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Overall Objective Priors∗
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Abstract. In multi-parameter models, reference priors typically depend on the
parameter or quantity of interest, and it is well known that this is necessary
to produce objective posterior distributions with optimal properties. There are,
however, many situations where one is simultaneously interested in all the param-
eters of the model or, more realistically, in functions of them that include aspects
such as prediction, and it would then be useful to have a single objective prior
that could safely be used to produce reasonable posterior inferences for all the
quantities of interest. In this paper, we consider three methods for selecting a sin-
gle objective prior and study, in a variety of problems including the multinomial
problem, whether or not the resulting prior is a reasonable overall prior.
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1 Introduction
1.1 The problem

Objective Bayesian methods, where the formal prior distribution is derived from the
assumed model rather than assessed from expert opinions, have a long history (see
e.g., Bernardo and Smith, 1994; Kass and Wasserman, 1996, and references therein).
Reference priors (Bernardo, 1979, 2005; Berger and Bernardo, 1989, 1992a,b, Berger,
Bernardo and Sun, 2009, 2012) are a popular choice of objective prior. Other interesting
developments involving objective priors include Clarke and Barron (1994), Clarke and
Yuan (2004), Consonni, Veronese and Gutiérrez-Peña (2004), De Santis et al. (2001), De
Santis (2006), Datta and Ghosh (1995a; 1995b), Datta and Ghosh (1996), Datta et al.
(2000), Ghosh (2011), Ghosh, Mergel and Liu (2011), Ghosh and Ramamoorthi (2003),
Liseo (1993), Liseo and Loperfido (2006), Sivaganesan (1994), Sivaganesan, Laud and
Mueller (2011) and Walker and Gutiérrez-Peña (2011).

In single parameter problems, the reference prior is uniquely defined and is invari-
ant under reparameterization. However, in multiparameter models, the reference prior
depends on the quantity of interest, e.g., the parameter concerning which inference is
being performed. Thus, if data x are assumed to have been generated from p(x |ω),
with ω ∈ Ω ⊂ $k, and one is interested in θ(ω) ∈ Θ ⊂ $, the reference prior πθ(ω),
will typically depend on θ; the posterior distribution, πθ(ω | x) ∝ p(x |ω)πθ(ω), thus
also depends on θ, and inference for θ is performed using the corresponding marginal
reference posterior for θ(ω), denoted πθ(θ | x). The dependence of the reference prior
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on the quantity of interest has proved necessary to obtain objective posteriors with ap-
propriate properties – in particular, to have good frequentist coverageproperties (when
attainable) and to avoid marginalization paradoxes and strong inconsistencies.

There are however many situations where one is simultaneously interested in all the
parameters of the model or perhaps in several functions of them. Also, in prediction and
decision analysis, parameters are not themselves the object of direct interest and yet an
overall prior is needed to carry out the analysis. Another situation in which having an
overall prior would be beneficial is when a user is interested in a non-standard quantity
of interest (e.g., a non-standard function of the model parameters), and is not willing or
able to formally derive the reference prior for this quantity of interest. Computation can
also be a consideration; having to separately do Bayesian computations with a different
reference prior for each parameter can be onerous. Finally, when dealing with non-
specialists it may be best pedagogically to just present them with one overall objective
prior, rather than attempting to explain the technical reasons for preferring different
reference priors for different quantities of interest.

To proceed, let θ = θ(ω) = {θ1(ω), . . . , θm(ω)} be the set of m > 1 functions of
interest. Our goal is to find a joint prior π(ω) whose corresponding marginal posteriors,
{π(θi | x)}m

i=1, are sensible from a reference prior perspective. This is not a well-defined
goal, and so we will explore various possible approaches to the problem.

Example 1.1. Multinomial Example: Suppose x = (x1, . . . , xm) is multinomial
Mu(x | n; θ1, . . . , θm), where

∑m
i=1 xi = n, and

∑m
i=1 θi = 1. In Berger and Bernardo

(1992b), the reference prior is derived when the parameter θi is of interest, and this
is a different prior for each θi, as given in the paper. The reference prior for θi results
in a Beta reference marginal posterior Be(θi | xi + 1

2 , n − xi + 1
2 ). We would like to

identify a single joint prior for θ whose marginal posteriors could be expected to
be close to each of these reference marginal posteriors, in some average sense.

1.2 Background

It is useful to begin by recalling earlier efforts at obtaining an overall reference prior.
There have certainly been analyses that can be interpreted as informal efforts at ob-
taining an overall reference prior. One example is given in Berger and Sun (2008) for
the five parameter bivariate normal model. Priors for all the quantities of interest that
had previously been considered for the bivariate normal model (21 in all) were studied
from a variety of perspectives. One such perspective was that of finding a good over-
all prior, defined as one which yielded reasonable frequentist coverage properties when
used for at least the most important quantities of interest. The conclusion was that the
prior πo(µ1, µ2,σ1,σ2, ρ) = 1/[σ1σ2(1− ρ2)], where the µi are the means, the σi are the
standard deviations, and ρ is the correlation in the bivariate normal model, was a good
choice for the overall prior.

We now turn to some of the more formal efforts to create an overall objective prior.

Invariance-based priors

If p(x |ω) has a group invariance structure, then the recommended objective prior is
typically the right-Haar prior. Often this will work well for all parameters that define the



J. O. Berger, J. M. Bernardo, and D. Sun 191

invariance structure. For instance, if the sampling model is N(xi | µ,σ), the right-Haar
prior is π(µ,σ) = σ−1, and this is fine for either µ or σ (yielding the usual objective
posteriors). Such a nice situation does not always obtain, however.

Example 1.2. Bivariate Normal Distribution: The right-Haar prior is not
unique for the bivariate normal problem. For instance, two possible right-Haar
priors are π1(µ1, µ2,σ1,σ2, ρ) = 1/[σ2

1(1− ρ2)] and π2(µ1, µ2,σ1,σ2, ρ) = 1/[σ2
2(1−

ρ2)]. In Berger and Sun (2008) it is shown that πi is fine for µi, σi and ρ, but leads
to problematical posteriors for the other mean and standard deviation.

The situation can be even worse if the right-Haar prior is used for other parameters
that can be considered.

Example 1.3. Multi-Normal Means: Let xi be independent normal with mean
µi and variance 1, for i = 1, · · · , m. The right-Haar prior for µ = (µ1, . . . , µm) is
just a constant, which is fine for each of the individual normal means, resulting
in a sensible N(µi | xi, 1) posterior for each individual µi. But this prior is bad for
overall quantities such as θ = 1

m |µ|2 = 1
m

∑m
i=1 µ2

i , as discussed in Stein (1959)
and Bernardo and Smith (1994, p. 365). For instance, the resulting posterior mean
of θ is [1 + 1

m

∑m
i=1 x2

i ], which is inconsistent as m → ∞ (assuming 1
m

∑m
i=1 µ2

i has
a limit); indeed, it is easy to show that then [1 + 1

m

∑m
i=1 x2

i ] → [θT + 2], where
θT is the true value of θ. Furthermore, the posterior distribution of θ concentrates
sharply around this incorrect value.

Constant and vague proper priors

Laplace (1812) advocated use of a constant prior as the overall objective prior and
this approach, eventually named inverse probability, dominated statistical practice for
over 100 years. But the problems of a constant prior are well-documented, including the
following:

(i) Lack of invariance to transformation, the main criticism directed at Laplace’s
approach.

(ii) Frequent posterior impropriety.

(iii) Possible terrible performance, as in the earlier multi-normal mean example.

Vague proper priors (such as a constant prior over a large compact set) are per-
ceived by many as being adequate as an overall objective prior, but they too have well-
understood problems. Indeed, they are, at best, equivalent to use of a constant prior,
and so inherit most of the flaws of a constant prior. In the multi-normal mean example,
for instance, use of N(µi | 0, 1000) vague proper priors results in a posterior mean for θ
that is virtually identical to the inconsistent posterior mean from the constant prior.

There is a common misperception that vague proper priors are safer than a constant
prior, since a proper posterior is guaranteed with a vague proper prior but not for a
constant prior. But this actually makes vague proper priors more dangerous than a
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constant prior. When the constant prior results in an improper posterior distribution,
the vague proper prior will yield an essentially arbitrary posterior, depending on the
degree of vagueness that is chosen for the prior. And to detect that the answer is
arbitrary, one has to conduct a sensitivity study concerning the degree of vagueness,
something that can be difficult in complex problems when several or high-dimensional
vague proper priors are used. With the constant prior on the other hand, the impropriety
of the posterior will usually show up in the computation—the Markov Chain Monte
Carlo (MCMC) will not converge—and hence can be recognized.

Jeffreys-rule prior

The Jeffreys-rule prior (Jeffreys, 1946, 1961) is the same for all parameters in a model,
and is, hence, an obvious candidate for an overall prior. If the data model density is
p(x |θ) the Jeffeys-rule prior for the unknown θ = {θ1, . . . , θm} has the form

π(θ1, . . . , θm) = |I(θ)|1/2,

where I(θ) is the m × m Fisher information matrix with (i, j) element

I(θ)ij = Ex | θ

[
− ∂2

∂θi∂θj
log p(x |θ)

]
.

This is the optimal objective prior (from many perspectives) for regular one-parameter
models, but has problems for multi-parameter models. For instance, the right-Haar prior
in the earlier multi-normal mean problem is also the Jeffreys-rule prior there, and was
seen to result in an inconsistent estimator of θ. Even for the basic N(xi | µ,σ) model, the
Jeffreys-rule prior is π(µ,σ) = 1/σ2, which results in posterior inferences for µ and σ
that have the wrong ‘degrees of freedom.’

For the bivariate normal example, the Jeffreys-rule prior is 1/[σ2
1σ

2
2(1 − ρ2)2]; this

yields the natural marginal posteriors for the means and standard deviations, but results
in quite inferior objective posteriors for ρ and various derived parameters, as shown in
Berger and Sun (2008). More, generally, the Jeffreys-rule prior for a covariance matrix
is studied in Yang and Berger (1994), and shown to yield a decidedly inferior posterior.

There have been efforts to improve upon the Jeffreys-rule prior, such as consideration
of the “independence Jeffreys-rule prior,” but a general alternative definition has not
resulted.

Finally, consider the following well-known example, which suggests problems with the
Jeffreys-rule prior even when it is proper.

Example 1.4. Multinomial Distribution (continued): Consider the multino-
mial example where the sample size n is small relative to the number of classes m;
thus we have a large sparse table. The Jeffreys-rule prior is the proper prior,

π(θ1, . . . , θm) ∝
∏m

i=1 θ
−1/2
i , but is not a good candidate for the overall prior.

For instance, suppose n = 3 and m = 1000, with x240 = 2, x876 = 1, and all the
other xi = 0. The posterior means resulting from use of the Jeffreys-rule prior are

E[θi | x] =
xi + 1/2∑m

i=1(xi + 1/2)
=

xi + 1/2

n + m/2
=

xi + 1/2

503
,
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so E[θ240 | x] = 2.5
503 , E[θ876 | x] = 1.5

503 , E[θi | x] = 0.5
503 otherwise. So, cells 240 and 876

only have total posterior probability of 4
503 = 0.008 even though all 3 observations

are in these cells. The problem is that the Jeffreys-rule prior effectively added 1/2
to the 998 zero cells, making them more important than the cells with data! That
the Jeffreys-rule prior can encode much more information than is contained in the
data is hardly desirable for an objective analysis.

An alternative overall prior that is sometimes considered is the uniform prior on the
simplex, but this is even worse than the Jeffreys prior, adding 1 to each cell. The
prior that adds 0 to each cell is

∏
i θ

−1
i , but this results in an improper posterior if

any cell has a zero entry, a virtual certainty for very large tables.

We actually know of no multivariable example in which we would recommend the
Jeffreys-rule prior. In higher dimensions, the prior always seems to be either ‘too dif-
fuse’ as in the multinormal means example, or ‘too concentrated’ as in the multinomial
example.

Prior averaging approach

Starting with a collection of reference (or other) priors {πi(θ), i = 1, . . . , m} for differing
parameters or quantities of interest, a rather natural approach is to use an average of
the priors. Two natural averages to consider are the arithmetic mean

πA(θ) =
1

m

∑m

i=1
πi(θ) ,

and the geometric mean

πG(θ) =
∏m

i=1
πi(θ)1/m .

While the arithmetic average might seem most natural, arising from the hierarchical
reasoning of assigning each πi probability 1/m of being correct, geometric averaging
arises naturally in the definition of reference priors (Berger, Bernardo and Sun, 2009),
and also is the optimal prior if one is trying to choose a single prior to minimize the
average of the Kullback-Leibler (KL) divergences of the prior from the πi’s (a fact
of which we were reminded by Gauri Datta). Furthermore, the weights in arithmetic
averaging of improper priors are rather arbitrary because the priors have no normalizing
constants, whereas geometric averaging is unaffected by normalizing constants.

Example 1.5. Bivariate Normal Distribution (continued): Faced with the
two right-Haar priors in this problem,

π1(µ1, µ2,σ1,σ2, ρ) = σ−2
1 (1 − ρ2)−1, π2(µ1, µ2,σ1,σ2, ρ) = σ−2

2 (1 − ρ2)−1,

the two average priors are

πA(µ1, µ2,σ1,σ2, ρ) =
1

2σ2
1(1 − ρ2)

+
1

2σ2
2(1 − ρ2)

, (1)

πG(µ1, µ2,σ1,σ2, ρ) =
1

σ1σ2(1 − ρ2)
. (2)
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Interestingly, Sun and Berger (2007) show that πA is a worse objective prior than
either right-Haar prior alone, while πG is the overall recommended objective prior.

One problem with the averaging approach is that each of the reference priors can
depend on all of the other parameters, and not just the parameter of interest, θi, for
which it was created.

Example 1.6. Multinomial Example (continued): The reference prior derived
when the parameter of interest is θi actually depends on the sequential ordering
chosen for all the parameters (e.g. {θi, θ1, θ2, . . . , θi−1, θi+1, . . . , θm}) in the ref-
erence prior derivation; there are thus (m − 1)! different reference priors for each
parameter of interest. Each of these reference priors will result in the same marginal
reference posterior for θi,

πθi(θi | x) = Be(θi | xi + 1
2 , n − xi + 1

2 ),

but the full reference prior and the full posterior, πθi(θ | x), do depend on the
ordering of the other parameters. There are thus a total of m! such full reference
priors to be averaged, leading to an often-prohibitive computation.

