
replication of the entire original experiment.) In the reference
prior approach, one considers the asymptotic behavior of an
information-based criterion as k → ∞ (cf. Berger and Bernardo
1992).

Approach 3 proceeds by

• choosing a consistent linear (or some other simple) esti-
mate θ̂k = θ̂k(x(k)) of θ (based on the k replications), which
effectively becomes continuous as k → ∞;

• finding the asymptotic sampling distribution of θ̂k as k →
∞; and

• pretending that θ is continuous in this asymptotic distribu-
tion and finding the corresponding reference prior.

Note that using fully efficient estimators, which only take values
on the original discrete parameter space, cannot work here, since
there is then no possible continuous embedding.

Suppose that, as k → ∞ and for some series of constants ck

(typically ck =
√

k), ck(θ̂k − θ ) has a limiting normal distribu-
tion with mean zero and variance σ 2(θ ). In this limiting normal
distribution, one now simply assumes that θ is continuous, and
hence, the desired objective prior is (cf. theorem 9 of Bernardo
2005) π∗(θ ) ∝ σ (θ )−1.

That this approach requires the use of inefficient estimators is
both philosophically problematical and practically ambiguous,
because the use of different inefficient estimators can result in
different reference priors (as we shall see). Hence, this approach
might be best used to suggest an objective prior, which is then
validated by other criteria.

For discrete models that have linear difference score (see
Lindsay and Roeder 1987 for definition), it is possible to define
an analog of the expected Fisher information matrix and apply
the Jeffreys-prior formula or the reference prior formula to ob-
tain an objective prior. This was proposed in Barger and Bunge
(2008), who analyzed several examples. The only overlap with
the examples in this article (i.e., the only example we consider
that has a linear difference score) is the binomial problem with
p known. For this problem and, indeed, any problem with a
linear difference score, the objective prior obtained from their
approach will be the same as that obtained using our Approach 3
with a linear estimator. Barger and Bunge (2008) thus provided
an extrinsic justification for Approach 3 with linear estimators,
in problems with a linear difference score.

1.2.4 Approach 4: Using Parameter-Based Asymptotics.
Following Lindsay and Roeder (1987) and Sweeting (1992),
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this approach uses a formal limiting operation in θ to make
the problem continuous. For instance, in the uniform problem
mentioned in Section 1.2.1, x/θ has a uniform distribution on
the discrete set {0, 1

θ
, . . . , θ−1

θ
, 1}. As θ gets large, it seems rea-

sonable to replace the discrete values on the unit interval by the
unit interval itself, so we end up with the limiting distribution
of x/θ being uniform on (0,1), or x being uniform on (0, θ ).
Pretending that x and θ are continuous in this problem results
in π∗(θ ) = 1/θ , as before.

More formally, the steps of this approach are as follows:

• Let θ → ∞ (or ensure this by forcing some other parameter
to ∞).

• In the limiting asymptotic distribution of x (or some related
random variable), let θ be continuous (if possible).

• Do the reference prior replications over k with this asymp-
totic distribution, to define an objective prior.

This approach has the big advantage of being well defined, as
it is based on the full (or an asymptotically efficient) posterior,
but it only gives an objective prior for “large θ ,” and this may
not be right for small θ . Hence, this is perhaps best used in
conjunction with one of the other approaches, as a validation of
the answer from that approach.

1.2.5 Technical Aside: Discretization of the Prior. It can
happen in Approaches 1, 3, and 4 that the resulting prior,
π∗(θ ), is infinite at the endpoints of the discrete parameter
space #. A natural (if ad hoc) solution is to then define the
objective prior by discretizing π∗(θ ) on the continuous exten-
sion of the parameter space #∗: write #∗ = ∪j#

∗
j , where #∗

j is
a set containing the discrete parameter value θj , and then define
π∗(θj ) =

∫
#∗

j
π∗(θ ) dθ , assuming these probabilities are finite.

As an example, for the hypergeometric problem in Example
1.2, we will see that Approaches 3 and 4 lead to an objective
prior of the form π (R) = 1/

√
R(N − R), which is infinite at

the endpoints R = 0 and R = N , so that a discretization of this
prior would be needed (and the resulting prior probabilities at
the endpoints would be finite).

We do not pursue this issue, however, because it is not strictly
needed in the examples of the article; for the hypergeometric
problem, we can use Approach 2, which directly yields a finite
(indeed proper) discrete objective prior.

1.3 Overview

In the remainder of the article, we consider a variety of dis-
crete parameter problems and explore the application of the
above four approaches to the development of an objective prior
for these problems. Even though the resulting priors arise from
reference priors in an extended model, we will not call them
reference priors because they do not formally arise as priors that
minimize the asymptotic missing information in the original
problem.

When Approach 1 (without renormalization) or Approach 2
(when there is a single natural hierarchical model) is applica-
ble, we view the resulting prior as being the natural objective
prior, and look no further. For problems where neither approach
applies, we use some combination of Approaches 3 and 4 to
propose an objective prior. Unfortunately, it is not the case that
the resulting prior is necessarily unique, although the possible

priors seem to result in essentially the same answer for large θ .
This is probably unavoidable; unless there is enough structure
to use Approaches 1 and 2, unequivocal determination of an
objective prior for small θ seems not to be possible.

Experience has demonstrated that exact reference priors tend
to have excellent performance when evaluated, for example, for
frequentist coverage of resulting credible intervals. This per-
formance presumably also exists for the reference priors in the
embedding problems considered through the approaches above
(especially Approaches 1 and 2), but there is no guarantee that
this performance will extend to the original discrete problems.

The particular discrete problems that are considered in the ar-
ticle (besides the discrete uniform distribution already dealt with
above) are a population-size model (in Section 2), the hyperge-
ometric distribution (in Section 3), the multivariate hypergeo-
metric distribution (in Section 4), the binomial-beta distribution
(in Section 5), and the binomial distribution (in Section 6). The
objective priors derived in Sections 2, 4, and 5 are new. The
analyses in Section 6 validate priors that had been previously
proposed via more ad hoc arguments.

2. ESTIMATING A POPULATION SIZE

Consider an experiment with Type II censoring (cf. Lawless
1982, sec. 1.4), in which there is a sample of N units whose
lifetimes follow an exponential distribution with mean 1/λ. The
experiment is stopped as soon as R units have failed; let t1 ≤
· · · ≤ tR denote the resulting failure times. Here, N ≥ R and λ

are both unknown, while R is prespecified.
The problem of estimating N has many interesting applica-

tions. For example, Starr (1974) and Kramer and Starr (1990)
desired to estimate the number of fish in a lake, assuming that
the time to catch any particular fish is exponentially distributed
with mean 1/λ. Goudie and Goldie (1981) considered a linear
pure death process, where the data consisted only of the life-
times of those who had died, assumed to be iid exponentially
distributed with mean 1/λ; of interest was an estimate of the
initial population size N. This model can also arise in soft-
ware reliability, where the number N of bugs is unknown, and
the lengths of time to discover the first R bugs are assumed to
be independently exponential with mean 1/λ; see Basu and
Ebrahimi (2001).

