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Abstract

In multi-parameter models, reference priors typically depend on the parameter or
quantity of interest, and it is well known that this is necessary to produce objective
posterior distributions with optimal properties. There are, however, many situations
where one is simultaneously interested in all the parameters of the model or, more
realistically, in several functions of them, and it would then be useful to have a single
objective prior which could safely be used to produce reasonable marginal posteriors
for all the quantities of interest. In this paper, we consider three methods for selecting
a single objective prior and study, in a variety of problems including the multinomial
problem, whether or not the resulting prior is a good approximation to the parameter-
specific reference priors.

Some key words: Joint Reference Prior; Logarithmic Divergence; Objective Priors; Reference

Analysis; Multinomial Model.

1 Introduction

1.1 The problem

Objective Bayesian methods, where the formal prior distribution is derived from the as-

sumed model rather than assessed from expert opinions, have a long history (see e.g.,

Bernardo and Smith, 1994; Kass and Wasserman, 1996, and references therein). Refer-

ence priors (Bernardo, 1979, 2005; Berger and Bernardo, 1992a,b, Berger, Bernardo and

Sun, 2009, 2012) are a popular choice of objective prior. Other interesting developments

involving objective priors include Clarke and Barron (1994), Clarke and Yuan (2004), Con-

sonni, Veronese and Gutiérrez-Peña (2004), DeSantis et al. (2001), De Santis (2006), Datta
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and Ghosh (1995a, b), Datta and Ghosh (1996), Datta et al. (2000), Ghosh (2011), Ghosh,

Mergel and Liu (2011), Ghosh and Ramamoorthi (2003), Liseo (1993), Liseo and Loper-

fido (2006), Sivaganesan (1994), Sivaganesan, Laud and Mueller (2011) and Walker and

Gutiérrez-Peña (2011).

In single parameter problems, the reference prior is uniquely defined and is invariant under

reparameterization. However, in multiparameter models, the reference prior depends on the

quantity of interest, e.g., the parameter concerning which inference is being performed.

Thus, if data x are assumed to have been generated from p(x |ω), with ω ∈ Ω ⊂ <k, and

one is interested in θ(ω) ∈ Θ ⊂ <, the reference prior πθ(ω), will typically depend on θ;

the posterior distribution, πθ(ω |x) ∝ p(x |ω) πθ(ω), thus also depends on θ, and inference

for θ is performed using the corresponding marginal reference posterior for θ(ω), denoted

πθ(θ |x). The dependence of the reference prior on the quantity of interest has proved

necessary to obtain objective posteriors with appropriate properties; in particular, to avoid

marginalization paradoxes and strong inconsistencies, and to have good frequentist coverage

properties when attainable.

There are however many situations where one is simultaneously interested in all the pa-

rameters of the model or perhaps in several functions of them. In prediction or decision

analysis for instance, all of the parameters of the model may come into play and often none

are individually of major interest. Another situation in which having an overall prior would

be beneficial is when a user is interested in a non-standard quantity of interest (e.g., a non-

standard function of the model parameters), and is not willing or able to formally derive the

reference prior for this quantity of interest. Computation can also be a consideration; having

to separately do Bayesian computations with a different reference prior for each parameter

can be onerous. Finally, when dealing with non-specialists it may be best pedagogically to

just present them with one overall objective prior, rather than attempting to explain the

technical reasons for preferring different reference priors for different quantities of interest.

To proceed, let θ = θ(ω) = {θ1(ω), . . . , θm(ω)} be the set of m > 1 functions of interest.

Our goal is to find a joint prior π(ω) whose corresponding marginal posteriors, {π(θi |x)}mi=1,

are sensible from a reference prior perspective. This is not a well-defined goal, and so we

will explore various possible approaches to the problem.