In general, the quality of reference priors as overall priors is unclear, so there is no
obvious sense in which an average of them will make a good overall reference prior.
The prior averaging approach is thus best viewed as a method of generating interesting
possible priors for further study, and so will not be considered further herein.

1.3 Three approaches to construction of the overall prior

Common reference prior

If the reference prior that is computed for any parameter of the model (when declared
to be the parameter of interest) is the same, then this common reference prior is the
natural choice for the overall prior. This is illustrated extensively in Section 2; indeed,
the section attempts to catalogue the situations in which this is known to be the case,
so that these are the situations with a ready-made overall prior.

Reference distance approach

In this approach, one seeks a prior that will yield marginal posteriors, for each θi of
interest, that are close to the set of reference posteriors {π(θi | x)}m

i=1 (yielded by the
set of reference priors {πθi(ω)}m

i=1), in an average sense over both posteriors and data
x ∈ X .

Example 1.7. Multinomial Example (continued): In Example 1.4 consider,
as an overall prior, the Dirichlet Di(θ | a, . . . , a) distribution, having density propor-
tional to

∏
i θ

a−1
i , leading to Be(θi | xi+a, n−xi+(m−1)a) as the marginal posterior

for θi. In Section 3.2, we will study which choice of a yields marginal posteriors that
are as close as possible to the reference marginal posteriors Be(θi | xi+ 1

2 , n−xi+ 1
2 ),

arising when θi is the parameter of interest. Roughly, the recommended choice is
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a = 1/m, resulting in the overall prior πo(θ1, . . . , θm) ∝
∏m

i=1 θ
(1−m)/m
i . Note that

this distribution adds only 1/m = 0.001 to each cell in the earlier example, so that

E[θi | x] =
xi + 1/m∑m

i=1(xi + 1/m)
=

xi + 1/m

n + 1
=

xi + 0.001

4
.

Thus E[θ240 | x] ≈ 0.5, E[θ876 | x] ≈ 0.25, and E[θi | x] ≈ 1
4000 otherwise, all sensible

results.

Hierarchical approach

Utilize hierarchical modeling to transfer the reference prior problem to a ‘higher level’
of the model (following the advice of I. J. Good). In this approach one

(i) Chooses a class of proper priors π(θ | a) reflecting the desired structure of the
problem.

(ii) Forms the marginal likelihood p(x | a) =
∫

p(x | a)π(θ | a) dθ.

(iii) Finds the reference prior, πR(a), for a in this marginal model.

Thus the overall prior becomes

πo(θ) =

∫
π(θ | a)πR(a) da ,

although computation is typically easier by utilizing both θ and a in the computation
rather than formally integrating out a.

Example 1.8. Multinomial (continued) The Dirichlet Di(θ | a, . . . , a) class of
priors is natural here, reflecting the desire to treat all the θi similarly. We thus need
only to find the reference prior for a in the marginal model,

p(x | a) =

∫ (
n

x1 . . . xm

)(
m∏

i=1

θxi
i

)
Γ(ma)

Γ(a)m

m∏

i=1

θa−1
i dθ

=

(
n

x1 . . . xm

)
Γ(ma)

Γ(a)m

∏m
i=1 Γ(xi + a)

Γ(n + ma)
. (3)

The reference prior for πR(a) would just be the Jeffreys-rule prior for this marginal
model; this is computed in Section 4. The implied prior for θ is, of course

π(θ) =

∫
Di(θ | a)πR(a) da .

Interestingly, πR(a) turns out to be a proper prior, necessary because the marginal
likelihood is bounded away from zero as a → ∞.

As computations in this hierarchical setting are more complex, one might alter-
natively simply choose the Type-II maximum likelihood estimate—i.e., the value
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of a that maximizes (3)—at least when m is large enough so that the empiri-
cal Bayes procedure can be expected to be close to the full Bayes procedure.
For the data given in the earlier example (one cell having two counts, another
one count, and the rest zero counts), this marginal likelihood is proportional to
[a(a + 1)]/[(ma + 1)(ma + 2)], which is maximized at roughly a =

√
2/m. In

Section 4 we will see that it is actually considerably better to maximize the refer-
ence posterior for a, namely πR(a | x) ∝ p(x | a)πR(a), as it can be seen that the
marginal likelihood does not go to zero as a → ∞ and the mode may not even
exist.

1.4 Outline of the paper

Section 2 presents known situations in which the reference priors for any parameter (of
interest) in the model are identical. This section is thus the beginnings of a catalogue
of good overall objective priors. Section 3 formalizes the reference distance approach
and applies it to two models—the multinomial model and the normal model where
the coefficient of variation is also a parameter of interest. In Section 4 we consider
the hierarchical prior modeling approach, applying it to three models—the multinomial
model, a hypergeometric model, and the multinormal model—and misapplying it to the
bivariate normal model. Section 5 presents conclusions.

2 Common reference prior for all parameters
In this section we discuss situations where the reference prior is unique, in the sense
that it is the same no matter which of the specified model parameters is taken to
be of interest and which of the possible possible parameter orderings is used in the
derivation. (In general, a reference prior will depend on the parameter ordering used in
its derivation.) This unique reference prior is typically an excellent choice for the overall
prior.

2.1 Structured diagonal Fisher information matrix

Consider a parametric family p(x |θ) with unknown parameter θ = (θ1, θ2, · · · , θk). For
any parameter θi, let θ−i = (θ1, · · · , θi−1, θi+1, · · · , θk) denote the parameters other
than θi. The following theorem encompasses a number of important situations in which
there is a common reference prior for all parameters.

Theorem 2.1. Suppose that the Fisher information matrix of θ is of the form,

I(θ) = diag(f1(θ1)g1(θ−1), f2(θ2)g2(θ−2), · · · , fk(θm)gk(θ−k)), (4)

where fi is a positive function of θi and gi is a positive function of θ−i, for i = 1, · · · , k.
Then the one-at-a-time reference prior, for any chosen parameter of interest and any
ordering of the nuisance parameters in the derivation, is given by

πR(θ) ∝
√

f1(θ1)f2(θ2) · · · fk(θk). (5)

Proof. The result follows from Datta and Ghosh (1996).
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This prior is also what was called the independent reference prior in Sun and Berger
(1998), and is the most natural definition of an independence Jeffreys prior under con-
dition (4). Note that being the common reference prior for all of the original parameters
of interest in the model does not guarantee that πR will be the reference prior for ev-
ery potential parameter of interest (see Section 3.1) but, for the scenarios in which an
overall prior is desired, this unique reference prior for all natural parameters is arguably
optimal.

A simple case in which (4) is satisfied is when the density is of the form

p(x |θ) =
k∏

i=1

pi(xi | θi) , (6)

with x decomposable as x = (x1, . . . , xk). In this case the (common to all parameters)
reference prior is simply the product of the reference priors for each of the separate
models pi(xi | θi); this is also the Jeffreys-rule prior.

Bivariate binomial distribution

Crowder and Sweeting (1989) consider the following bivariate binomial distribution,
whose probability density is given by

p(r, s | θ1, θ2) =

(
m

r

)
θr
1(1 − θ1)

m−r

(
r

s

)
θs
2(1 − θ2)

r−s,

where 0 < θ1, θ2 < 1, and s and r are nonnegative integers satisfying 0 ≤ s ≤ r ≤ n.
The Fisher information matrix for (θ1, θ2) is given by

I(θ1, θ2) = n diag[{θ1(1 − θ1)}−1, θ1{θ2(1 − θ2)}−1] ,

which is of the form (4). (Note that this density is not of the form (6).) Hence the
reference prior, when either θ1 or θ2 are the parameter of interest, is

πR(θ1, θ2) ∝ {θ1(1 − θ1)θ2(1 − θ2)}−
1
2 ,

i.e., independent Beta, Be(θi | 1/2, 1/2) distributions for θ1 and θ2; this reference prior
was first formally derived for this model by Polson and Wasserman (1990). This is thus
the overall recommended prior for this model.

Multinomial distribution for directional data

While we have already seen that determining an overall reference prior for the multino-
mial distribution is challenging, there is a special case of the distribution where doing
so is possible. This happens when the cells are ordered or directional. For example,
the cells could be grades for a class such as A, B, C, D, and F; outcomes from an
attitude survey such as strongly agree, agree, neutral, disagree, and strongly disagree;
or discrete survival times. Following Example 1.1 (multinomial example), with this cell
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ordering, there is a natural reparameterization of the multinomial probabilities into the
conditional probabilities

ξj =
θj

θj + · · · + θm
, for j = 1, · · · , m − 1 . (7)

Here ξj is the conditional probability of an observation being in cell j given that the
observation is in cells j to m. The Fisher information matrix of (ξ1, · · · , ξm−1) is

I∗(ξ1, ξ2 · · · , ξm−1) = n diag(η1, · · · , ηm−1), (8)

where

δj =
1

ξj(1 − ξj)

j−1∏

i=1

(1 − ξi),

for j = 1, · · · , m − 1. Clearly (8) is of the form (4), from which it immediately follows
that the one-at-a-time reference prior for any of the parameters (ξ1, ξ2 · · · , ξm−1) (and
any ordering of them in the derivation) is the product of independent Beta (1/2, 1/2)
distributions for the ξj for j = 1, . . . m − 1. This is the same as Berger and Bernardo’s
(1992b) reference prior for this specific ordering of cells.

A two-parameter exponential family

Bar-Lev and Reiser (1982) considered the following two-parameter exponential family
density:

p(x | θ1, θ2) = a(x) exp{θ1U1(x) − θ1G
′
2(θ2)U2(x) − ψ(θ1, θ2)}, (9)

where the Ui(·) are to be specified, θ1 < 0, θ2 = E{U2(X) | (θ1, θ2)}, the Gi(·)’s, are in-
finitely differentiable functions with G′′

i > 0, and ψ(θ1, θ2) = −θ1{θ2G′
2(θ2)−G2(θ2)}+

G1(θ2). This is a large class of distributions, which includes, for suitable choices of G1,
G2, U1 and U2, many popular statistical models such as the normal, inverse normal,
gamma, and inverse gamma. Table 1, reproduced from Sun (1994), indicates how each
distribution arises.

Table 1. Special cases of Bar-Lev and Reiser’s (1982) two parameter exponential family,
where h(θ1) = −θ1 + θ1 log(−θ1) + log(Γ(−θ1)).

G1(θ1) G2(θ2) U1(x) U2(x) θ1 θ2

Normal (µ,σ) −1
2 log(−2θ1) θ2

2 x2 x −1/(2σ2) µ

Inverse Gaussian −1
2 log(−2θ1) 1/θ2 1/x x −α/2

√
α/µ

Gamma h(θ1) − log θ2 − log x x −α µ
Inverse Gamma h(θ1) − log θ2 log x 1/x −α µ

The Fisher information matrix of (θ1, θ2) based on (10) is

I(θ1, θ2) =

(
G′′

1(θ1) 0
0 −θ1G′′

2(θ2)

)
,
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which is of the form (4). Thus, when either θ1 or θ2 is the parameter of interest, the
one-at-a-time reference prior (first shown in Sun and Ye (1996)) is

πR(θ1, θ2) =
√

G′′
1(θ1)G′′

2(θ2). (10)

For the important special case of the Inverse Gaussian density,

p(x |α,ψ) = (α/2πx3)1/2 exp
{
−1

2
αx(1/x − ψ)2

}
, x > 0 (11)

where α > 0,ψ > 0, the common reference prior (and overall recommended prior) is

πR(α,ψ) ∝ 1

α
√
ψ

. (12)

The resulting marginal posteriors of α and ψ can be found in Sun and Ye (1996).

For the important special case of the Gamma (α, µ) density,

p(x |α, µ) = ααxα−1 exp(−αx/µ)/{Γ(α)µα}, (13)

the common reference prior (and overall recommended prior) is

πR(α, µ) ∝
√

αξ(α) − 1√
αµ

, (14)

where ξ(α) = (∂2/∂α2) log{Γ(α)} is the polygamma function. The resulting marginal
posteriors of α and µ can be found in Sun and Ye (1996).

A stress-strength model

Consider the following stress-strength system, where Y , the strength of the system, is
subject to stress X. The system fails at any moment the applied stress (or load) is
greater than the strength (or resistance). The reliability of the system is then given by

θ = P (X ≤ Y ) . (15)

An important instance of this situation was described in Enis and Geisser (1971),
where X1, · · · , Xm, and Y1, · · · , Yn are independent random samples from exponential
distributions with unknown means η1 and η2, in which case

θ = η1/(η1 + η2) . (16)

As the data density is of the form (6), the (common to all parameters) reference prior
is easily seen to be πR(η1, η2) = 1/(η1η2), which is also the Jeffreys prior as noted in
Enis and Geisser (1971). Our interest, however, is primarily in θ. Defining the nuisance

parameter to be ψ = η(m+n)/n
1 η(m+n)/m

2 , the resulting Fisher information matrix is

I(θ,ψ) = diag

(
mn

(m + n)θ2(1 − θ)2
, m2n2

(m + n)3ψ2

)
,
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again of the form (4). So the Jeffreys prior and the one-at-a-time reference prior of
any ordering for θ and ψ is πR(θ,ψ) = 1/{θ(1 − θ)ψ}, which can be seen to be the
transformed version of πR(η1, η2) = 1/(η1η2). So the Jeffreys prior is also the one-at-a-
time reference prior for θ. Ghosh and Sun (1998) showed that this prior is the second
order matching prior for θ when m/n → a > 0.

2.2 Other scenarios with a common reference prior

A common reference prior can exist in scenarios not covered by Theorem 2.1. Two such
situations are considered here, the first which leads to a fine overall prior and the second
which does not.

The location-scale family

Consider the location-scale family having density

p(x | µ,σ) =
1

σ
g
(x − µ

σ

)
,

where g is a specified density function and µ ∈ IR and σ > 0 are both unknown. The
Fisher information of (µ,σ) is

I(µ,σ) =
1

σ2

( ∫ [g′(y)]2

g(y) dy
∫

{y [g′(y)]2

g(y) + g′(y)}dy
∫

{y [g′(y)]2

g(y) + g′(y)}dy
∫ [yg′(y)+g(y)]2

g(y) dy

)
. (17)

Although this is not of the form (4), it is easy to see that the one-at-a-time reference
prior for either µ or σ is πR(µ,σ) = 1/σ. This prior is also the right-Haar prior for the
location-scale group, and known to result in Bayes procedures with optimal frequentist
properties. Hence it is clearly the recommended overall prior.