The density of (t1, . . . , tR) is

p(t1, . . . , tR | N, λ)

= N !
(N − R)!

λR exp{−λ[t1 + t2 + · · · + tR + (N − R)tR]}.

The pair (t1 + · · · + tR, tR) is minimal sufficient for (N, λ) and,
hence, so is the pair (V,W ) = (t1 + · · · + tR)/tR, tR). For any
given c > 0, the transformation (t1, . . . , tR) to (ct1, . . . , ctR)
induces a transformation of the parameter (N, λ) to (N, cλ)
and the sufficient statistic (V,W ) to (V, cW ). So, a maximal
invariant statistic is V .

Goudie and Goldie (1981) [formula (4)] derived the joint
density of (V,W ) as follows:

p(V,W | N, λ) = R

(R − 2)!

(
N

R

)
λRWR−1

× exp{−λ(V + N − R)W }gR(V ), (1)
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for 1 < V < R,W > 0, where, letting [V ] denote the integer
part of V ,

gR(V ) =
[V ]∑

i=1

(−1)i−1
(

R − 1
i − 1

)
(V − i)R−2, 1 < V < R. (2)

The marginal density of V depends only on N and is [formula
(5) of Goudie and Goldie (1981)]

p(V | N ) = 1
(R − 2)!

N !
(N − R)!

1
(V + N − R)R

gR(V ),

1 < V < R. (3)

Because V is a maximal invariant statistic whose distribution
depends only on N, frequentist inference concerning N would
be based on (3). Because of the invariance, this marginal density
also arises from the Bayesian perspective, when the Haar density
(also the Jeffreys-rule prior and the reference prior) π (λ) =
1/λ is used as the conditional prior for λ given N. Indeed, it
can be directly shown that (3) results, up to a proportionality
constant, from integrating out λ in (1), with respect to the Haar
density. Thus, from either a frequentist or an objective Bayesian
perspective, dealing with unknown N reduces to analysis of (3).

Part of the interest in this problem is that it is difficult to
address by standard methods. For instance, Goudie and Goldie
(1981) showed that there is no unbiased estimate of N, and that
moment estimates and maximum likelihood estimates do not
exist with probability roughly 1/2. For an objective Bayesian
analysis, note that the likelihood p(V | N ) in (3) tends to one
as N → ∞, so that the posterior would not exist if either a
constant prior or a prior proportional to 1/N (two common
objective choices for integer N) was used. Similar problems
were encountered by Raftery (1988b) for a situation involving
Type I censoring.

To find an objective prior here, we can directly apply Ap-
proach 1, embedding the discrete parameter space for N,
{R,R + 1, . . .} into the continuous space (R − 0.5,∞), since,
for each N ≥ R − 0.5, p(v | N ) is still a probability density for
v (with the same normalization, with the factorials replaced by
the corresponding gamma functions). The reference prior for N
in this continuous problem is simply the Jeffreys-rule prior

π (N | R) ∝
√

iR(N ), N ≥ R − 0.5 ,

where iR(N ) is the Fisher information given in the following
lemma (the proof of which is given in Appendix A).

Lemma 2.1. The Fisher information of N in the continuous
parameter problem (but evaluated at integer values of N) is

iR(N ) =
R−1∑

j=0

1
(N − j )2

− RN!
(R − 2)!(N − R)!

JR,N , (4)

where

JR,N =
R−1∑

i=1

(−1)i−1

(N − R + i)3

(
R − i

N

)R−1 (
R − 1
i − 1

)

×
[

1
R − 1

− 2(R − i)
RN

+ (R − i)2

(R + 1)N2

]
. (5)

To understand some of the properties of this objective prior,
it is convenient to consider the reparameterization θ = N −

R + 1, since the range of θ is then the positive integers N =
{1, 2, . . .}. The objective prior for θ is then

π∗(θ | R) ∝
√

iR(θ + R − 1), θ ∈ N .

Special cases, when R = 2, 3, 4, are as follows:

π∗(θ | R)

=






1
θ(θ + 1)

, if R = 2,

1.3036
√

(θ + 2)θ + 4/3
θ(θ + 1)(θ + 2)

, if R = 3,

1.6017

√
[(θ + 3)θ + 22/5](θ + 3)θ + 27/5

θ(θ + 1)(θ + 2)(θ + 3)
, if R = 4.

Note that these are proper priors, and so their normalization
constants are included. It appears that the tail of π∗(θ | R) is
always of the order 1/θ2 (verified numerically for R up to 100),
and hence, the prior seems always to be proper. It is, of course,
necessary for the prior to be proper in order for the posterior
to be proper, since the likelihood is constant as N → ∞; this
is thus another example of the rather remarkable tendency of
the Jeffreys-rule (reference) prior to yield a proper posterior for
challenging likelihoods.

For R = 2, 3, 4, 5, and 20, these priors are plotted in Figure 1.
Although they do differ somewhat at θ = 1, they otherwise are
remarkably similar. Indeed, the differences between the priors
will not greatly affect the posterior, since the main effect of the
prior on the posterior is in the tails, where all the priors are very
similar. Hence, one could reasonably just use 1/[θ (1 + θ )] as
the objective prior for any R. (Of course, the exact prior is not
difficult to program and work with.)

3. THE HYPERGEOMETRIC DISTRIBUTION

Consider the hypergeometric distribution,

p(r | n,R,N ) =
(
R
r

)(
N−R
n−r

)
(
N
n

) , for r ∈ {0, . . . , R}, (6)

where R is unknown and R ∈ {0, 1, . . . , N}. Approach 1 would
introduce a complicated nonconstant normalization factor here,
so we, instead, turn to the other approaches.

As mentioned in Section 1, Approach 2 can be implemented
by assuming that the unknown R has the hierarchical model
Bi(R | N,p), with unknown p. The problem then reduces to
finding the reference prior for the continuous hyperparameter p.