Unnatural parameterizations

A rather unnatural parameterization for the bivariate normal model arises by defining
ψ1 = 1/σ1,ψ2 = 1/

√
σ2

2(1 − ρ2), and ψ3 = −ρσ2/σ1. From Berger and Sun (2008), the
Fisher information matrix for the parameterization (ψ1,ψ2,ψ3, µ1, µ2) is

I = diag
( 2

ψ2
1

,
2

ψ2
2

,
ψ2

2

ψ2
1

,Σ−1
)
, (18)

where Σ−1 =

(
ψ2

1 + ψ2
2ψ

2
3 ψ2

2ψ3

ψ2
2ψ3 ψ2

2

)
. While this is not of the form (4), direct compu-

tation shows that the one-at-a-time reference prior for any of these five parameters and
under any ordering is

πR(ψ1,ψ2,ψ3, µ1, µ2) =
1

ψ1ψ2
. (19)

Unfortunately, this is equivalent to the right Haar prior, πH(σ1,σ2, ρ, µ1, µ2) = 1
σ2
1(1−ρ2) ,

which we have argued is not a good overall prior. This suggests that the parameters
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used in this ‘common reference prior’ approach need to be natural, in some sense, to
result in a good overall prior.

3 Reference distance approach
Recall that the goal is to identify a single overall prior π(ω) that can be systematically
used for all the parameters θ = θ(ω) = {θ1(ω), . . . , θm(ω)} of interest. The idea of the
reference distance approach is to find a π(ω) whose corresponding marginal posteriors,
{π(θi | x)}m

i=1 are close, in an average sense, to the reference posteriors {πi(θi | x)}m
i=1

arising from the separate reference priors {πθi(ω)}m
i=1 derived under the assumption

that each of the θi’s is of interest. (In situations where reference priors are not unique
for a parameter of interest, we assume other considerations have been employed to select
a preferred reference prior.) In the remainder of the paper, θ will equal ω, so we will
drop ω from the notation.

We first consider the situation where the problem has an exact solution.

3.1 Exact solution

If one is able to find a single joint prior π(θ) whose corresponding marginal posteriors
are precisely equal to the reference posteriors for each of the θi’s, so that, for all x ∈ X ,

π(θi | x) = πi(θi | x), i = 1, . . . , m , (20)

then it is natural to argue that this should be an appropriate solution to the problem.
The most important situation in which this will happen is when there is a common
reference prior for each of the parameters, as discussed in Section 2. It is conceivable
that there could be more than one overall prior that would satisfy (20); if this were to
happen it is not clear how to proceed.

Example 3.1. Univariate normal data. Consider data x which consist of a random
sample of normal observations, so that p(x |θ) = p(x | µ,σ) =

∏n
i=1 N(xi | µ,σ), and

suppose that one is equally interested in µ (or any one-to-one transformation of µ)
and σ (or any one-to-one transformation of σ, such as the variance σ2, or the
precision σ−2.) The common reference prior when any of these is the quantity of
interest is known to be the right Haar prior πµ(µ,σ) = πσ(µ,σ) = σ−1, and this
is thus an exact solution to the overall prior problem under the reference distance
approach (as is also clear from Section 2.2, since this is a location-scale family).

Interestingly, this prior also works well for making joint inferences on (µ,σ) in
that it can be verified that the corresponding joint credible regions for (µ,σ) have
appropriate coverage properties. This does not mean, of course, that the overall
prior is necessarily good for any function of the two parameters. For instance, if
the quantity of interest is the centrality parameter θ = µ/σ, the reference prior is
easily found to be πθ(θ,σ) = (1 + 1

2θ
2)−1/2σ−1 (Bernardo, 1979), which is not the

earlier overall reference prior. Finding a good overall prior by the reference distance
situation when this is added to the list of parameters of interest is considered in
Section 3.2.
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3.2 Reference distance solution

When an exact solution is not possible, it is natural to consider a family of candidate
prior distributions, F = {π(θ | a), a ∈ A}, and choose, as the overall prior, the distri-
bution from this class which yields marginal posteriors that are closest, in an average
sense, to the marginal reference posteriors.

Directed logarithmic divergence

It is first necessary to decide how to measure the distance between two distributions.
We will actually use a divergence, not a distance, namely the directed logarithmic or
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) given in the following
definition.

Definition 1. Let p(ψ) be the probability density of a random vector ψ ∈ Ψ, and con-
sider an approximation p0(ψ) with the same or larger support. The directed logarithmic
divergence of p0 from p is

κ{p0 | p} =

∫

Ψ
p(ψ) log

p(ψ)

p0(ψ)
dψ ,

provided that the integral exists.

The non-negative directed logarithmic divergence κ{p0 | p} is the expected log-density
ratio of the true density over its approximation; it is invariant under one-to-one transfor-
mations of the random vector ψ; and it has an operative interpretation as the amount of
information (in natural information units or nits) which may be expected to be required
to recover p from p0. It was first proposed by Stein (1964) as a loss function and, in a
decision-theoretic context, it is often referred to as the entropy loss.

Weighted logarithmic loss

Suppose the relative importance of the θi is given by a set of weights {w1, . . . , wm}, with
0 < wi < 1 and

∑
i wi = 1. A natural default value for these is obviously wi = 1/m, but

there are many situations where this choice may not be appropriate; in Example 1.3
for instance, one might give θ considerably more weight than the means µi. To define
the proposed criterion, we will also need to utilize the reference prior predictives for
i = 1, . . . , m,

pθi(x) =

∫

Θ
p(x |θ)πθi(θ) dθ .

Definition 2. The best overall prior πo(θ) within the family F = {π(θ | a), a ∈ A}
is defined as that—assuming it exists and is unique—which minimizes the weighted
average expected logarithmic loss, so that

πo(θ) = π(θ | a∗), a∗ = arg inf
a∈A

d(a),

d(a) =
m∑

i=1

wi

∫

X
κ{πθi(· | x, a) |πθi(· | x)} pθi(x) dx, a ∈ A .
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This can be rewritten, in terms of the sum of expected risks, as

d(a) =
m∑

i=1

wi

∫

Θ
ρi(a |θ)πθi(θ) dθ, a ∈ A ,

where

ρi(a |θ) =

∫

X
κ{πθi(· | x, a) |πθi(· | x)} p(x |θ) dx, θ ∈ Θ.

Note that there is no assurance that d(a) will be finite if the reference priors are
improper. Indeed, in cases we have investigated with improper reference priors, d(a) has
failed to be finite and hence the reference distance approach cannot be directly used.
However, as in the construction of reference priors, one can consider an approximating
sequence of proper priors {πθi(θ | k), k = 1, 2 . . .} on increasing compact sets. For each
of the πθi(θ | k), one can minimize the expected risk

d(a | k) =
m∑

i=1

wi

∫

Θ
ρi(a |θ)πθi(θ | k) dθ,

obtaining a∗
k = arg infa∈A d(a | k). Then, if a∗ = limk→∞ a∗

k exists, one can declare this
to be the solution.

Multinomial model

In the multinomial model with m cells and parameters {θ1, . . . , θm}, with
∑m

i=1 θi = 1,
the reference posterior for each of the θi’s is πi(θi | x) = Be(θi | xi+ 1

2 , n−xi+ 1
2 ), while the

marginal posterior distribution of θi resulting from the joint prior Di(θ1, . . . , θm−1 | a) is
Be(θi | xi + a, n− xi + (m− 1)a). The directed logarithmic discrepancy of the posterior
Be(θi | xi +a, n−xi +(m−1)a) from the reference posterior Be(θi | xi + 1

2 , n−xi + 1
2 ) is

κi{a | x, m, n} = κi{a | xi, m, n} = κBe{xi + a, n − xi + (m − 1)a | xi + 1
2 , n − xi + 1

2}

where

κBe{α0,β0 |α,β} =

∫ 1

0
Be(θi |α,β) log

[ Be(θi |α,β)

Be(θi |α0,β0)

]
dθi

= log

[
Γ(α + β)

Γ(α0 + β0)

Γ(α0)

Γ(α)

Γ(β0)

Γ(β)

]

+ (α− α0)ψ(α) + (β − β0)ψ(β) − ((α + β) − (α0 + β0))ψ(α + β),

and ψ(·) is the digamma function.

The divergence κi{a | xi, m, n} between the two posteriors of θi depends on the data
only through xi and the sampling distribution of xi is Binomial Bi(xi | n, θi), which only
depends of θi. Moreover, the marginal reference prior for θi is πθi(θi) = Be(θi | 1/2, 1/2)
and, therefore, the corresponding reference predictive for xi is

p(xi | n) =

∫ 1

0
Bi(xi | n, θi) Be(θi | 1/2, 1/2) dθi =

1

π

Γ(xi + 1
2 )Γ(n − xi + 1

2 )

Γ(xi + 1)Γ(n − xi + 1)
.
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Figure 1: Expected logarithmic losses, when using a Dirichlet prior with parameter
{a, . . . , a}, in a multinomial model with m cells, for sample sizes n = 5, 10, 25, 100 and
500. The panels are for m = 10, 100, 200 and 1000. In all cases, the optimal value for all
sample sizes is a∗ ≈ 0.8/m.

Hence, using Definition 2 with uniform weights, the average expected logarithmic loss
of using a joint Dirichlet prior with parameter a with a sample of size n is simply

d(a | m, n) =
n∑

x=0

κ{a | x, m, n} p(x | n)

since, by the symmetry of the problem, the m parameters {θ1, . . . , θm} yield the same
expected loss.
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The function d(a | m = 10, n) is graphed in the upper left panel of Figure 1 for several
values of n. The expected loss decreases with n and, for any n, the function d(a | m, n)
is concave, with a unique minimum numerically found to be at a∗ ≈= 0.8/m = 0.08.
The approximation is rather precise. For instance, the minimum is achieved at 0.083 for
n = 100.

Similarly, the function d(a | m = 1000, n) is graphed in the lower right panel of Figure 1
for the same values of n and with the same vertical scale, yielding qualitatively similar
results although, as one may expect, the expected losses are now larger than those
obtained with m = 10. Once more, the function d(a | m = 1000, n) is concave, with a
unique minimum numerically found to be at a∗ ≈ 0.8/m = 0.0008, with the exact value
very close. For instance, for n = 100, the minimum is achieved at 0.00076.

If can be concluded that, for all practical purposes when using the reference dis-
tance approach, the best global Dirichlet prior, when one is interested in all the pa-
rameters of a multinomial model, is that with parameter vector {1/m, . . . , 1/m} (or
0.8 × {1/m, . . . , 1/m} to be slightly more precise), yielding an approximate marginal
reference posterior for each of the θi’s as Be(θi | xi + 1/m, n− xi + (m− 1)/m), having
mean and variance

E[θi | xi, n] = θ̂i = (xi + 1/m)/(n + 1), Var[θi | xi, n] = θ̂i(1 − θ̂i)/(n + 2).

The normal model with coefficient of variation

Consider a random sample z = {x1, . . . , xn} from a normal model N(x | µ,σ), with both
parameters unknown, and suppose that one is interested in µ and σ, but also in the
standardized mean φ = µ/σ (and/or any one-to-one function of them such as log σ, or
the coefficient of variation σ/µ).

The joint reference prior when either µ or σ are the quantities of interest is

πµ(µ,σ) = πσ(µ,σ) = σ−1 (21)

and this is known to lead to the Student and squared root Gamma reference posteriors

πref
µ (µ | z) = St(µ | x, s/

√
n − 1, n − 1) , πref

σ (σ | z) = Ga−1/2(σ | (n − 1)/2, ns2/2),

with nx =
∑n

i=1 xi and ns2 =
∑n

i=1(xi − x)2, which are proper if n ≥ 2, and have the
correct probability matching properties. However, the reference prior if φ is the param-
eter of interest is πφ(φ,σ) = (2 + φ2)−1/2σ−1 (Bernardo, 1979), and the corresponding
reference posterior distribution for φ can be shown to be

πref
φ (φ | z) = πref

φ (φ | t) ∝ (2 + φ2)−1/2p(t |φ) ,

where t = (
∑n

i=1 xi)/(
∑n

i=1 x2
i )

1/2 has a sampling distribution p(t |φ) depending only
on φ (see Stone and Dawid, 1972). Note that all posteriors can be written in terms of
the sufficient statistics x and s2 and the sample size n, which we will henceforth use.

A natural choice for the family of joint priors to be considered as candidates for an
overall prior is the class of relatively invariant priors (Hartigan, 1964),

F = {π(µ,σ | a) = σ−a, a > 0}
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which contains, for a = 1, the joint reference prior (21) when either µ or σ are the
parameters of interest, and the Jeffreys-rule prior, for a = 2. Since these priors are
improper, a compact approximation procedure, as described at the end of Section 3.2,
is needed. The usual compactification for location-scale parameters considers the sets

Ck = {µ ∈ (−k, k), σ ∈ (e−k, ek)}, k = 1, 2, . . . .

One must therefore derive

d(a | n, k) = dµ(a | n, k) + dσ(a | n, k) + dφ(a | n, k),

where each of the di’s is found by integrating the corresponding risk with the appropri-
ately renormalized joint reference prior. Thus,

dµ(a | n, k) =

∫

Ck

[∫

T
κ{πµ(· | n, t, a) |πref

µ (· | n, t)} p(t | n, µ,σ) dt

]
πµ(µ,σ | k) dµ dσ,

dσ(a | n, k) =

∫

Ck

[∫

T
κ{πσ(· | n, t, a) |πref

σ (· | n, t)} p(t | n, µ,σ) dt

]
πσ(µ,σ | k) dµ dσ,

dφ(a | n, k) =

∫

Ck

[∫

T
κ{πφ(· | n, t, a) |πref

φ (· | n, t)} p(t | n, µ,σ) dt

]
πφ(µ,σ | k) dµ dσ,

where t = (x, s), and the πi(µ,σ | k)’s are the joint proper prior reference densities of
each of the parameter functions obtained by truncation and renormalization in the Ck’s.