The appropriate reference prior for a hyperparameter in a
hierarchical setting (cf. Bernardo and Smith 1994, p. 339) is
found by first marginalizing out the lower-level parameters hav-
ing specified distributions. Here, that would mean marginalizing
over R, resulting in

Pr(r | n,N, p) =
N∑

R=0

Pr(r | n,R,N ) Pr(R | N,p)

=
N∑

R=0

(
R
r

)(
N−R
n−r

)
(
N
n

)
(

N

R

)
pR(1 − p)N−R

=
(

n

r

)
pr (1 − p)n−r , (7)

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f V

al
en

ci
a]

 a
t 1

0:
36

 2
7 

Ja
nu

ar
y 

20
13

 



640 Journal of the American Statistical Association, June 2012

Figure 1. Objective priors for θ for R = 2, 3, 4, 5, and 20 (top to bottom at θ = 1). The online version of this figure is in color.

which, as one would expect, is simply the binomial model
Bi(r | n, p). But the reference prior for the binomial model is
known to be the corresponding Jeffreys-rule prior, which is the
beta distribution πR(p) = Be(p | 1

2 , 1
2 ) and, therefore, integrat-

ing out p in the Bi(R | N,p) hierarchical prior for R yields the
induced objective prior for R in the hypergeometric model

π∗(R | N ) =
∫ 1

0
Bi(R | N,p) Be

(
p

∣∣∣∣
1
2
,

1
2

)
dp

= 1
π

&
(
R + 1

2

)
&
(
N − R + 1

2

)

&(R + 1) &(N − R + 1)
, (8)

for R ∈ {0, 1, . . . , N}, as suggested by Jeffreys (1946, 1961).
Note that, by construction, this is a proper prior.

The upper panel of Figure 2 graphs the objective priors
π∗(θ | N ) for the proportion θ = R/N , θ ∈ {0, 1/N, . . . , 1}, for
several values of the population size N. The behavior of the ob-
jective prior (8) for large N is, as expected, compatible with
the continuous reference prior πR(p) = Be(p | 1

2 , 1
2 ) for the bi-

nomial probability model. Indeed, using Stirling’s approxima-
tion for the gamma functions in (8), one obtains, in terms of
θ = R/N ,

π∗(θ | N ) ≈ 1

N + 2
π

Be

(
N θ + 1

π

N + 2
π

∣∣∣∣
1
2

, 1
2

)

,

θ = 0, 1/N, . . . , N, (9)

which is basically proportional to Be(θ | 1
2 , 1

2 ). As illustrated in
the lower panel of Figure 2, where the solid line represents (9)
as a continuous function of θ , the approximation is very good,
even if N is moderate.

Since Approach 2 is a preferred approach, we do not formally
present Approaches 3 and 4. It is worth mentioning, however,
that an application of Approach 3 with a simple linear estimator
of R yields an objective prior proportional to 1/

√
R(N − R),

which is very similar to (8). Likewise, applying Approach 4
by letting N → ∞ results in using the binomial approxima-

tion to the hypergeometric directly, and again suggests using
1/
√

R(N − R) as the objective prior. Both methods thus give
essentially the right answer (if N is not small and R is not 0 or
N), although, as discussed in Section 1, we view Approach 2

Figure 2. Objective priors π∗(θ | N ) for the proportion θ = R/N

of conforming items in a population of size N, for several N values
(upper panel), and its continuous approximation (lower panel). The
online version of this figure is in color.
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as being superior when it can be applied. Also, as discussed in
Section 1.2.5, Approach 2 avoids the technical issue of dealing
with the infinite endpoints of 1/

√
R(N − R).

Remark. A related philosophical curiosity is that of determin-
ing the probability that the next element in a randomly selected
sequence of elements will have a specified property (+), given
that all previous n elements possessed the property. The clas-
sical answer, known as Laplace’s rule of succession (Laplace
1774), is

Pr(+ | previous n +’s) = n + 1
n + 2

. (10)

When the population is known to be finite of size N, the same
rule was derived by Broad (1918). If the analysis is carried
out using the reference prior πR(R | N ) in (8), the resulting
“reference prior” law of succession is (see Berger, Bernardo,
and Sun 2009b)

PrR(+ | N, previous n +’s) = n + 1/2
n + 1

. (11)

4. MULTIVARIATE HYPERGEOMETRIC
DISTRIBUTION

Let N+ be the set of all nonnegative integers. Consider a mul-
tivariate hypergeometric distribution Mu-Hy(n, R, N ), with the
probability mass function on Rk,n = {rk = (r1, . . . , rk) : rj ∈
N+, r1 + · · · + rk ≤ r},

Hyk(rk | n, Rk, N ) =
(
R1
r1

)
· · ·
(
Rk

rk

)(
Rk+1
rk+1

)

(
N
n

) , rk ∈ Rk,n, (12)

where the unknown parameters Rk = (R1, . . . , Rk) are in the
parameter spaceRk,N = {Rk = (R1, . . . , Rk) : Rj ∈ N+, R1 +
· · · + Rk ≤ N}. Here and in the following, Rk+1 = N − (R1 +
· · · + Rk).

Note that the hypergeometric distribution is the special case
when k = 1.

We again consider Approach 2 here. A natural hierarchical
model for the unknown Rk is to assume that it is multino-
mial Muk(N, pk), with unknown parameters pk ∈ Pk ≡ { pk =
(p1, . . . , pk) : 0 ≤ pj ≤ 1, p1 + · · · + pk ≤ 1}. The probabil-
ity mass function of Rk is then

Muk(Rk | N, pk) = N !
∏k+1

j=1 Rj !

k+1∏

j=1

p
Rj

j . (13)

The problem then reduces to finding the objective priors for the
continuous hyperparameter pk . In contrast to the situation with
the hypergeometric distribution, there are at least two natural
choices for this objective prior.

The most commonly used objective prior for pk is the
Jeffreys’ prior πJ , given by

πJ ( pk) =
&
(

k+1
2

)

&
( 1

2

)k+1

k+1∏

j=1

p
1
2 −1
j . (14)

This is the objective prior when the whole vector Rk is of interest
and all the corresponding hyper-parameters pk are of interest.

Another reasonable objective prior arises when a particular
component, say, R1 is of interest. Noting that E(Rj | pk) = Npj ,

for all j = 1, . . . , k, this would imply that p1 is the hyper-
parameter of interest in the hierarchical model. For this sit-
uation, Berger and Bernardo (1992) introduced the one-at-a-
time reference prior, corresponding to the importance ordering
{p1, . . . , pk, pk+1} for parameters, as

πR( pk) = 1
π k

k∏

j=1

1
√

pj (1 − δj )
, δj =

j∑

i=1

pi . (15)

In the following, we consider analysis under both of these hyper-
priors, without further comment as to the choice between them.
See Berger and Bernardo (1992) for an extensive discussion of
the considerations involved in making this choice.

The Marginal Prior of Rk Given N. We first give the marginal
priors for Rk based on the two objective priors for pk. The proof
and some general results are given in Appendix B.

Theorem 4.1. Define the function,

f (y) = &(y + 1/2)√
π &(y + 1)

, y ≥ 0 . (16)

(a) Under the Jeffreys’ prior πJ for pk , the marginal prior of
Rk given N is

pJ (Rk | N ) =
{

k+1∏

i=1

f (Ri)

}
N !&

(
k+1

2

)

&
(
N + k+1

2

) , Rk ∈ Rk,N .