It is found that the risk associated to µ (the expected KL divergence of πµ(· | n, t, a)
from πref

µ (· | n, t) under sampling) does not depend on the parameters, so integration
with the joint prior is not required, and one obtains

dµ(a | n) = log

[
Γ[n/2]Γ[(a + n)/2 − 1]

Γ[(n − 1)/2]Γ[(a + n − 1)/2]

]
− a − 1

2

(
ψ[

n − 1

2
] − ψ[

n

2
]

)
,

where ψ[·] is the digamma function. This is a concave function with a unique minimum
d1(1 | n) = 0 at a = 1, as one would expect from the fact that the target family F
contains the reference prior for µ when a = 1. The function dµ(a | n = 10) is the lower
dotted line in Figure 2. Similarly, the risk associated to σ does not depend either of the
parameters, and one obtains

dσ(a | n, k) = dσ(a | n) = log

[
Γ[(a + n)/2 − 1]

Γ[(n − 1)/2]

]
− a − 1

2
ψ[

n − 1

2
],

another concave function with a unique minimum d2(1 | n) = 0, at a = 1. The function
dσ(a | n = 10) is the upper dotted line in Figure 2.

The risk associated with φ cannot be analytically obtained and is numerically com-
puted, using one-dimensional numerical integration over φ to obtain the KL divergence,
and Monte Carlo sampling to obtain its expected value with the truncated and renor-
malized reference prior πφ(µ,σ | k). The function dφ(a | n = 10, k = 3) is represented by
the black line in Figure 2. It may be appreciated that, of the three components of the
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Figure 2: Expected average intrinsic logarithmic losses d(a | n, k) associated with the
use of the joint prior π(µ,σ | a) = σ−a rather than the corresponding reference priors
when n = 10 and k = 3.

Figure 3: Reference posterior (solid) and marginal overall posterior (black) for φ given
a minimal random sample of size n = 2. The dotted line is the marginal posterior for
the prior with a = 2, which is the Jeffreys-rule prior.

expected loss, the contribution corresponding to φ is the largest, and that corresponding
to µ is the smallest, in the neighborhood of the optimal choice of a. The sum of the
three is the expected loss to be minimized, d(a | n, k). The function d(a | n = 10, k = 3)
is represented by the solid line in Figure 2, and has a minimum at a∗

3 = 1.016. The
sequence of numerically computed optimum values is {a∗

k} = {1.139, 1.077, 1.016, . . .}
quickly converging to some value a∗ larger than 1 and smaller than 1.016, so that, prag-
matically, the overall objective prior may be taken to be the usual objective prior for
the normal model,

πo(µ,σ) = σ−1.

It is of interest to study the difference in use of this overall prior when compared
with the reference prior for φ = µ/σ. The difference is greater for smaller samples, and
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the minimum sample size here is n = 2. A random sample of two observations from
N(x | 1, 1

2 ) (so that the true value of the standardized mean is φ = 2) was simulated
yielding {x1, x2} = {0.959, 1.341}. The corresponding reference posterior for φ is the
solid line in Figure 3. The posterior that corresponds to the recommended overall prior
a = 1 is the black line in the figure. For comparison, the posterior corresponding to the
prior with a = 2, which is Jeffreys-rule prior, is also given, as the dotted line. Thus,
even with a minimum sample size, the overall prior yields a marginal posterior for φ
which is quite close to that for the reference posterior. (This was true for essentially all
samples of size n = 2 that we tried.) For sample sizes beyond n = 4 the differences are
visually inappreciable.

4 Hierarchical approach with hyperpriors
If a natural family of proper priors π(θ | a), indexed by a single parameter a, can be
identified for a given problem, one can compute the marginal likelihood p(x | a) (nec-
essarily a proper density), and find the reference prior πR(a) for a for this marginal
likelihood. This hierarchical prior specification is clearly equivalent to use of

πo(θ) =

∫
π(θ | a)πR(a) da

as the overall prior in the original problem.

4.1 Multinomial problem

The hierarchical prior

For the multinomial problem with the Di(θ | a, . . . , a) prior, the marginal density of any
of the xi’s is

p(xi | a, m, n) =

(
n

xi

)
Γ(xi + a)Γ(n − xi + (m − 1)a)Γ(ma)

Γ(a)Γ((m − 1)a)Γ(n + ma)
,

following immediately from the fact that, marginally,

p(xi | θi) = Bi(xi | n, θi) π(θi | a) = Be(θi | a, (m − 1)a).

Then πR(a), the reference (Jeffreys) prior for the integrated model p(x | a) in (3), is
given in the following proposition:

Proposition 4.1.

πR(a | m, n) ∝




n−1∑

j=0

(
Q(j | a, m, n)

(a + j)2
− m

(ma + j)2

)


1/2

, (22)

where Q(· | a, m, n) is the right tail of the distribution of p(x | a, m, n), namely

Q(j | a, m, n) =
n∑

l=j+1

p(l | a, m, n), j = 0, . . . , n − 1.
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Proof. Computation yields that

E

[
− d2

da2
log p(x | a)

]
= −

n−1∑

j=0

m2

(ma + j)2
+ E




m∑

i=1

xi−1∑

j=0

1

(a + j)2



 , (23)

where
∑−1

j=0 ≡ 0. Since the xi are exchangeable, this equals

−
n−1∑

j=0

m2

(ma + j)2
+ mEX1




X1−1∑

j=0

1

(a + j)2



 ,

and the result follows by rearranging terms.

Proposition 4.2. πR(a) is a proper prior.

Proof. The prior is clearly continuous in a, so we only need show that it is integrable
at 0 and at ∞. Consider first the situation as a → ∞. Then

p(0 | a, m, n) =
Γ(a)Γ(n + [m − 1]a)Γ(ma)

Γ(a)Γ([m − 1]a)Γ(n + ma)

=
(m − 1)a[(m − 1)a + 1] · · · [(m − 1)a + n − 1]

ma(ma + 1) · · · (ma + n − 1)

=
(m − 1)

m
(1 − cna + O(a2)) ,

where cn = 1 + 1/2 + · · · + 1/(n − 1). Thus the first term of the sum in (22) is

1 − p(0 | a, m, n)

a2
− 1

ma2
=

(m − 1)cn

ma
+ O(1) .

All of the other terms of the sum in (22) are clearly O(1), so that

πR(a) =

√
(m − 1)cn/m√

a
+ O(

√
a) ,

as a → 0, which is integrable at zero (although unbounded).

To study propriety as a → ∞, a laborious application of Stirling’s approximation
yields

p(x1 | a, m, n) = Bi(x1 | n, 1/m)(1 + O(a−1)) ,

as a → ∞. Thus

πR(a, m, n) =




n−1∑

j=0

(∑n
l=j+1 Bi(l | n, 1/m)

a2
− 1

ma2

)
+ O(a−3)




1/2

=

[(∑n
l=1 lBi(l | n, 1/m)

a2
− n

ma2

)
+ O(a−3)

]1/2

= O(a−3/2) ,

which is integrable at infinity, completing the proof.
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As suggested by the proof above, the reference prior πR(a | m, n) behaves as O(a−1/2)
near a = 0 and behaves as O(a−2) for large a values. Using series expansions, it is
found that, for sparse tables where m/n is relatively large, the reference prior is well
approximated by the proper prior

π∗(a | m, n) =
1

2

n

m
a−1/2

(
a +

n

m

)−3/2
, (24)

which only depends on the ratio m/n, and has the behavior at the extremes described
above. This can be restated as saying that φ(a) = a/(a+(n/m)) has a Beta distribution
Be(φ | 1

2 , 1). Figure 4 gives the exact form of πR(a | m, n) for various (m, n) values,
and the corresponding approximation given by (24). The approximate reference prior
π∗(a | m, n) appears to be a good approximation to the actual reference prior, and hence
can be recommended for use with large sparse contingency tables.

Figure 4: Reference priors πR(a | m, n) (solid lines) and their approximations (dotted
lines) for (m = 150, n = 10) (upper curve) and for (m = 500, n = 10) (lower curve).

It is always a surprise when a reference prior turns out to be proper, and this seems to
happen when the likelihood does not go to zero at a limit. Indeed, it is straightforward
to show that

p(x | a) =

{
O(ar0−1), as a → 0,
(n
x

)
m−n, as a → ∞,

where r0 is the number of nonzero xi. Thus, indeed, the likelihood is constant at ∞, so
that the prior must be proper at infinity for the posterior to exist.

Computation with the hierarchical reference prior

If a full Bayesian analysis is desired, the obvious MCMC sampler is as follows:

Step 1. Use a Metropolis Hastings move to sample from the marginal posterior
πR(a | x) ∝ πR(a) p(x | a).

Step 2. Given a, sample from the usual beta posterior π(θ | a, x).
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This will be highly efficient if a good proposal distribution for Step 1 can be found. As
it is only a one-dimensional distribution, standard techniques should work well. Even
simpler computationally is the use of the approximate reference prior π∗(a | m, n) in
(24), because of the following result.

Proposition 4.3. Under the approximate reference prior (24), and provided there are
at least three nonempty cells, the marginal posterior distribution of a is log-concave.

Proof. It follows from (23) that

d2

da2
log[p(x | a)π∗(a | m, n)] =

n−1∑

j=0

m2

(ma + j)2
−

m∑

i=1

xi−1∑

j=0

1

(a + j)2
+

1

2a2
+

3

2(a + n/m)2
.

Without loss of generality, we assume that xi > 0, for i = 1, 2, 3. Then

d2

da2
log[p(x | a)p∗(a | m, n)] < −

3∑

i=2

xi−1∑

j=0

1

(a + j)2
+

1

2a2
+

3

2a2
< 0.

Thus adaptive rejection sampling (Gilks and Wild, 1992) can be used to sample from
the posterior of a.

Alternatively, one might consider the empirical Bayes solution of fixing a at its poste-
rior mode âR. The one caveat is that, when r0 = 1, it follows from (25) that the likelihood
is constant at zero, while πR(a) is unbounded at zero; hence the posterior mode will be
a = 0, which cannot be used. When r0 ≥ 2, it is easy to see that πR(a)p(x | a) goes to
zero as a → 0, so there will be no problem.

It will typically be considerably better to utilize the posterior mode than the maxi-
mum of p(x | a) alone, given the fact that the likelihood does not go to zero at ∞. For
instance, if all xi = 1, it can be shown that p(x | a) has a likelihood increasing in a, so
that there is no mode. (Even when r0 = 1, use of the mode of p(x | a) is not superior,
in that the likelihood is also maximized at 0 in that case.)

Posterior behavior as m → ∞
Since we are contemplating the “large sparse” contingency table scenario, it is of con-
siderable interest to study the behavior of the posterior distribution as m → ∞. It is
easiest to state the result in terms of the transformed variable v = ma. Let πR

m(v | x)
denote the transformed reference posterior.

Proposition 4.4.

Ψ(v) = lim
m→∞

πR
m(v | x) =

Γ(v + 1)

Γ(v + n)
v(r0− 3

2 )

[
n−1∑

i=1

i

(v + i)2

]1/2

. (25)

Proof. Note that

πR(a | x) ∝ m(x | a)πR(a)
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∝ Γ(ma)

Γ(ma + n)

[
m∏

i=1

Γ(a + xi)

Γ(a)

]
πR(a)

∝ Γ(ma)

Γ(ma + n)




∏

i:xi '=0

a(a + 1) s(a + xi − 1)



πR(a)

∝ Γ(ma)

Γ(ma + n)




n−1∏

j=0

(a + j)rj



πR(a) ,

where rj = {#xi > j}. Change of variables to v = ma yields

πR
m(v | x) ∝ Γ(v)

Γ(v + n)




n−1∏

j=0

( v

m
+ j

)rj



πR
( v

m

)

∝ Γ(v) vr0

Γ(v + n)

[
C +

n−r0∑

i=1

Ki

( v

m

)i
]
πR

( v

m

)
, (26)

where C =
∏n−1

j=2 jrj and the Ki are constants.

Next we study the behavior of πR(v/m) for large m. Note first that, in terms of v,
the marginal density of x1 = 0 is

p(0 | v) =
Γ( (m−1)

m v + n)

Γ( (m−1)
m v)

Γ(v)

Γ(v + n)

=
(m−1)

m v[ (m−1)
m v + 1] · · · [ (m−1)

m v + n − 1]

v(v + 1) · · · (v + n − 1)

=
(m − 1)

m

(
1 − v

m[v + 1]

)
· · ·

(
1 − v

m[v + n − 1]

)

=
(m − 1)

m

(
1 − v

m

n−1∑

i=1

1

v + i
+ O

(
v2

m2(v + 1)2

))
.

Hence

Q(0 | a) = 1 − p(0 | v)

=
1

m
+

v(m − 1)

m2

n−1∑

i=1

1

v + i
+ O

(
v2

m2(v + 1)2

)
= O

(
1

m

)
(uniformly in v) .

It follows that all Q(i | a) ≤ O(1/m), so that πR
(

v
m

)
is proportional to




(m

v

)2
(

1

m
+

v(m − 1)

m2

n−1∑

i=1

1

v + i

)
+O(1)+

n−1∑

j=1

1

( v
m + j)2

O

(
1

m

)
−

n−1∑

i=0

m

(v + i)2




1/2
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=

[
n−1∑

i=1

1

v + i

(
(m − 1)

v
− m

(v + i)

)
+ O(1)

]1/2

=

[
(m − 1)

v

n−1∑

i=1

i

(v + i)2
+ O(1)

]1/2

=
√

m − 1

[
1

v

n−1∑

i=1

i

(v + i)2
+ O

(
1

m

)]1/2

.

Combining this with (26), noting that vΓ(v) = Γ(v +1), and letting m → ∞, yields the
result.

It follows, of course, that a behaves like v/m for large m, where v has the distribution
in (25). It is very interesting that this “large m” behavior of the posterior depends on
the data only through r0, the number of nonzero cell observations.

If, in addition, n is moderately large (but much smaller than m), we can explicitly
study the behavior of the posterior mode of a.

Proposition 4.5. Suppose m → ∞, n → ∞, and n/m → 0. Then (25) has mode

v̂ ≈
{

(r0−1.5)
log(1+n/r0)

if r0
n → 0,

c∗n if r0
n → c < 1,

where r0 is the number of nonzero xi, c∗ is the solution to c∗ log(1 + 1
c∗ ) = c, and

f(n, m) ≈ g(n, m) means f(n, m)/g(n, m) → 1. The corresponding mode of the reference
posterior for a is âR = v̂/m.

Proof. Taking the log of (25) and differentiating with respect to v results in

Ψ′(v) =
(r0 − 1.5)

v
−

n−1∑

i=1

1

v + i
−

∑n−1
i=1

i
(v+i)3∑n−1

i=1
i

(v+i)2

.