(17)

(b) Under the reference prior πR for pk , the marginal prior
of Rk given N is

pR(Rk | N ) =
{

k+1∏

i=1

f (Ri)

}

×
{

k∏

j=2

f (Rj + · · · + Rk + Rk+1)

}

, Rk ∈ Rk,N . (18)

Remark 4.1. It is interesting that, under the reference prior
πR for pk ,

pR(Rk−1 | N ) =
{

k−1∏

i=1

f (Ri)

}

f (R̃k)

×
{

k−1∏

j=2

f (Rj + · · · + Rk−1 + R̃k)

}

, Rk−1 ∈ Rk−1,N ,

where R̃k = N − (R1 + · · · + Rk−1). By induction, it follows
that

pR(R1 | N ) = f (R1)f (N − R1), R1 = 0, . . . , N , (19)

which reduces to the prior for the hypergeometric problem.

The Marginal Likelihood of rk .

Theorem 4.2.

(a) The marginal likelihood of rk given ( pk, n,N) depends
only on (n, pk),

p(rk | pk, n,N)

=
∑

Rk∈Nk,N

Hyk(rk | n, Rk, N )Muk(Rk | N, pk)

= Muk(rk | n, pk), rk ∈ Rk,n. (20)
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(b) For any prior π ( pk), the marginal likelihood of rk given
(n,N ) depends only on n, and is of the same form as the
marginal prior for Rk , except for replacing N by n.

Proof. The proof of Part (a) is similar to (7). The rest is from
algebra. !

Remark 4.2. Under the two objective priors for pk, we have
the following marginal likelihood of rk .

(a) Under the Jeffreys’ prior πJ for pk , the marginal mass
function of rk given (n,N ) is

pJ (rk | n,N) =
{

k+1∏

i=1

f (ri)

}
n!&

(
k+1

2

)

&
(
n + k+1

2

) , rk ∈ Rk,n. (21)

(b) Under the reference prior πR for pk , the marginal mass
function of rk given (n,N ) is

pR(rk | n,N ) =
{

k+1∏

i=1

f (ri)

}

×
{

k∏

j=2

f (rj + · · · + rk + rk+1)

}

, rk ∈ Rk,n, (22)

where f is given by (16).

The Marginal Posterior Distribution of Rk Given (rk, n,N).
The marginal posterior mass function of Rk given rk is then

p(Rk|n,N, rk)= Hyk(rk| n, Rk, N)Pr(Rk | N )
p(rk | n,N )

, Rk ∈ Rk,N .

(23)

The following results can be proved using Lemma B.2 in Ap-
pendix B.

Theorem 4.3.

(a) Under the Jeffreys’ prior πJ for pk , the marginal posterior
of Rk given (rk, n,N) is

πJ (Rk | rk, n,N) = (N − n)!
∏k+1

j=1(Rj − rj )!

k∏

j=1

×
Beta

( 1
2 + Rj ,

k−j+1
2 + Rj+1 + · · · + Rk+1

)

Beta
( 1

2 + rj ,
k−j+1

2 + rj+1 + · · · + rk+1
) . (24)

(b) Under the reference prior πR for pk , the marginal poste-
rior of Rk given (rk, n,N) is

πR(Rk | rk, n,N) = (N − n)!
∏k+1

j=1(Rj − rj )!

k∏

j=1

×
Beta

( 1
2 + Rj ,

1
2 + Rj+1 + · · · + Rk+1

)

Beta
( 1

2 + rj ,
1
2 + rj+1 + · · · + rk+1

) . (25)

5. THE BINOMIAL-BETA DISTRIBUTION

Consider the binomial-beta distribution formed as the
marginal distribution from

x | (n, p) ∼ Bi(x | n, p) and p ∼ Be(p | a, b), (26)

where (a, b) are known positive constants. Clearly, the marginal
density of x is

p(x | n) = n!
x!(n − x)!

&(a + b)
&(a)&(b)

∫ 1

0
px+a−1(1 − p)n−x+b−1dp

= n!
x!(n − x)!

&(a + b)
&(a)&(b)

&(x + a)&(n − x + b)
&(n + a + b)

, (27)

for x = 0, 1, . . . , n. For fixed x, the tail (when n is large) of this
marginal likelihood for n has the form

p(x|n) ∝ n!
(n − x)!

&(n − x + b)
&(n + a + b)

≈ 1
na+b−1(n − x)1−b

≈ 1
na

,

(28)

which depends on a only. Note that, for a ≤ 1, this is not inte-
grable and hence, for instance, a constant prior for n would not
yield a proper posterior.

To find the objective prior for n from this discrete distribution,
the application of Approach 1 would result in a nonconstant nor-
malization factor, and there is no natural hierarchical embedding
for Approach 2. Hence, we consider Approaches 3 and 4.

5.1 Approach 3

Going to the asymptotics of reference prior theory, let
{x1, . . . , xk} be k independent replications from (27). The mean
and variance of the xi are easily found to be

E(xi | n) = E(np | n) = n
a

a + b
, (29)

var(xi | n) = n(n + a + b)
(a + b)2(a + b + 1)

. (30)

A simple estimate of n is the linear estimate

n̂ = a + b

a
x̄ = a + b

ak

k∑

j=1

xj . (31)

Note that this is not an efficient estimate but, as mentioned in
Section 1, efficient estimates cannot be used in direct reference
prior asymptotics for discrete distributions. This estimator has
mean and variance

E(n̂ | n) = n and var(n̂ | n) = n(n + a + b)
a2(a + b + 1) k

.

It follows from the central limit theorem that

p(n̂ | n) ≈ N

(
n̂ | n,

n(n + a + b)
a2(a + b + 1)k

)
. (32)

We extend the asymptotic distribution to a continuous pa-
rameter model by pretending that n is a continuous parameter.
The reference prior for n in this extended model is clearly the
Jeffreys-rule prior,

π1(n) ∝
(

n(n + a + b)
a2(a + b + 1)k

)− 1
2

∝ 1√
n(n + a + b)

. (33)

5.2 Approach 4

We use the fact that for fixed p ∈ (0, 1), when n → ∞, x/n

is asymptotically normal with mean p and variance p(1 − p)/n.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f V

al
en

ci
a]

 a
t 1

0:
36

 2
7 

Ja
nu

ar
y 

20
13

 



Berger, Bernardo, and Sun: Objective Priors for Discrete Parameter Spaces 643

For any y ∈ (0, 1), it follows that, as n → ∞,

P (x/n ≤ y) =
∫ 1

0
P (x/n ≤ y | p) Be(p | a, b)dp

→
∫ 1

0
1(0,y)(p) Be(p | a, b)dp

=
∫ y

0
Be(p | a, b)dp ,

so that the limiting density of y = x/n is Be(y | a, b). The
parameter-based asymptotic distribution of x thus has density
n−1Be(x/n | a, b, n). In this density, we can treat n > 0 as a
continuous parameter (as well as x), in which case it is clearly
a scale parameter, and the reference prior for a scale parame-
ter is π2(n) ∝ 1/n. (This is only a first-order parameter-based
asymptotic argument. We will see an example of a second-order
argument in Section 6.)