Note first that, as n grows, and if v also grows (no faster than n), then

n−1∑

i=1

1

v + i
=

∫ n

1

1

v + x
dx+O

(
1

v + 1

)
+O

(
1

n

)
= log

(
v + n

v + 1

)
+O

(
1

v + 1

)
+O

(
1

n

)
.

Next,

n−1∑

i=1

i

(v + i)3
=

∫ n

1

x

(v + x)3
dx + O

(
1

(v + 1)2

)
+ O

(
1

n2

)

=
1

2

[
(v + 2)

(v + 1)2
− (v + 2n)

(v + n)2

]
+O

(
1

(v + 1)2
+

1

n2

)
= O

(
1

v + 1

)
+ O

(
1

n

)
,
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n−1∑

i=1

i

(v + i)2
=

∫ n

1

x

(v + x)2
dx + O

(
1

(v + 1)

)
+ O

(
1

n

)

=
v(1 + n)

(v + 1)(v + n)
+ log

(
v + n

v + 1

)
+ O

(
1

v + 1
+

1

n

)
≥ log 2,

again using that v will not grow faster than n. Putting these together we have that

Ψ′(v) =
(r0 − 1.5)

v
− log

(
v + n

v + 1

)
+ O

(
1

v + 1

)
+ O

(
1

n

)
.

Case 1. r0
n → c, for 0 < c < 1. For this case, write v = c∗n/(1 + δ) for δ small, and

note that then

Ψ′(v) =
c

c∗
(1 + o(1))(1 + δ) − log

(
(c∗ + 1)

c∗

)
+ o(1) .

Since c
c∗ − log

(
(c∗+1)

c∗

)
= 0, it is clear that δ can be appropriately chosen as o(1) to

make the derivative zero.

Case 2. r0
n → 0. Now choose v = (r0−1.5)

(1+δ) log(1+n/r0)
and note that v

n → 0. It follows
that

log

(
1 +

n

r0

)
= (log n − log r0 + o(1))(1 + δ) and

log

(
v + n

v + 1

)
= [log n − log(v + 1)](1 + o(1)) .

Consider first the case v → ∞. Then

log(v + 1) = (1 + o(1))(log r0 − log log(1 + n/r0)) = (1 + o(1)) log r0 ,

so that

Ψ′(v) = (log n − log r0 + o(1))(1 + δ) − (log n − log r0)(1 + o(1)) + o(1) ,

and it is clear that δ can again be chosen o(1) to make this zero. Lastly, if v ≤ K < ∞,
then (log r0)/(log n) = o(1), so that Ψ′(v) = (log n)(1+o(1))(1+δ)− (log n)(1+o(1))+
o(1), and δ can again be chosen o(1) to make this zero, completing the proof.

Table 1 gives the limiting behavior of v̂ for various behaviors of the number of nonzero
cells, r0. Only when r0 = log n does the posterior mode of a (i.e., v/m) equal 1/m,
the value selected by the reference distance method. Of course, this is not surprising;
empirical Bayes is using a fit to the data to help select a whereas the reference distance
method is pre-experimental.
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r0 cn (0 < c < 1) nb (0 < b < 1) (log n)b log n O(1)

v̂ c∗n nb

(1−b) log n (log n)(b−1) 1 O(1/ log n)

Table 1: The limiting behavior of v̂ as n → ∞, for various limiting behaviors of r0, the
number of non-zero cells.

4.2 Multivariate hypergeometric model

Let N+ be the set of all nonnegative integers. Consider a multivariate hypergeometric
distribution Hyk(rk | n, Rk, N) with the probability mass function

Hyk(rk | n, Rk, N) =

(R1

r1

)
· · ·

(Rk

rk

)(Rk+1

rk+1

)

(N
n

) , rk ∈ Rk,n, (27)

Rk,n = {rk = (r1, · · · , rk); rj ∈ N+, r1 + · · · + rk ≤ n},

where the k unknown parameters Rk = (R1, · · · , Rk) are in the parameter space Rk,N .
Here and in the following, Rk+1 = N − (R1 + · · · + Rk). Notice that the univariate
hypergeometric distribution is the special case when k = 1.

A natural hierarchical model for the unknown Rk is to assume that it is multinomial
Muk(Rk | N, pk), with pk ∈ Pk ≡ {pk = (p1, · · · , pk)}, 0 ≤ pj ≤ 1, and p1+· · ·+pk ≤ 1.
The probability mass function of Rk is then

Muk(Rk | N, pk) =
N !

∏k+1
j=1 Rj !

k+1∏

j=1

p
Rj

j .

Berger, Bernardo and Sun (2012) prove that the marginal likelihood of rk depends only
on (n, pk) and it is given by

p(rk | pk, n, N) = p(rk | pk, n) =
∑

Rk∈Nk,N

Hyk(rk | n, Rk, N) Muk(Rk | N, pk)

= Muk(rk | n, pk), rk ∈ Rk,n. (28)

This reduces to the multinomial problem. Hence, the overall (approximate) reference
prior for (Rk | N, pk) would be Multinomial-Dirichlet Di(Rk | 1/k, · · · , 1/k).

4.3 Multi-normal means

Let xi be independent normal with mean µi and variance 1, for i = 1 · · · , m. We are
interested in all the µi and in |µ|2 = µ2

1 + · · · + µ2
m.

The natural hierarchical prior modeling approach is to assume that µi
iid∼ N(µi | 0, τ).

Then, marginally, the xi are iid N(x1 | 0,
√

1 + τ2) and the reference (Jeffreys) prior
for τ2 in this marginal model is

πR(τ2) ∝ (1 + τ2)−1.
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The hierarchical prior for µ (and recommended overall prior) is then

πo(µ) =

∫ ∞

0

1

(2πτ2)m/2
exp

(
− |µ|2

2τ2

)
1

1 + τ2
dτ2 . (29)

This prior is arguably reasonable from a marginal reference prior perspective. For the
individual µi, it is a shrinkage prior known to result in Stein-like shrinkage estimates of
the form

µ̂i =

(
1 − r(|x|)

|x|2

)
xi ,

with r(·) ≈ p for large arguments. Such shrinkage estimates are often viewed as actually
being superior to the reference posterior mean, which is just xi itself. The reference
prior when |µ| is the parameter of interest is

π|µ|(µ) ∝ 1

|µ|m−1
∝

∫ ∞

0

1

(2πτ2)m/2
exp

(
− |µ|2

2τ2

)
1

τ
dτ2 , (30)

which is similar to (29) in that, for large values of |µ|, the tails differ by only one power.
Thus the hierarchical prior appears to be quite satisfactory in terms of its marginal
posterior behavior for any of the parameters of interest. Of course, the same could be
said for the single reference prior in (30); thus here is a case where one of the reference
priors would be fine for all parameters of interest, and averaging among reference priors
would not work.

Computation with the reference prior in (30) can be done by a simple Gibbs sampler.
Computation with the hierarchical prior in (29) is almost as simple, with the Gibbs step
for τ2 being replaced by the rejection step:

Step 1. Propose τ2 from the inverse gamma density proportional to

1

(τ2)(1+m/2)
exp

(
− |µ|2

2τ2

)
,

Step 2. Accept the result with probability τ2/(τ2 + 1) (or else propose again).

4.4 Bivariate normal problem

Earlier for the bivariate normal problem, we only considered the two right-Haar priors.
More generally, there is a continuum of right-Haar priors given as follows. Define an
orthogonal matrix by

Γ =

(
cos(β) − sin(β)
sin(β) cos(β)

)

where −π/2 < β ≤ π/2. Then it is straightforward to see that the right-Haar prior
based on the transformed data ΓX is

π(µ1, µ2,σ1,σ2, ρ |β) =
sin2(β)σ2

1 + cos2(β)σ2
2 + 2 sin(β) cos(β) ρ σ1 σ2

σ2
1 σ

2
2 (1 − ρ2)

.
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We thus have a class of priors indexed by a hyperparameter β, and it might be
tempting to try the hierarchical approach even though the class of priors is not a class
of proper priors and hence there is no proper marginal distribution to utilize in finding
the hyperprior for β. The temptation here arises because β is in a compact set and it
seems natural to use the (proper) uniform distribution (being uniform over the set of
rotations is natural.) The resulting joint prior is

πo(µ1, µ2,σ1,σ2, ρ) =
1

π

∫ π/2

−π/2
π(µ1, µ2,σ1,σ2, ρ |β) dβ ,

which equals the prior πA in (1), since

∫ π/2

−π/2
sin(β) cos(β)dβ = 0,

∫ π/2

−π/2
sin2(β)dβ =

∫ π/2

−π/2
cos2(β)dβ = constant .

Thus the overall prior obtained by the hierarchical approach is the same prior as ob-
tained by just averaging the two reference priors. It was stated there that this prior is
inferior as an overall prior to either reference prior individually, so the attempt to apply
the hierarchical approach to a class of improper priors has failed.

Empirical hierarchical approach: Instead of integrating out over β, one could find
the empirical Bayes estimate β̂ and use π(µ1, µ2,σ1,σ2, ρ | β̂) as the overall prior. This
was shown in Sun and Berger (2007) to result in a terrible overall prior, much worse
than either the individual reference priors, or even πA in (1).

5 Discussion
When every parameter of a model has the same reference prior, this prior is very natural
to use as the overall prior. A number of such scenarios were catalogued in Section 2.
This common reference prior can depend on the parameterization chosen for the models
(although it will be invariant to coordinatewise one-to-one-transformations). Indeed, an
example was given in which a strange choice of model parameterization resulted in an
inadequate common reference prior.

The reference distance approach to developing an overall prior is natural, and seems
to work well when the reference priors themselves are proper. It also appears to be pos-
sible to implement the approach in the case where the reference priors are improper, by
operating on suitable large compact sets and showing that the result is not sensitive to
the choice of compact set. Of course, the approach is dependent on the parameterization
used for the model and on having accepted reference priors available for all the param-
eters in the model; it would have been more satisfying if the overall prior depended
only on the model itself. The answer will also typically depend on weights used for the
individual reference priors, although this can be viewed as a positive in allowing more
important parameters to have more influence. The implementation considered in this
paper also utilized a class of candidate priors, with the purpose of finding the candidate
which minimized the expected risk. The result will thus depend on the choice of the
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candidate class although, in principle, one could consider the class of all priors as the
candidate class; the resulting minimization problem would be formidable, however.

The hierarchical approach seems excellent (as usual), and can certainly be recom-
mended if one can find a natural hierarchical structure based on a class of proper priors.
Such hierarchical structures naturally occur in settings where parameters can be viewed
as exchangeable random variables but may not be available otherwise. In the particu-
lar examples considered, the overall prior obtained for the multi-normal mean problem
seems fine, and the recommended hierarchical prior for the contingency table situation
is very interesting, and seems to have interesting adaptations to sparsity; the same can
be said for its empirical Bayes implementation. In contrast, the attempted application
of the hierarchical and empirical Bayes idea to the bivariate normal problem using the
class of right-Haar priors was highly unsatisfactory, even though the hyperprior was
proper. This is a clear warning that the hierarchical or empirical Bayes approach should
be based on an initial class of proper priors.

The failure of arithmetic prior averaging in the bivariate normal problem was also
dramatic; the initial averaging of two right-Haar priors gave an inferior result, which
was duplicated by the continuous average over all right-Haar priors. Curiously in this
example, the geometric average of the two right-Haar improper priors seems to be
reasonable, suggesting that, if averaging of improper priors is to be done, the geometric
average should be used.

The ‘common reference prior’ and ‘reference distance’ approaches will give the same
answer when a common reference prior exists. However, the reference distance and hier-
archical approaches will rarely give the same answer because, even if the initial class of
candidate priors is the same, the reference distance approach will fix the hyperparam-
eter a, while the hierarchical approach will assign it a reference prior; and, even if the
empirical Bayes version of the hierarchical approach is used, the resulting estimate of a
can be different than that obtained from the reference distance approach, as indicated
in the multinomial example at the end of Section 4.1.

The ‘common reference prior’ and hierarchical approaches will mostly have different
domains of applicability and are the recommended approaches when they can be applied.
The reference distance approach will be of primary utility in situations such as the
coefficient of variation example in Section 3.2, where there is no natural hierarchical
structure to utilize nor common reference prior available.

Acknowledgments

Berger’s work was supported by NSF Grants DMS-0757549-001 and DMS-1007773, and by

Grant 53-130-35-HiCi from King Abdulaziz University. Sun’s work was supported by NSF

grants DMS-1007874 and SES-1260806. The research is also supported by Chinese 111 Project

B14019.

References
Bar-Lev, S. K. and Reiser, B. (1982). An exponential subfamily which admits UMPU

tests based on a single test statistic. The Annals of Statistics 10, 979–989. 198



J. O. Berger, J. M. Bernardo, and D. Sun 219

Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian
analysis with reference priors. Journal of the American Statistical Association 84,
200–207. 189

Berger, J. O. and Bernardo, J. M. (1992a). On the development of reference priors.
Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith,
eds.) Oxford: University Press, 35–60 (with discussion). 189

Berger, J. O. and Bernardo, J. M. (1992b). Ordered group reference priors, with appli-
cations to multinomial problems. Biometrika 79, 25–37. 190, 198

Berger, J. O., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference
priors. The Annals of Statistics 37, 905–938. 189, 193

Berger, J. O., Bernardo, J. M. and Sun, D. (2012). Objective priors for discrete pa-
rameter spaces. Journal of the American Statistical Association 107, 636-648. 189,
215

Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model. The
Annals of Statistics 36, 963–982. 190, 191, 192, 200

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal
of the Royal Statistical Society, Series B 41, 113–147 (with discussion). 189, 201,
205

Bernardo, J. M. (2005). Reference analysis. Bayesian Thinking: Modeling and Computa-
tion, Handbook of Statistics 25 (D. K. Dey and C. R Rao, eds). Amsterdam: Elsevier,
17–90. 189

Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing.
Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid,
D. Heckerman, A. F. M. Smith and M. West, eds.) Oxford: University Press, 1–68
(with discussion).