5.3 Comparison

Approach 3 led to π1(n) ∝ 1/
√

n(n + a + b), while Ap-
proach 4 led to π2(n) = 1/n, as candidates for the objective
prior. These are both clearly compatible for large n, which is
reassuring, and both yield a proper posterior. The interesting
question is thus whether the dependence of π1 on a and b results
in a superior objective prior.

The following argument suggests that π1 is better. Suppose
that a and b are very large, in which case the Be(p | a, b) distribu-
tion in (26) will be very concentrated around p = a/(a + b). It
follows that p(x | n) should behave like the Bi(x | n, a/(a + b))
distribution, in this situation. In the next section, we will
see that the recommended objective priors for a binomial n,
when p is known, behave like 1/

√
n, which is the behavior of

1/
√

n(n + a + b) when a + b is large compared with n. (This
argument also presumes that the likelihood is such that the poste-
rior is concentrated at moderate values of n, compared to a + b.)
This points to choosing π1.

To further study this, we use the common device of studying
the frequentist coverage of credible sets arising from the priors to
assist in the determination of a good choice. Suppose we have a
sample x = (x1, . . . , xm) from (27) for given n, and construct the
one-sided credible sets that have posterior probability exceeding
a desired threshold 1 − α, namely

Ci(x) = {1, . . . , n∗
i }, n∗

i = inf
n∗∈N

Pri[n ≤ n∗ | x] ≥ 1 − α ,

corresponding to the two priors πi , i = 1, 2. We then con-
sider the frequentist coverage of these credible sets, namely
Pr(Ci(X) / n | n), with the goal being to have frequentist cov-
erage similar to the stated posterior probability. Because of
problems caused by discreteness, we choose the target not to
be 1 − α itself, but rather the frequentist expectation (given n)
of the posterior coverage. (A Bayesian, in repeated use of the
prior to construct credible sets in different applications, will, on
average, be quoting this as the coverage, and it is reasonable
to compare the average stated coverage with the average actual
coverage of the credible sets.)

The straightforward implementation of this idea, for given
true parameter value n and sample size m, is to generate, say,
25,000 sample m vectors, x(j ), with each coordinate being drawn
independently from (27), compute Ci(x(j )) for each sample, and

Table 1. APC, frequentist coverage, and AS of one-sided 50% (upper
panel) and 90% (lower panel) credible intervals based on 25,000

simulations of sample size m = 1 from the binomial-beta distribution
with true n = 10 and various values of a = b

a = b Prior APC Coverage Difference AS

5 π1 0.549 0.579 −0.030 9.972
π2 0.502 0.408 0.094 8.983

20 π1 0.559 0.608 −0.049 9.996
π2 0.501 0.390 0.110 8.999

50 π1 0.562 0.618 −0.055 10.033
π2 0.500 0.385 0.115 9.035

5 π1 0.910 0.872 0.038 19.618
π2 0.908 0.872 0.037 18.328

20 π1 0.914 0.927 −0.012 16.046
π2 0.916 0.927 −0.011 15.254

50 π1 0.914 0.937 −0.022 15.202
π2 0.917 0.813 0.105 14.556

approximate the frequentist coverage and the average posterior
coverage (APC) as, respectively,

Coverage ∼=
#Ci(x(j )) that contain n

25,000
,

APC ∼=
1

25,000

25,000∑

j=1

Pr
(
n ∈ Ci(x(j )) | x(j )

)
. (34)

In Table 1, we present some of the results from the simulation
study, for true n = 10 and sample size m = 1. (Small sample
sizes provide more revealing differences between the priors.)
We report APC and Coverage, as well as Difference = APC −
Coverage, which is best if close to zero, with negative differ-
ences being better than positive differences (since the stated
accuracy of the credible sets is then at least conservative). As a
secondary criterion, we also report the average size (AS) of the
posterior credibility sets, defined as AS = E[length of Ci(x(j )) |
n], and approximated by

∑
j length of Ci(x(j ))/25,000.

It is clear that π2 can significantly overstate the coverage
probability of the credible sets. In contrast, π1 not only is much
more accurate in terms of its coverage statement, but also tends
to err on the side of conservatism, which is desirable. And,
as expected, π2 significantly degrades as a = b grows larger,
while the performance of π1 remains stable as a = b grows. The
performance of π1 is actually rather remarkable, considering that
the study is only for a sample of size m = 1. In conclusion, all
arguments point to choosing π∗(n) = 1/

√
n(n + a + b) as the

objective prior for the binomial-beta distribution.

6. REFERENCE PRIOR FOR THE BINOMIAL
SAMPLE SIZE

Assume that x ∼ Bi(x | n, p). Estimating n has been a chal-
lenging problem for over half a century, with literature dat-
ing from Haldane (1941). Recent articles (which have many
other references) include Berger, Liseo, and Wolpert (1999) and
DasGupta and Rubin (2005). Basu and Ebrahimi (2001) de-
veloped objective priors for a related problem in software
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reliability. We are interested in finding objective priors for n,
first for the case of known p and then when p is unknown.

6.1 Known p

To find an objective prior for n from this discrete distri-
bution, the application of Approach 1 would again result in
a nonconstant normalization factor. There is no single hier-
archical extension that is natural for Approach 2, but a rea-
sonable extension—first used by Raftery (1988a) for the case
of unknown p (see also Moreno and Giron 1998)—is to as-
sume a Poisson Ps(n − 1 | λ) distribution for n − 1. One would
then derive the reference prior π (λ) for the corresponding inte-
grated model p(x | λ, p) =

∑∞
n=1 Bi(x | n, p) Ps(n − 1 | λ), and

use this to obtain the corresponding reference prior π (n | p) ∝∫∞
0 Ps(n − 1 | λ) π (λ | p) dλ. As this prior is not available in

closed form and the choice of the Poisson hierarchical exten-
sion is rather arbitrary, we do not pursue this further, but it is
worth noting that the result is approximately proportional to
our eventually recommended prior: π (n | p) ∝ n−1/2. Note also
that, while Raftery (1988a) dealt with the unknown p situation,
the approach taken in the article would result in the prior 1/n

for the known p case; this prior is discussed in the following
sections.

6.1.1 Approach 3. Let x1, . . . , xk be k independent replica-
tions from Bi(x | n, p). A linear estimate of n is

n̂ = x̄k

p
= 1

pk

k∑

j=1

xj . (35)

Note that

E(n̂ | n, p) = n, and var(n̂ | n) = n(1 − p)
k p

.