Bernardo, J. M. (2006). Intrinsic point estimation of the normal variance. Bayesian
Statistics and its Applications. (S. K. Upadhyay, U. Singh and D. K. Dey, eds.) New
Delhi: Anamaya Pub, 110–121.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley. 189

Clarke, B. and Barron, A. (1994). Jeffreys’ prior is the reference prior under entropy
loss. Journal of Statistical Planning and Inference 41, 37–60. 189

Clarke, B. and Yuan A. (2004). Partial information reference priors: derivation and
interpretations. Journal of Statistical Planning and Inference 123, 313–345. 189

Consonni, G., Veronese, P. and Gutiérrez-Peña E. (2004). Reference priors for expo-
nential families with simple quadratic variance function. J. Multivariate Analysis 88,
335–364. 189

Crowder, M. and Sweeting, T. (1989). Bayesian inference for a bivariate binomial dis-
tribution. Biometrika 76, 599–603. 197



220 Overall Objective Priors

Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for
Bayesian inference. Biometrika 82, 37–45. 189

Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant
parameter in group models. Test 4, 95–114. 189

Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The
Annals of Statistics 24, 141–159. 189, 196

Datta, G. S., Mukerjee, R., Ghosh, M. and Sweeting, T. J. (2000). Bayesian prediction
with approximate frequentist validity. The Annals of Statistics 28, 1414–1426. 189

De Santis, F., Mortea, J. and Nardi, A. (2001). Jeffreys priors for survival models with
censored data. Journal of Statistical Planning and Inference 99, 193–209. 189

De Santis, F. (2006). Power priors and their use in clinical trials. The American Statis-
tician 60, 122–129. 189

Enis, P. and Geisser, S. (1971). Estimation of the probability that Y < X. Journal of
the American Statistical Association 66, 162–168. 199

Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. New York:
Springer 189

Ghosh, M., Mergel, V., and Liu, R. (2011). A general divergence criterion for prior
selection. Annals of the Institute of Statistical Mathematics 60, 43–58. 189

Ghosh, M. (2011). Objective priors: An introduction for frequentists. Statistical Science
26, 187–202. 189

Ghosh, M. and Sun, D. (1998). Recent developments of Bayesian inference for stress-
strength models. Frontiers in Reliability. Indian Association for Productivity Quality
and Reliability (IAPQR), 143-158. 200

Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Ap-
plied Statistics 41, 337–348. 211

Hartigan, J. A. (1964). Invariant prior distributions. Annals of Mathematical Statistics
35, 836–845. 205

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Society, Series A 186, 453–461. 192

Jeffreys, H. (1961). Theory of Probability (3rd edition). Oxford: Oxford University Press.
192

Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal
rules. Journal of the American Statistical Association 91, 1343–1370. 189

Kullback, S. and R. A. Leibler, R .A. (1951). On information and suffiency. Annals of
Mathematical Statistics 22, 79–86. 202
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Comment on Article by Berger, Bernardo,
and Sun∗

Siva Sivaganesan†

Congratulations to the authors on this important paper that leads the way in selecting
an objective overall prior for estimation. The paper is very enjoyable to read.

The authors provide three possible approaches one could use to find an overall ob-
jective prior suitable for use when there is interest in simultaneous estimation of several
parameters. They illustrate the approaches in several examples, and give a comprehen-
sive evaluation of the resulting priors. The proposed new approaches are very carefully
thought out, and hold much promise for the development of a single overall objective
prior in many more models. This is a very interesting paper and is likely to, and hope-
fully will, spur increased research in this new development to find overall objective priors
for estimation.

Selection of good objective priors is very important in the practice of Bayesian
analysis since, often, there is little or no prior information available for at least some
of the parameters, especially in complex models with large number of parameters. Use
of diffuse priors is not always good or optimal. The reference prior approach has been
very successful in providing a way to get objective priors for estimation in numerous
standard and non-standard models. It was introduced in Bernardo (1979) to derive a
non-informative prior for estimation of a scalar parameter. In simple terms, the reference
prior is the prior that maximizes, in an asymptotic sense, the missing information in a
prior measured by the Kullback–Leibler distance between the prior and the posterior
distribution. The approach gave good priors in the one-parameter case, but did not
easily extend to multi-parameter cases. A series of influential articles beginning with
Berger and Bernardo (1989, 1992), and later by Berger, Bernardo and Sun extended
the reference prior approach to multi-parameter problems. and formalized the approach,
e.g., see Berger et al. (2009, 2012), Sun and Berger (1998), and Berger and Sun (2008).
It is reasonable to say that the reference prior approach is the best formal approach to
obtain an objective prior for estimation.

The literature is now filled with reference priors for several standard and non-
standard models, ready for use when objective Bayesian estimation is desired. The
reference prior approach has often been found to have the virtue of giving good priors
when the conventional choices fail, for example, due to the behavior of the likelihood in
the tail. One case in point is in spatial modeling, see Berger et al. (2001). How this is
achieved seems to be a mystery to me. In this paper too, for the multlinomial example
using the hierarchical approach, the reference prior for the hyper parameter turned out
to be a proper prior to compensate for the slow decay of likelihood in the tail. However,
one runs into difficulty in implementing the reference prior approach when there are
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more than one parameter of interest. Given a model, there are many reference priors;
one prior for each parameter of interest, or even a set of priors for each parameter of
interest based on different ordering of the rest of the parameters. These priors can be
different for different parameters, requiring a user to switch priors depending which pa-
rameter(s) one is interested in estimating. This is not convenient to explain or appealing
to use in practice, when one is interested in estimating more than one parameter and
the corresponding reference priors are different for these parameters. Having a single
objective prior for a given model, that works well for most natural parameters of inter-
est is desirable. In this paper, the authors have taken up this important task and have
given three possible approaches to get a single common “Overall Objective Prior” for
simultaneously estimating several parameters of interest.

First, the authors set out to identify models for which there is a unique common
reference prior for each of the natural parameters in the model under different orderings
of the rest of the parameters. The authors give a condition on the the Fisher information
matrix for such a single reference prior to exist, and provide examples which show that
such a common reference prior can exist for the natural parameters of many different
models.

The other two approaches provided in the paper constitute interesting novel ideas
and developments, and include the Reference Distance approach and the Hierarchical
Prior approach.

Hierarchical prior approach assumes a priori that the parameters of interest, θi’s,
conditionally on a hyper-parameter a, have a joint proper prior, leaving a prior for a
to be determined. When this conditional prior is in a convenient form in relation to
the likelihood such as a conjugate prior so that the marginal likelihood for a can be
computed in closed form, one can obtain the reference prior for a, which is the Jeffreys
prior based on the marginal likelihood. Then the overall objective prior for θi’s is the
marginal prior obtained by integrating the conditional prior for θi’s with respect to the
reference prior for a.

The reference distance approach is relatively more involved. Suppose that for each
of the parameters of interest θi, i = 1, . . . , n, one can choose a reference prior. Then
the reference distance approach first postulates a joint parametric family of priors for
(θ1, . . . , θn), not necessarily proper priors, indexed by a hyper-parameter a. Then the
overall prior is that prior in the family whose marginal posterior distributions of θi’s
is closest on average, in terms of expected Kullback–Leibler distance, to the marginal
reference posteriors of θi’s.

The two approaches hold much promise in achieving the goal of finding overall
objective priors for various models and parameters of interest. The hierarchical approach
is particularly appealing, because the resulting prior itself is a reference prior, and it
may also be relatively easy to derive, which can be a big advantage. However, the
assumption of a convenient hierarchical or exchangeable structure for the joint prior of
the parameters of interest is not always tenable. In comparison, the derivation of the
reference distance approach requires computation of reference priors for each parameter
of interest and a not-always-easy computation to find the optimal value of a, and the
resulting overall objective prior is not necessarily a reference prior.
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But, the reference distance approach holds an advantage – it seems in most cases
one can write down a joint prior for the parameters of interest, indexed by a suitable
hyper-parameter a by inspecting the reference priors associated with each parameter.
As always with the reference prior, once the hard work is done, it is readily available
for use by everyone. It is a pleasant surprise that the reference distance approach for
the normal model (Section 3.2.4) gives a prior that is the reference prior for the natural
parameters. However, in general the reference distance approach may yield a prior that
is different from any of the reference priors used in the derivation. Such an an overall
objective prior may also turn out not to have good posterior behavior for some of the
parameters of interest. In some instances, there may be more than one choice for the
parametric class, each leading to different overall objective prior, and one has to make a
determination which one to use. Would the authors comment on this and whether they
have encountered such scenarios?

In light of these comments, the recommendation by the authors to use the com-
mon reference prior or the hierarchical approach first, and if not successful, to try the
reference distance approach is noteworthy.

It is surprising that the reference prior for a in the hierarchical approach to the
multinomial example turns out to be a proper prior, making up for the behavior of
the marginal likelihood being bounded away from 0 at infinity. As indicated before,
the phenomenon that the reference prior distributes its mass selectively compensating
for the the likelihood’s slow decays in some tail regions is indeed amazing. Perhaps,
the authors can give some general insight into this phenomenon. Both approaches have
been illustrated for the multinomial example, yielding different overall objective priors.
The reference distance approach sets a = 1/m, and the reference prior for a in the
hierarchical approach also seems to favor small values for a for large m. However, for
moderate values of m, the uncertainty in a induced by the hierarchical prior approach
would have an influence on the estimation of the parameters of interest, may be of an
adaptive nature, unlike in the reference distance approach. Can the authors comment
on this and how one may choose between the two choices?

While the hierarchical prior approach has its advantages, it appears that there may
be more than one choice for the joint distribution for the parameters of interest, θi’s, in
terms of the second stage parameter a. In such cases, one would have to determine what
would be the best choice. For example, in the multi-normal example in Section 4.3, one

may alternatively use µi
iid∼ N(µ0, τ2) with known µ0, or N(µ, τ2

0 ) with known τ0, or
more generally N(µ, τ2). In the case of N(µ0, τ2), it appears that the resulting estimates
for individual µi’s would shrink towards µ0. Is there any particular justification for the
choice of µ0 = 0?
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1 Introduction

The search of a prior distribution p(ω) to be used as part of an objective Bayesian
analysis of a model p(x|ω) has proved to be a formidable endeavour. This is an area
where we do not have a definitive answer yet, and any contribution to the understanding
of the subject must be welcome. The authors of this paper are among the most prominent
contributors to this field, and reading the manuscript has been very stimulating.

Research on the problem has mainly dealt with three issues: first, a definition of what
a non-informative, reference or objective prior p(ω) must be; second, an operational
algorithm to calculate such priors; third, the evaluation of the resulting prior(s) in
accordance to certain criteria such as invariance, the avoidance of paradoxes, or desirable
frequentist properties.

To us, and this is a subjective judgment, the most convincing approach to produce
this sort of priors is reference analysis (Bernardo, 1979; Berger and Bernardo, 1992a,b;
Bernardo, 2005; Berger et al., 2009). This procedure: (i) defines the reference prior as
the prior maximizing the expected gain of information provided by a sample; (ii) in-
cludes a general (although potentially involved) algorithm to calculate the prior; and
(iii) avoids a number of paradoxes. Moreover, it generalizes the Jeffreys prior and ex-
hibits its limitations. Among its most remarkable results, it shows that the form of the
reference prior p(ω) may depend on the function of the parameters θ = θ(ω) which is
considered by the researcher to be of main interest.

Since its inception, the algorithm to obtain reference priors has evolved. This is
the case specifically in the multiparameter setting. The most recent version (Berger and
Bernardo, 1992a,b) requires all scalar components of the parameter to be strictly ordered
in terms of their inferential interest. Thus, in principle, the current approach does not
offer any solution if the researcher is simultaneously interested in two or more scalar pa-
rameters (or functions thereof). Interestingly, the original algorithm of Bernardo (1979)
did cover this situation, although the solution was the multivariate Jeffreys prior which
leads to unsettling paradoxes in some cases.

In this paper, the authors explore some ideas to extend the reference analysis to
this yet unsolved case. They also seem to be considering a more general version of
the problem by assuming that the number of scalar parameters (or functions of the
parameters) of interest may be greater than the number of parameters in the model.
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So, the question is: What should the objective prior πR(ω) (ω ∈ Rk) be if there are m
functions (θ1(ω), θ2(ω), . . . , θm(ω)) which are of simultaneous interest, where m is not
constrained to be less than or equal to k? Three methods to produce the required prior
distribution are discussed: (i) the common reference prior; (ii) the reference distance
approach; and (iii) the hierarchical approach.

2 Common reference prior

This is not really a method. If the reference priors corresponding to θi(ω) as the parame-
ter of interest (i = 1, . . . , m) are the same for any ordering of the remaining parameters,
then the posed problem simply vanishes. It is interesting to see some examples illus-
trating particular cases where the common prior exists, but it is desirable – and would
be much more useful – to have general results characterizing sampling models where,
for example, Theorem 2.1 applies and hence a common reference prior may be found.
In this regard, results such as those in Gutiérrez-Peña and Rueda (2003) and Consonni
et al. (2004) could provide a good starting point. These authors find reference priors for
wide classes of exponential families that include the family discussed in Section 2.1.3 of
the present paper as a particular case.

It must be pointed out that this section relies on the analysis of the information
matrix I(θ), so all reviewed scenarios assume m ≤ k. Also, a somewhat disquieting result
is that of Section 2.2.2, where the authors show that πR(ψ1,ψ2,ψ3, µ1, µ2) ∝ (ψ1ψ2)−1 is
the one-at-a-time reference prior for any of these parameters and any possible ordering.
In particular, it is the reference prior for the case where µ2 is the parameter of main
interest. It so happens, however, that this prior is equivalent to the right-Haar prior
which leads to a problematic posterior precisely for µ2. This result would imply that,
in general, reference analysis might produce inadequate posteriors for the parameter of
interest, depending on the specific accompanying parameters.

3 Reference distance method

In order to introduce this method, the authors explicitly assume that θ = ω, hence
m = k. The idea is to find an overall prior π(θ) such that each of its marginal posteriors
π(θi|x) is close to the corresponding marginal posterior πi(θi|x) obtained when θi is the
parameter of interest (i = 1, . . . , m). As a measure of approximation the authors propose
a weighted average of expected logarithmic divergences, although other measures could
in principle be used. Also, the search for the overall prior is restricted to a specific
parametric family F = {π(θ|a), a ∈ A}. Apart from the fact (acknowledged by the
authors) that the existence of an optimal a is not guaranteed, a rather unappealing
feature of this proposal is its dependence on the family F . The authors offer no guidance
on how to choose F in general. If the aim is to produce an objective approach, it seems
desirable that F be somehow intrinsic to the sampling model. The examples in the
paper suggest that perhaps this could be achieved through some kind of conjugacy.

Incidentally, the reference distance method bears some resemblance to the mean-
field approach to variational inference, which is relatively straightforward in the case of
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exponential families with conjugate priors; see, for example, Bishop (2006, Chapter 10).
What is the authors’ take on this?

We would like now to comment on Example 3.2.4. There, the normal model N(x|µ,σ)
is considered, and the parameters of interest are µ, σ and φ = µ/σ. (Note that, despite
the authors’ remark at the beginning of Section 3, here θ != ω and m > k.) In any
case, the authors remind us that the reference prior when µ or σ is the parameter of
interest is π(µ,σ) = σ−1, whereas the reference prior for φ = µ/σ is given by πφ(µ,σ) =
(2σ2 + µ2)−1/2σ−1. They then propose, as a “natural” choice, the class of relatively
invariant priors F = {π(µ,σ) = σ−a; a > 0}. For this family, they show that the overall
prior for (µ,σ,φ) can be approximated by πo(µ,σ) = σ−1, so that inclusion of φ as an
additional parameter of interest makes no difference. We find this rather disappointing.
From an algorithmic point of view, this outcome is not surprising given the choice
of F and the form of the reference priors for µ and σ. Only a large weight on the
divergence corresponding to φ could lead to a different result. An idea that springs to
mind is to try another (arguably more “natural” family) such as G = {π(µ,σ|a1, a2) =
(2σ2 + µ2)−a1σ−a2 ; a1 > 0, a2 > 0}, which includes all three reference priors for µ, σ
and φ. On the other hand, since πµ(µ,σ) and πσ(µ,σ) are equal in this case, the authors
could alternatively have minimized the sum of the two divergences corresponding to
the marginal posterior of φ and the joint posterior of (µ,σ)). We wonder how these
alternative ideas compare with that proposed in the paper for this example.

4 Hierarchical approach

The idea of this approach is, first, to find a “natural” parametric family of proper priors
π(θ|a) such that a ∈ R and the integrated likelihood results in a proper density p(x|a).
Then, the univariate reference prior for a, πR(a), is obtained for this latter model.
Finally, the overall prior πo(θ) is defined as the expectation of π(θ|a) with respect
to πR(a). This is an intuitive and seemingly reasonable idea. However, it is not clear
how to make explicit that θ is the parameter of interest even though the model is
originally indexed by ω, especially when the dimension of θ is larger than that of ω.
(See the comment below concerning the multi-normal means example.) We wonder if
the authors can provide some advice on how this could be achieved in general. On
the other hand, as in the reference distance case, dependence upon a specific family of
priors introduces no small amount of arbitrariness in the method. Here, again, a proper
objective method would use an intrinsic family entirely determined by the sampling
model. One possibility, particularly suitable for the case of hierarchical models, would
be to elaborate on the idea of conjugate likelihood distributions (George et al., 1993),
although a suitable restriction should be imposed on the corresponding conjugate family
in order to get a one-dimensional hyperparameter. Concerning the implementation of
the method, the authors suggest that integration to get the overall prior can be avoided
by using πo(θ) = π(θ|â) instead, where â is the mode of the posterior p(a|x). This
proposal may be efficient from a computational point of view, but it is both surprising
and disappointing since it essentially reduces the hierarchical approach to a standard
empirical Bayes procedure and leads to a data-dependent prior.
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The example in Section 4.2 concerning the multivariate hypergeometric model is
confusing and does not quite illustrate the method described above. First, the param-
eters of the sampling model are given a multinomial prior (which does not depend on
a single scalar parameter a, but on a vector of probabilities pk); then, the likelihood is
integrated and shown to yield a multinomial distribution. In the process, the k original
parameters R1, R2, . . . , Rk are replaced by the parameters p1, p2, . . . , pk, so the idea of
reducing the problem to the determination of the reference prior for a scalar parameter
is abandoned. Next, in the multinomial model, the approximate overall prior obtained
using the reference distance method is adopted for the hyperparameters pk. Finally, the
corresponding integrated Multinomial–Dirichlet distribution is declared as the overall
prior for R1, R2, . . . , Rk. We find this ad hoc combination of methods difficult to justify
as a general procedure.

An alternative formulation could be based on the idea of super-populations (quite
common in the field of survey sampling) as follows. Let us assume that a random sam-
ple of size N is obtained from a multinomial distribution Muk(Y k|1, pk). As a result
we get a vector R1, R2, . . . , Rk describing the number of sampled units in each cate-
gory. Now imagine that we then get a subsample of size n, without replacement, from
the sample of size N . In this setting, the multinomial distribution describes an infinite
super-population, the sample of size N is the finite population of interest and the sub-
sample of size n is the actual sample we observe. Given the sample, the likelihood based
on the subsample corresponds to that of a hypergeometric distribution. However, with
respect to the super-population, the subsample is just a sample of the original multino-
mial population whose parameters are given by the vector pk. Within this framework,
R1, R2, . . . , Rk are observables and any inference regarding these quantities must be
produced through the corresponding posterior predictive distribution. This argument
shows that the hypergeometric problem can be viewed as a multinomial one where the
interest is not really on the parameters but on observables, and the relevant overall
prior is that for pk, no matter which method we use.

The example on the multi-normal means (Section 4.3) deserves a few words as well.
Here, the parameters of interest are, using the same notation as the authors, µi; i =
1, . . . , m and |µ|2 = µ2

1 + · · · + µ2
m. First, we note that throughout the paper k refers

to the dimension of ω and m is the number of parameters of interest (the dimension
of θ), so in this example we have m = k + 1. It must be pointed out, however, that the
hierarchical method, as defined, cannot be applied when m > k since the distribution
π(θ|a) would then be defined over a space of functionally related components of θ and
would be singular. This fact is implicitly recognized by the authors when they propose
a prior for (µ1, . . . , µm) only, ignoring the last parameter of interest, |µ|2. They then
argue that the resulting overall prior is reasonable not only for each mean µi but also
for |µ|2. The key issue here is the convenient choice of π(µ|a) as the product of the
normals N(µi|0, a). So, strictly speaking, this problem is not actually solved by using
the hierarchical approach as proposed in the paper but by an ad hoc choice of π(µ|a).
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5 Final remarks

This paper contains many interesting ideas and examples. However, it offers more of a
brainstorming than a systematic treatment and a general solution to the problem. It is
somewhat disappointing that the methods proposed in the paper bear little resemblance
with the original reference prior approach, where the problem is clearly stated, the
criterion used is sensible, and one can typically obtain unique and reasonable solutions.
The approaches proposed here are still far from becoming operational algorithms since
they require a number of arbitrary inputs. Hopefully, at least one of these methods will
evolve into an overall objective procedure to find overall objective priors. We believe the
reference distance method to be the most promising in this regard.
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Comment on Article by Berger, Bernardo,
and Sun∗

Judith Rousseau†

In this paper, the authors undertake to expose an encompassing principle to handle ob-
jective priors in competition, their difficulties, their contemners, and their multiplicity!
Great target, for which we congratulate them. However, it may be a doomed attempt if
they mean to achieve the ultimate reference prior, since this quest has been going on for
centuries, including the contributions of the French Polytechnicians Émile Lhoste and
Maurice Dumas in the 1920s (Broemeling and Broemeling, 2003), with no indication
that we are near reaching an agreement. The authors thus aim for a less ambitious
construction.

Let us point out why we think this is an important problem. That we would have
to change priors by changing parameters of interest is disturbing and somehow goes
against the use of Bayesian methodologies. Ideally, one would want a single prior and
various loss functions. Interestingly, this difficulty associated to the construction of
noninformative priors – in the sense that it needs to be targeted on the parameter
of interest – is amplified in large or infinite dimensional models. In finite dimensional
regular models, the prior has an impact – at least asymptotically – to second order only.
In infinite dimensional models, the influence of the prior does not completely vanish
asymptotically, although some aspects of the prior may have influence only to second
order. It has been noted recently that in a nonparametric problem, such as density or
regression function estimation, nonparametric prior models may lead to well behaved
posterior distributions under global loss functions such as the Hellinger distance for the
density or the L2-norm for the regression function while have pathological behaviour for
some specific functionals of the parameter; see, for instance, (Rivoirard and Rousseau,
2012; Castillo, 2012; Castillo and Rousseau, 2013). This means that one needs to target
the prior to specific parameters of interest, or that somehow it is asking too much of
a prior to be able to give satisfactory answers for every aspects of the parameter. The
larger the model, the more crucial the problem.

Obviously, it is of interest to derive priors which are well behaved for a large range
of parameters of interest. The problem is then to define what well behaved means. This
does not seem to be really defined in the present paper. Is it possible to derive a general
notion of well behaved in the case of multiple parameters of interest without referring to
a specific task or, in other words, to a specific loss function or family of loss functions?

The authors consider three possibilities: (1) a common reference prior existing for
various parameters of interest which then should be used, (2) choosing the prior belong-
ing to some parametric family of priors closest to the set of reference priors associated
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to the various parameters of interest, (3) using a hierarchical model based on a para-
metric family of the prior where the hyperparameter is itself given a reference prior. The
authors consider a series of examples and discuss the merits of the various approaches
on each of these examples.

With regards to (1), the authors propose conditions such that marginal references are
common for various parameters of interest; it is interesting but once again challenging.
First, it implies that there are not more parameters of interest than there are parameters
in the model, and second, even in that case it does not always exist. However, given that
all models are wrong but some are useful, would that indicate that we should change the
point of view entirely and, given a set of parameters of interest, define a model which
would allow for good (whatever that means) inference on them; for instance, that would
lead to a common reference prior for all of them? In particular, in this respect, how do
reference priors behave under model misspecification?

Given the limitations of the first case, the authors propose to relax the notion of
reference priors in methods (2) and (3).

We believe that the distance approach is a very interesting idea to obtain a global
consensus between the different reference priors, however, there are a number of issues
that they raise.

1 Some issues with the distance approach

One of the advantages of the idea behind the distance approach is that it can deal
with more parameters of interest than the actual dimension of the parameter and leads
to tractable posterior distributions. One of its disadvantages is that it depends on the
sample size.

• Dependence on the sample size The construction of the reference priors is
based on a limiting argument, assuming that infinite information (infinite sample size)
is available. Why cannot we use the same perspective here? For instance, in the case
of regular models using the Laplace approximation to second order, the integrated
Kullback–Leibler divergence between πθi(·|x) and πa(·|x) (or the directed logarithmic
divergence from πa(·|x) to πθi(·|x) as termed in the paper) is approximately

Ki =
1

n

∫
(∇ log πθi −∇ log πa)t I−1(θ) (∇ log πθi −∇ log πa)πθi(θ)dθ

where b3(θ) corresponds to the third order derivative of the log-likelihood and I is the
Fisher information matrix. Hence asymptotically minimizing the sums of the distances
corresponds to minimizing

∑

i

wi

∫
(∇ log πθi −∇ log πa)t I−1(θ) (∇ log πθi −∇ log πa)πθi(θ)dθ.

• An alternative idea with the same flavour On a general basis, and following
Simpson et al. (2014), the choice of minimising a distance in (2) could be replaced in a
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more Bayesian manner by a prior on the distance as, e.g.

π(a) = exp

{
−
∑

i

λidi(a)

}

where di(a) is derived as in the paper. This offers several advantages from dealing with
partial information settings to defining a baseline model.

In addition, a neophyte reader could also ask what is so essential with reference
priors that one has to seek recovering them at the marginal level.

2 On the hierarchical approach

Both the hierarchical and the distance approaches have been considered in the paper
with univariate hyperparameters. It is not clear if, in the case of the distance approach,
this is a key issue, but it certainly is in the hierarchical construction since a reference
prior needs to be constructed on this hyperparameter. This restricts the flexibility of
the prior.

In the immense variety of encompassing models where recovering the reference
marginals is the goal, what about copulas?! There are many varieties of copulas and a
prior could be set on any of those, with once again non-informative features.

Finally, although the authors have considered examples renown to be difficult for
constructing objective priors, such as the multinomial model, they do not cover the
more realistic framework of complex and partly-defined sampling models. In Simpson
et al. (2014), the authors advocate the construction of priors within sub-models of a
more complex model, without taking into account the larger model. This contradicts
the nature of the reference prior, at the same time these sub-models might be the only
ones where the reference prior construction may be feasible. Would the ideas considered
by the authors here be useful in combining the local construction (within a sub-model)
of the reference prior with the larger model?

Once again, I would like to thank the authors for a thought-provoking paper on an
important issue.
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Comment on Article by Berger, Bernardo,
and Sun∗

Gauri Sankar Datta† and Brunero Liseo‡

It is our distinct pleasure to comment on a very thought provoking paper, and we first
congratulate the Authors for this new masterly contribution in the field of objective
priors.

The main goal of the paper is to find a multi-purpose objective prior for a model
that should be used by different researchers with varying goals, with the consequence
that no single parameter or parametric function can be identified as a parameter of
interest. In this situation, the most popular approaches either fail or, as in the case of
the reference prior algorithm, they cannot be used.

Three general methods are discussed by the Authors. The first one is limited to a
number of particular situations where the reference prior is the same for all quantities
of interest: this case is not of much concern since a natural solution exists. The second
method is based on the reference prior approach: one looks for the prior which produces
the marginal posteriors for the quantities of interest which are closer – in some sense –
to the marginal reference posteriors. Whereas this method is perfectly reasonable, the
final result will depend on the particular set of the quantities of interest considered and
it cannot be considered as the “overall” objective prior. The third method is based on
a hierarchical representation of the model, when it is available. It shifts the problem of
determining an objective prior to an upper level of the hierarchy, where the impact of
the prior might be less serious.

We believe that the latter method is superior to the others because

• it is compatible with a predictive approach where all the parameters are nuisance
parameters and there is no particular quantity of interest; however, one should
be careful here: if the quantity of interest is, for example, the posterior predictive
mean

E(Xn+1 | X1, . . . , Xn)

of a future observation – and not the entire predictive density – then a parameter
of interest actually does exist!

• it is clearly superior to Method 2, especially when the model is used repeatedly
by different people which are interested in different sets of parameters.

In terms of prediction, it would be worth discussing the proposal of Datta et al.
(2000).
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In this contribution, we will briefly consider the multinomial example, and provide
some comments on the concept of prior averaging.

1 The multinomial model in the sparse case

This is a very interesting problem. Jeffreys’ prior allocates a weight of 1/2 to each
original component of the vector (θ1, θ2, . . . , θm). This is too much when m is large
compared to the sample size n and the distribution is very sparse. This suggests that
the prior mass should be adequately spread on the parameter space in such a way that
each cell has a negligible prior mean, especially when compared with the weight of the
data.