It follows from the central limit theorem that

p(n̂ | n, p) ≈ N

(

n̂ | n,

√
n(1 − p)

k p

)

. (36)

Extending this to the model continuous in n, the Jeffreys-rule
prior is

π1(n | p) ∝ 1√
n

. (37)

As mentioned in Section 1.2.3, this is (necessarily) the same
result derived by Barger and Bunge (2008), since we use a
linear estimator and the problem can be shown to have a linear
difference score.

Of course, (35) is not the only inefficient (but consistent)
estimate of p. Another possible estimate of n here is

n̂ = 1
2

(
√

1 + 16S2 − 1) , (38)

where S2 =
∑

x2
i /k. A laborious application of Approach 3

with this estimate yields the reference prior

π2(n |p)∝ 1√
n

× 2pn + 1 − p
√

4p2n2 + 2pn(3 − 5p) + 1 − 6p(1 − p)
.

(39)

Since this differs from the prior in (37), it can be concluded that
the choice of (inefficient) statistic in Approach 3 does matter,

making the approach less attractive. However, the actual differ-
ence between these two priors is relatively minor. Indeed, the
ratio π2(n | p)/π1(n | p) is maximized at n = 1, with the value
1 + p, and decreases monotonically to 1 as n → ∞.

6.1.2 Approach 4. From the fact that x/n is asymptotically
normal with mean p and variance p(1 − p)/n, it follows that
the parameter-based asymptotic distribution of x as n → ∞ is
(treating x as continuous) N(x | np, np(1 − p)). Treating n as
also being continuous, the appropriate objective prior would be
the Jeffreys-rule prior for n from this distribution, which is

π3(n | p) ∝ 1√
n

×

√

1 + (1 − p)
2pn

. (40)

Again, the large n behavior of this prior is the same as that of
the previously determined priors to first order (in n). The behav-
ior of this prior can be quite different, however. In particular, for
small p, the prior behaves like 1/n instead of 1/

√
n when n is

moderate, and this can lead to different answers. Note that there
is no assurance that the performance of this prior for moderate n
is adequate, since it was derived based on a “large n” argument.

6.1.3 Comparison. We have three candidate reference pri-
ors. From the viewpoint of simplicity, π1(n) = 1/

√
n is clearly

attractive, but it may be that the dependence on p of π2(n) and
π3(n) results in superior performance. We again study this issue
by looking at the frequentist performance of credible sets, fol-
lowing exactly the methods discussed in Section 5.3. We include
in the comparison two other priors that have been considered
for this problem, namely π4(n) = n−1 and π5(n) = 1. Note that
it is easy to see that all five priors yield a proper posterior.

Table 2 is a representative sample of the many simulation
results that were examined. The following conclusions can be
reached from this (and the many other simulation results):

• The prior π4(n) = 1/n results in a systematic overstate-
ment of the actual coverage, and by a large amount; hence,
it can be eliminated from consideration.

Table 2. APC, frequentist coverage, and AS of one-sided 50%
credible intervals based on 20,000 simulations of sample size m from

Bi(x | 10, p)

(m,p) Prior APC Coverage Difference AS

(5, 0.5) π1 0.639 0.638 0.001 10.015
π2 0.639 0.638 0.001 10.011
π3 0.640 0.638 0.002 10.014
π4 0.637 0.615 0.022 9.908
π5 0.635 0.662 −0.027 10.103

(5, 0.1) π1 0.545 0.578 −0.033 10.275
π2 0.541 0.578 −0.037 10.218
π3 0.562 0.569 −0.008 10.105
π4 0.544 0.432 0.112 9.334
π5 0.539 0.598 −0.059 11.123

(50, 0.01) π1 0.527 0.555 −0.028 10.059
π2 0.531 0.555 −0.024 10.026
π3 0.523 0.410 0.113 9.214
π4 0.529 0.410 0.120 9.102
π5 0.523 0.573 −0.051 11.025
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• The prior π5(n) = 1 results in a systematic understatement
of the actual coverage by a significant amount—up to 6%
in the table—and yields too large credible sets; hence, this
prior can also be eliminated from consideration.

• The prior π3(n) sometimes performed best, but seriously
overstated the actual coverage for the case m = 50 and
p = 0.01. It is for small p that this prior significantly differs
from the other candidates; hence, the indication is that this
difference is harmful.

• The reference priors π1(n) and π2(n) had very similar good
performances, even for the large p cases (not shown here)
where they can be somewhat different as priors. Given the
fact that π1(n) is much simpler, it emerges as our recom-
mended choice.

The recommended prior for the binomial distribution with
known p is thus π∗(n) = 1/

√
n.

6.2 Unknown p

With p unknown as well as n, suppose there are m ≥ 2 in-
dependent observations x1, . . . , xm from the Bi(x | n, p) distri-
bution. (It actually also works to take m = 1 in the following,
but using one observation when there are two unknown parame-
ters would be rather unusual.) The likelihood function of (n, p),
based on (x1, . . . , xm), is

p(x1, . . . , xm | n, p) =
m∏

j=1

(
n

xj

)
ps(1 − p)mn−s , (41)

where s =
∑m

j=1 xj . Because the Jeffreys-rule or reference prior
for p given n is Be(p | 1/2, 1/2), the marginal likelihood of n is
thus

p(x1, . . . , xm |n)= 1
π

m∏

j=1

(
n

xj

)
&(s + 1/2)&(mn − s + 1/2)

&(mn + 1)
.

(42)

To finish, we need to find a reasonable objective prior for n for
this discrete parameter model.

6.2.1 Approach 3. We first compute the mean and variance
of m−1∑m

i=1 xi , from the distribution (42). From (29) and (30),
it is clear that E(xi | n) = E(x1 | n) = n/2 and var(xi | n) =
n(n + 1)/2. It is also easy to verify that, for i 0= j ,

cov(xi, xj | n) = E[cov(xi, xj | n, p)]
+ cov(E(xi | n, p), E(xj | n, p)) (43)

= 0 + cov(np, np | n) = n2var(p) = n2/8. (44)

Thus,

E

(
1
m

m∑

i=1

xi | n

)

= n

2
,

var

(
1
m

m∑

i=1

xi | n

)

= 1
m2

{m var(x1 | n) + m(m − 1)

× cov(x1, x2 | n)}

= n

2m

{
(m + 3)n

4
+ 1

}
.

Now going to k independent replications (xi1, . . . , xim), i =
1, . . . , k, from (42) for the reference prior asymptotics, a simple

consistent linear estimate of n is

n̂ = 2
km

k∑

i=1

m∑

j=1

xij . (45)

It follows from the central limit theorem that

p(n̂ | n, p) ≈ N

(

n̂ | n,

√
2n

km

{
(m + 3)n

4
+ 1

})

. (46)

Extending this to the model continuous in n, the reference prior
for n is

π1(n) ∝
(

n

m

{
(m + 3)n

4
+ 1

})− 1
2

∝ 1
√

n
(
n + 4

(m+3)

) . (47)

Note that, when m = 1, this is (necessarily) the same prior as
that in (33) for a = b = 1/2, since the two models are then the
same.

6.2.2 Approach 4. For fixed p ∈ (0, 1) and as n → ∞, the
xi/n are asymptotically independent and normally distributed
with mean p and variance p(1 − p)/n. Thus, for any yi ∈ (0, 1)
and as n → ∞,

P

(
x1

n
≤ y1, . . . ,

xm

n
≤ ym

)

=
∫ 1

0
P

(
x1

n
≤ y1, . . . ,

xm

n
≤ ym|p

)
Be
(

p

∣∣∣∣
1
2
,

1
2

)
dp

→
∫ 1

0

m∏

i=1

1(0,yi )(p)Be
(

p

∣∣∣∣
1
2
,

1
2

)
dp

=
∫ min{y1,...,ym}

0
Be
(

p

∣∣∣∣
1
2
,

1
2

)
dp .

The limiting distribution of (x1/n, . . . , xm/n) does not depend
on n, and n > 0 is the scale parameter of the limiting distribution
of (x1, . . . , xm). The prior for n is thus the usual scale reference
prior π2(n) ∝ 1/n.

6.2.3 Comparison. It is easy to see that both objec-
tive priors yield proper posterior distributions, when the

Table 3. MSE comparison of the posterior medians for n arising from
π∗(p, n) and πR(p, n) for various values of p and n and sample sizes

m equal 1 and 10

p

m n Prior 0.05 0.25 0.50 0.75 0.95

1 10 π∗ 0.76 0.62 0.33 0.47 0.80
πR 0.88 0.63 0.33 0.47 0.80

50 π∗ 0.92 0.53 0.14 0.48 0.85
πR 0.92 0.53 0.14 0.50 0.88

100 π∗ 0.91 0.52 0.10 0.46 0.84
πR 0.91 0.52 0.10 0.50 0.89

10 10 π∗ 0.79 1.22 1.35 0.39 0.01
πR 0.89 0.47 0.59 0.28 0.01

50 π∗ 0.63 1.23 1.40 0.43 0.03
πR 0.76 0.46 0.62 0.31 0.04

100 π∗ 0.64 1.18 1.28 0.43 0.03
πR 0.76 0.45 0.59 0.31 0.04
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Table 4. Log-score comparison of the marginal posterior of p arising
from π∗(p, n) and πR(p, n) for various values of p and n, when m = 2

p

n Prior 0.05 0.25 0.50 0.75 0.95

10 π∗ 0.95 −0.21 −0.33 −0.17 0.53
πR 0.66 0.03 0.02 0.03 0.04

50 π∗ 0.53 −0.20 −0.32 −0.15 0.55
πR 0.10 0.02 0.03 0.04 0.05

100 π∗ 0.50 −0.18 −0.27 −0.09 0.62
πR 0.03 0.03 0.05 0.08 0.10

Be(p | 1
2 , 1

2 ) prior is used for p. Note that the ratio π2(n)/π1(n)
is

√
1 + 4/[n(m + 3)], which is small enough that there will not

be an appreciable difference in the answers produced by the two
priors. Hence, we do not use a simulation study to select between
them, but simply suggest—on the basis of simplicity—that π2(n)
be used. The recommended objective prior for the binomial
problem with both p and n unknown is thus

π∗(p, n) ∝ 1
n

× Be

(

p

∣∣∣∣∣
1
2
,

1
2

)

. (48)

Although Jeffreys never explicitly studied this problem,
π∗(p, n) is presumably the prior he would have used, since
he recommended the Be(p | 1

2 , 1
2 ) prior for p and recommended

1/n for an infinite positive variable. Raftery (1988a) proposed
the variant πR(p, n) = 1/n, and it is interesting to compare this
with the choice above. Some comparison is given by Berger,
Liseo, and Wolpert (1999), where it is shown that

πR(n | x1, . . . , xm)
π∗(n | x1, . . . , xm)

≈ π
√

n − s + 0.3
n + 1

,

so that the Raftery posterior has a sharper tail as n grows.
To numerically study the difference in inferences resulting

from the two priors, we first study the mean squared error (MSE)
of the resulting posterior medians for n, for various values of
m, n, and p. (The posterior mean is not finite for either poste-
rior.) Table 3 actually presents

√
MSE/n for easier comparison.

The results are rather inconclusive: π∗(p, n) seems better for
more extreme values of p, and πR(p, n) performs better for
nonextreme p. The large posterior tails here may make MSE
comparison unreliable, so we also look at scoring rules. Indeed,
since p is also unknown, we look at the expected log score of
the marginal posterior of p at the true value of p for sample size
m = 2, that is, E[log(π (p | X1, X2) | n, p]; here, the expecta-
tion is over the data for given n and p. The results are given
in Table 4 and are similar: π∗(p, n) is better for more extreme
values of p and πR(p, n) is better for nonextreme p. Of course,
these results are not unexpected, given that π∗(p, n) is based on
the Jeffreys’ prior for p while πR(p, n) is based on the uniform
prior.

APPENDIX A: PROOF OF LEMMA 2.1

Proof. Note that p(V | N ) satisfies the regularity conditions for
the Fisher information to exist and be computable through the usual
second derivative form; log(p(V | N )) is twice differentiable in N for

all values of V , and two derivatives of
∫

h(V )p(V | N )dV with respect
to N can be passed under the integral sign [because

∫ R

1 h(V )p(V |
N )dV = 1

(R−2)!
N!

(N−R)!

∫ R

1
1

(V +N−R)R h(V )gR(V )dV , and 1
(V +N−R)R is a

twice differentiable and bounded function]. It is easy to see that

∂2

∂N 2
log(p(V | N )) = R

(V + N − R)2
−

R−1∑

j=0

1
(N − j )2

.

(Strictly speaking one must compute this with gamma functions re-
placing the factorials in the density, but the result is the same.) Then,
the Fisher information of N is (4), where

JR,N =
∫ R

1

1
(v + N − R)R+2

gR(v)dv. (A.1)

Here, gR(v) is given by (2). We can rewrite (2) as

gR(v)

=






(
R−1

0

)
(v − 1)R−2, if 1 < v < 2,

(
R−1

0

)
(v − 1)R−2 −

(
R−1

1

)
(v − 2)R−2, if 2 < v < 3,

· · · · · ·
(
R−1

0

)
(v − 1)R−2 − · · ·

+(−1)R−2
(
R−1
R−2

)
(v − R + 1)R−2, if R − 1 < v < R.