In the multinomial case, the prior weight (expressed as the sum of the hyper-
parameters of the Dirichlet prior) is equal to m/2 for the Jeffreys’ prior, while in the
hierarchical approach, arising from a Dirichlet(a, a, . . . , a) hyper-prior, it is a random
quantity v = ma with density given by expression (25) of the paper, at least in the
case of an infinite m. Several numerical computations, with different values of n and
r0 (i.e., the number of non-empty cells), show that the mode and the median of v are
rarely larger than 2, so the hierarchical approach automatically accounts for the sparsity
and the corresponding marginal posteriors are dramatically different from those arising
from the use of Jeffreys’ prior.

There are many ways in which this problem can be handled. If we transform it to a
multiple testing problem, that is, for each cell i we test

H0 : θi = 0 vs. H1 : θi != 0,

the problem can be rephrased as that of finding an ad-hoc prior, just like in the sparse
normal problem, which is well studied in literature, see, for example, Scott and Berger
(2010). The two problems are similar but not identical: here we do not necessarily
observe data for each cell, and the difficulties associated with this discrete version of
the problem are even greater since the values of the θi’s will affect the standard deviation
of the cells, not only the means.

From a testing perspective there is also another interesting connection: the Authors
propose to add – as a prior weight – something close to 1/m to each cell. So the
total weight of the prior will be approximately one. This reminds us of the unit prior
information of Kass and Wasserman (1996).

The sparse multinomial case is also of theoretical interest because it represents a
bridge between parametric and non-parametric models, when the number of cells goes
to infinity.

Our personal view of the example is close to that of the Authors, although it is not
of great surprise that the Jeffreys’ prior does not clearly discriminate between observed
and non-observed cells, when n is so small compared to m. In other words, this is too
much to ask of the prior. When n is as small as 3, and the number of parameters is
about 1000, it is hopeless to find a good automatic objective prior and some external
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guidance (in this case, the choice of a “proper” prior within the Dirichlet class) seems
unavoidable.

More interesting is the fact that the hierarchical prior depends on m and n only
through their ratio: this is actually what one would expect.

We have also considered a variant of the multinomial example. In particular, we have
considered the case when the multinomial likelihood can be rephrased as one arising from
a sample of m independent Poisson random variables with mean vector (ψ1, . . . ,ψm)
and then setting θj = ψj/

∑
i ψi. Doing the usual reference prior calculations here, we

ended up with the same conclusions as if we have used the standard Jeffreys’ Beta
prior (1/2, 1/2) for the θi’s. We wonder how to get the same result (weights ≈ m−1 for
the cells) in this alternative perspective. It is very likely that this can be obtained by
assuming independent gamma priors with shape parameter a and scale parameter β for
the ψj . If the “nuisance” scale parameter β is eliminated by conditioning on the total
counts, we end up with the same conclusion. However, the rationale behind this last
choice is – again – only pragmatic.

A related issue is the ordered multinomial example in Section 2.1.2. Here the overall
prior for any of the parameters (ξ1, . . . , ξm) is the product of independent Beta(1/2, 1/2):
what happens for large m? Is the overall prior still a sensible prior or should we take
into account this problem?

2 A comment on geometric average of priors

Consider the following divergence function

d(η) =
m∑

i=1

αi

∫
η(θ) log

η(θ)

πi(θ)
dθ,

where α1, . . . ,αm ≥ 0 are suitable constants adding to 1, and πi(θ) may be a suitable
objective prior when one is interested in one of a given set of m parametric functions.
The above function is a weighted average Kullback–Leibler divergence between a global
prior and the marginal priors we would like to use in the case we were interested in a
single parametric function ti(θ), i = 1, . . . , m. Note that

d(η) =

∫
η(θ) log η(θ)dθ −

m∑

i=1

∫
η(θ) log παi

i (θ)dθ

=

∫
η(θ) log

η(θ)∏m
i=1 π

αi
i (θ)

dθ.

By Jensen’s inequality, d(η) will be minimized with respect to η if η(θ)/
∏m

i=1 π
αi
i (θ) is

a degenerate function. This leads to the geometric mean prior

πG(θ) ∝
m∏

i=1

παi
i (θ).
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Usually, the component priors πi(θ)’s are improper, which in turn may also make
πG(θ) an improper prior. The authors indicated that the geometric mean prior is prefer-
able to the arithmetic mean prior since one or more of the component priors πi may be
improper, and the arithmetic mean posterior may be highly influenced by one or a few
component posteriors. Indeed, for any arbitrary positive constant ci, ciπi(θ) is as much
an objective prior as πi(θ) is. While the posterior propriety of the arithmetic mean prior
is an immediate consequence of the propriety of the component posteriors, the same is
not so obvious for the geometric mean prior. However, the following lemma shows that
the posterior corresponding to πG(θ) will be proper provided that each component prior
πi(θ) generates a proper posterior.

Lemma 1. For two prior densities µ(θ) and ν(θ), if
∫

µ(θ)L(θ;x)dθ < ∞, and

∫
ν(θ)L(θ;x)dθ < ∞,

then, for any α ∈ (0, 1),
∫

µα(θ)ν1−α(θ)L(θ;x)dθ < ∞,

where L(θ;x) denotes the joint density of data x corresponding to the parameter value θ.

Proof. By Hölder’s inequality, it follows that
∫

µα(θ)ν1−α(θ)L(θ;x)dθ =

∫
[µ(θ)L(θ;x)]α [ν(θ)L(θ;x)]1−α dθ

≤
[∫

µ(θ)L(θ;x)dθ

]α [∫
ν(θ)L(θ;x)dθ

]1−α

.

Thus µ(θ)αν(θ)1−α generates a proper posterior density for the given data x.

By repeated use of this lemma, the propriety of the posterior based on the geometric
prior πG(θ) easily follows.

3 An anecdote

While preparing the present comments one of the authors attended a seminar on applied
probability where the following situation was presented. In a small village, there is a
chief and several shepherds. Each shepherd runs a flock of sheeps. The chief knows that
the ground of their village is going to become parched so the shepherds have to move
away. All the roads starting from the village – but one – are full of hungry wolves.
The chief has his own probability distribution about which is the safe road. If the chief
communicates his/her information to the shepherds, it is very likely that all of them
would choose the same road. This implies that either all the sheeps or none will survive.
If the chief does not communicate his/her information, it is likely that the shepherds
will randomly choose the road.



G. S. Datta and B. Liseo 241

The question is: should the chief share this information with the shepherds or not?
If so, (s)he is playing a risky (all or nothing) strategy. If not, (s)he is taking a minimax
strategy where it is more likely that some of the flocks will survive. Is there a way to
calibrate the amount of information to be shared?

There are several interesting similarities between this story and the main issue of
the paper. Is there a way to find a compromise between the general goal and a single
objective? Is it possible to find a prior – or a strategy – which is not so bad for any of
the problems at hand?

Our view is that, if the answer is “yes”, this prior should not depend on the particular
list of problems. In other words, it would be great to have just “one” overall prior. In
this respect, the hierarchical approach seems to be more promising.
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Rejoinder∗

James O. Berger†, Jose M. Bernardo‡, and Dongchu Sun§

Our thanks to all the discussants for their insightful observations and comments. We
respond to their discussions in turn.

1 Response to Datta and Liseo

We agree that Method 3 is preferable to Method 2, in that it is not dependent on the
specification of a collection of quantities of interest and, hence, need only be determined
once (and not separately for each potential user of a model). It is because a hierarchical
embedding is not always available that we introduce the other methods as possible
solutions.

We found the discussion of the multinomial example interesting, with numerous
additional insights being provided. Likewise the additional material on the geometric
averaging approach was enlightening, especially the nice lemma showing that, if a col-
lection of priors all yield proper posteriors, then their geometric average also yields a
proper posterior. This certainly strengthens the argument that geometric averaging is
superior to arithmetic averaging in the search for an overall prior.

The moral of the amusing anecdote is indeed sound, and can be attempted to be im-
plemented even when there is no hierarchical embedding available. For instance, Berger
and Sun (2008) considered 21 different derived parameters for the five-parameter bivari-
ate normal distribution, seeking a prior that was good ‘on average’ for the 21 parameters.

2 Response to Mendoza and Gutiérrez-Peña

The discussants highlight the importance of cataloguing those situations in which there
is a common reference prior for all the parameters of a model and give useful references
that could be a starting point for identifying additional such situations. But they then,
interestingly, question whether this is sufficient, especially when the number, m, of
quantities of interest exceeds the number, k, of parameters in the model.

Section 3.1 highlights one such situation: there is a common reference prior for µ
and σ from the normal model but this cannot necessarily be claimed to be the overall
objective prior because the reference prior for µ/σ is different. This simple example
suggests that one can probably never have an overall objective prior that is optimal for
everything and that just having it be reasonable for everything (of interest) might be the
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best we can hope for. It is interesting, in this regard, that Section 3.2.4 shows that the
common reference prior for µ and σ is also nearly optimal when µ/σ is also considered,
although the discussants are correct that this result was probably inevitable once we
restricted the candidate priors to be only of the form σ−a. Utilizing the alternative and
more general class that they suggest might well have given a different result (but the
computation would have been much more formidable).

It would be nice if one could show, in general, that, if there is a common reference
prior for all of original parameters, then that prior will be reasonable for other derived
parameters or quantities. Our experience strongly supports this claim, but it is difficult
to see how to formally approach verification of the claim especially, as the discussants
note, because of the disquieting result in Section 2.2.2.

We agree that it would be nice if the family of candidate priors considered in both the
reference distance method and the hierarchical method could somehow be intrinsically
identified from the model itself; this would make the label ‘objective’ more compelling.
We have not tried to do so ourselves, but the discussants give several potentially useful
starting points for such an endeavor. Computational considerations are central here so,
as the discussants note, we always chose the candidate class of priors to be a conjugate
class (or as close to conjugate as possible).

Thanks for pointing out the possible relationship of the reference distance method
with the mean field approach to variational inference. The approximation tools being
used in each case are clearly related, but it is not clear to us that this can be usefully
exploited.

We agree with the discussants concerning Section 4.2. It is hard to know how to
deal with the hypergeometric parameters directly, so we used the common technique of
‘transferring’ them into uncertain multinomial parameters that we can deal with. But
this is, indeed, a somewhat ad hoc addition to the proposed methodology. In this light,
the suggested reformulation of the discussants (which ends up in the same place) will
be a more appealing justification to many.

3 Response to Rousseau

Rousseau makes the important observation that we are considering the ‘simple’ para-
metric case, where there is some hope of having an overall objective prior that is at
least reasonable for likely quantities of interest. This hope could well be impossible
in nonparametric situations, where it can be a challenge to even find a prior that is
satisfactory for a single given quantity of interest.

Rousseau observes that maybe the search for an overall prior should be considered
together with choice of the model. This is an intriguing idea, but we have no idea how
to approach the issue.

Rousseau observes that, for the reference distance method, the solution depends
on the sample size. It is not appealing, in general, to have objective priors depend on
the sample size, but there are situations (hierarchical models) where it seems correct
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and inevitable. Here, however, the numerical evidence in the examples indicates that
there is only a very slight dependence on the sample size, so Rousseau observes that
one can simply try to implement the approach asymptotically, avoiding the sample size
dependence and – more importantly – perhaps considerably simplifying the derivation
of the overall prior. This is an idea definitely worth pursuing!

In her final comments, Rousseau addresses scenarios considerably more complex
than any we consider, and outlines issues in finding good (objective) priors for those
scenarios. In our own statistical practice, we encounter these problems all the time.
There is little or no theory to guide us, so it is perhaps most useful to simply say what
we do. A complex model is usually made up of simpler subcomponents, and we may well
know a good overall objective prior for a subcomponent. We will use it, even though
there is no assurance that it is a good overall objective prior in the context of the full
model; the alternative of using a prior that we know is suboptimal for the component
does not appeal.

This is the but the tip of an iceberg, however, in that many complex models are hier-
archical in nature, and it is well known that standard objective priors for a model can be
terrible if that model appears at a higher level in a hierarchy. See Berger, Strawderman,
and Tang (2005) for discussion of this.

4 Response to Sivaganesan

We enjoyed Sivaganesan’s comment that “How . . . [reference priors]. . . work seems to
be a mystery . . . ,” because it is also a mystery to us. But their consistently astonishing
properties explains why the approaches we suggest for developing an overall prior all
center around some application of reference prior theory.

Sivaganesan points out that the choice of the candidate priors will surely affect the
answers, and asks if we have tried alternative classes of candidate priors. He is certainly
right that the class will likely have some effect, but our experience with Bayesian ro-
bustness in other contexts suggests that the class may not be that important when, as
here, we are optimizing over the class. But this an important topic for future study.

We appreciated Sivaganesan’s comment that “It is surprising that the reference prior
for a in the hierarchical approach to the multinomial example turns out to be a proper
prior, making up for the behavior of the marginal [likelihood] being bounded away from 0
at infinity.” The history was that we first – and to our surprise – discovered that the
reference prior for a was proper; we then went back to look at the likelihood, and discov-
ered that, indeed, it was not integrable at infinity, ‘explaining’ why the reference prior
decided to be proper. (This is part of the mystery of reference priors referred to above.)

5 Closing comments

Mendoza and Gutiérrez-Peña comment about the paper “. . . it offers more of a brain-
storming than a systematic treatment and a general solution to the problem [of obtaining
an overall objective prior].” We couldn’t agree more. We have been working on this for



246 Rejoinder

more years than we care to reveal and finally admitted to ourselves that we were not
going to find the general solution to the problem. So the paper is simply a reflection of
what we encountered in attempting to find a general solution.

Sivaganesan asks us to comment on which of the three approaches to an overall
objective prior we would recommend. Details are given in the final section of the paper,
but it is useful to highlight the main points (with the caveat of the comment above):

• If all (natural) parameters of the model have the same reference prior, use it as
the overall objective prior.

• If one can find a natural and computationally feasible hierarchical structure for
the model parameters, use that, along with finding the reference prior for the
parameters in the hierarchical structure.

• If the above are not implementable,

– Try the reference distance approach; the suggestion of Rousseau to do so
asymptotically is perhaps the first thing to try here.

– Try the geometric average of parameter reference priors, supported by the
results of Liseo and Datta.
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