It follows that

JR,N =
R−1∑

i=1

(−1)i−1

(
R − 1
i − 1

)
Ji,R,N , (A.2)

where, for i < R ≤ N ,

Ji,R,N =
∫ R

i

(v − i)R−2

(v + N − R)R+2
dv =

∫ R−i

0

yR−2

(y + N − R + i)R+2
dy.

(A.3)

Making the transformation s = y/(y + N − R + i), so y = (N − R +
i)s/(1 − s) and dy = (N − R + i)(1 − s)−2ds, it follows that

Ji,R,N

= 1
(N − R + i)3

∫ (R−i)/N

0
sR−2(1 − s)2ds

= 1
(N − R + i)3

∫ (R−i)/N

0
(sR−2 − 2sR−1 + sR)ds

= 1
(N − R + i)3

(
R − i

N

)R−1
[

1
R − 1

− 2(R − i)
RN

+ (R − i)2

(R + 1)N 2

]

.

Consequently,

JR,N =
R−1∑

i=1

(−1)i−1

(N − R + i)3

(
R − i

N

)R−1(
R − 1
i − 1

)

×
[

1
R − 1

− 2(R − i)
RN

+ (R − i)2

(R + 1)N 2

]

,

thus proving the lemma. !

APPENDIX B: PROOF OF RESULTS IN SECTION 4

To find the marginal priors and posteriors for Rk , recall that the
standard conjugate prior for pk is the Dirichlet distribution Dik(a),
where a = (a1, . . . , ak, ak+1) for positive constants aj , whose density
is given by

Dik( pk | a) =
&
(∑k+1

j=1 aj

)

∏k+1
j=1 &(aj )

k+1∏

j=1

p
aj −1
j . (B.1)
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The Jeffreys’ prior πJ corresponds to (B.1) with all aj = 1/2. Another
frequently considered objective prior for pk is the constant prior πU ,

corresponding to (B.1) with all aj = 1.
Note that the reference prior πR for pk in (15) is not a special case

of (B.1).
To allow for simultaneous analysis of the conjugate class and the

reference prior, we consider the reparameterization of pk in terms of
discrete hazard rates, as given by He (2011):

hj = pj

pj + · · · + pk+1
, for j = 1, . . . , k, (B.2)

and hk+1 = 1. The ranges for the hazard rates are 0 < hi < 1. Note
that the transformation from pk = (p1, . . . , pk) to hk ≡ (h1, . . . , hk)
is one to one, and

pj =
{

hj

∏j−1
i=1 (1 − hi), if j = 1, 2, . . . , k,

∏k
i=1(1 − hi), if j = k + 1.

(B.3)

Because the ranges of hj are independent, it is natural to consider
independent beta priors

πB (h) =
k∏

j=1

1
Beta(cj , dj )

h
cj −1
j (1−hj )dj −1, 0 < h1, . . . , hk<1. (B.4)

The following results show that the three objective priors, πU , πJ , πR ,
are all special cases of (B.4). Their proofs can be found in He (2011).

Lemma B.1.

(a) The conditional prior of Rk given hk is

p(Rk |N, hk) = N !
∏k+1

j=1 Rj !

k∏

j=1

h
Rj

j (1 − hj )Rj+1+···+Rk+Rk+1 .

(b) If pk has the Dirichlet distribution (B.1), then h1, . . . , hk are
independent, and hj has a beta (aj , aj+1 + · · · + ak+1) distribu-
tion.

(c) The one-at-a-time reference prior πR is equivalent to h1, . . . , hk

being iid Beta (1/2, 1/2).
(d) If hj has the independent Beta (cj , dj ) prior, the marginal mass

function of Rk is

p(Rk | N ) = N !
∏k+1

j=1 Rj !






k∏

j=1

1
Beta(cj , dj )






×
k∏

j=1

Beta(cj + Rj , dj + Rj+1 + · · · + Rk+1).

Proof of Theorem 4.1.

(a) For the Jeffreys’ prior, we have cj = 1/2 and dj = (k + 1 −
j )/2. Then,

pJ (Rk | N )

= N !
∏k+1

j=1 Rj !

k∏

j=1

&
(

k+1−j

2 + 1
2

)
√

π &
(

k+1−j

2

)
k∏

j=1

×
&
(
Rj + 1

2

)
&
(
Rj+1 + · · · + Rk+1 + k+1−j

2

)

&
(
Rj + Rj+1 + · · · + Rk+1 + k+2−j

2

)

= N !
Rk+1!






k∏

j=1

&
(
Rj + 1

2

)
√

π &(Rj + 1)





&
(

k+1
2

)

&
(

1
2

)
&
(
Rk+1 + 1

2

)

&
(
N + k+1

2

)

=
{

k+1∏

i=1

f (Ri)

}
N !&

(
k+1

2

)

&
(
N + k+1

2

) , Rk ∈ Rk,N .

(b) For the reference prior, from Lemma B.1, we have cj = dj =
1/2. Then,

pR(Rk | N )

= N !
∏k+1

j=1 Rj !

k∏

j=1

&
(
Rj + 1

2

)
&
(
Rj+1 + · · · + Rk+1 + 1

2

)

π&
(
Rj + Rj+1 + · · · + Rk+1 + 1

)

=
k+1∏

j=1

&
(
Rj + 1

2

)
√

π&(Rj + 1)

k∏

j=2

&
(
Rj + · · · + Rk+1 + 1

2

)
√

π&(Rj + · · · + Rk+1 + 1)

=






k+1∏

i=1

f (Ri)











k∏

j=2

f (Rj + · · · + Rk + Rk+1)






=






k+1∏

i=1

f (Ri)











k∏

i=2

f (N−R1− · · · −Ri−1)




, Rk ∈ Rk,N .

Theorem 4.1 is proved. !
The following lemma gives uniform results on the class of indepen-

dent beta priors for hj . It is useful in deriving the posteriors of Rk in
Theorem 4.3. Its proof is omitted.

Lemma B.2. Assume the independent beta prior (B.4).

(a) The marginal likelihood of rk has the same form as (B.5), re-
placing N by n. That is, for rk ∈ Rk,n,

p(rk | n) = n!
∏k+1

j=1 rj !






k∏

j=1

1
Beta(cj , dj )






×
k∏

j=1

Beta(cj + rj , dj + rj+1 + · · · + rk+1). (B.5)

(b) The marginal posterior mass function of Rk ∈ Rk,N given rk is

π (Rk | rk, n, N ) = (N − n)!
∏k+1

j=1(Rj − rj )!

k∏

j=1

× Beta(cj +Rj , dj +Rj+1+ · · · +Rk+1)
Beta(cj +rj , dj +rj+1+ · · · +rk+1)

.

(B.6)

[Received October 2009. Revised September 2011.]
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