Example 1.1 Multinomial Example: Suppose x = (x1, . . . , xm), where
∑m

i=1 xi = n,

is multinomial Mu(x |n; θ1, . . . , θm), with
∑m

i=1 θi = 1. In Berger and Bernardo (1992b),

the reference prior is derived when the parameter θi is of interest, and this is a different

prior for each θi, as given in the paper. The reference prior for θi results in a Beta

reference marginal posterior Be(θi |xi + 1
2 , n− xi + 1

2). We would like to identify a single

joint prior for θ whose marginal posteriors could be expected to be close to each of these

reference marginal posteriors, in some average sense.
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1.2 Background

It is useful to begin by recalling earlier efforts at obtaining an overall reference prior. There

have certainly been analyses that can be interpreted as informal efforts at obtaining an over-

all reference prior. One example is given in Berger and Sun (2008) for the five parameter

bivariate normal model. Priors for all the quantities of interest that had previously been con-

sidered for the bivariate normal model (21 in all) were studied from a variety of perspectives.

One such perspective was that of finding a good overall prior, defined as one which yielded

reasonable frequentist coverage properties when used for at least the most important quan-

tities of interest. The conclusion was that the prior πo(µ1, µ2, σ1, σ2, ρ) = 1/[σ1σ2(1 − ρ2)],

where the µi are the means, the σi are the standard deviations, and ρ is the correlation in

the bivariate normal model, was a good choice for the overall prior.

We now turn to some of the more formal efforts to create an overall objective prior.

1.2.1 Invariance-based priors

If p(x |ω) has a group invariance structure, then the recommended objective prior is typically

the right-Haar prior. Often this will work well for all parameters that define the invariance

structure. For instance, if the sampling model is N(xi | µ, σ), the right-Haar prior is

π(µ, σ) = σ−1, and this is fine for either µ or σ (yielding the usual objective posteriors).

Such a nice situation does not always obtain, however.

Example 1.2 Bivariate Normal Distribution: The right-Haar prior is not unique

for the bivariate normal problem. For instance, two possible right-Haar priors are

π1(µ1, µ2, σ1, σ2, ρ) = 1/[σ2
1(1 − ρ2)] and π2(µ1, µ2, σ1, σ2, ρ) = 1/[σ2

2(1 − ρ2)]. In Berger

and Sun (2008) it is shown that πi is fine for µi, σi and ρ, but leads to problematical

posteriors for the other mean and standard deviation.

The situation can be even worse if the right-Haar prior is used for other parameters that

can be considered.

Example 1.3 Multi-Normal Means: Let xi be independent normal with mean µi

and variance 1, for i = 1 · · · ,m. The right-Haar prior for µ = (µ1, . . . , µm) is just a

constant, which is fine for each of the individual normal means, resulting in a sensible

N(µi | xi, 1) posterior for each individual µi. But this prior is bad for overall quantities

such as θ = 1
m
|µ|2 = 1

m

∑m
i=1 µ

2
i , as discussed in Stein (1959) and Bernardo and Smith

(1994, p. 365). For instance, the resulting posterior mean of θ is [1 + 1
m

∑m
i=1 x

2
i ], which

is inconsistent as m → ∞ (assuming 1
m

∑m
i=1 µ

2
i has a limit); indeed, it is easy to show

that then [1 + 1
m

∑m
i=1 x

2
i ]→ [θT + 2], where θT is the true value of θ. Furthermore, the

posterior distribution of θ concentrates sharply around this incorrect value.
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1.2.2 Constant and vague proper priors

Laplace (1812) advocated use of a constant prior as the overall objective prior and this

approach, eventually named inverse probability, dominated statistical practice for over 100

years. But the problems of a constant prior are well-documented, including the following:

(i) Lack of invariance to transformation, the main criticism directed at Laplace’s approach.

(ii) Frequent posterior impropriety.

(iii) Possible terrible performance, as in the earlier multi-normal mean example.

Vague proper priors (such as a constant prior over a large compact set) are perceived by

many as being adequate as an overall objective prior, but they too have well-understood

problems. Indeed, they are, at best, equivalent to use of a constant prior, and so inherit

most of the flaws of a constant prior. In the multi-normal mean example, for instance, use of

N(µi | 0, 1000) vague proper priors results in a posterior mean for θ that is virtually identical

to the inconsistent posterior mean from the constant prior.

There is a common misperception that vague proper priors are safer than a constant prior,

since a proper posterior is guaranteed with a vague proper prior but not for a constant prior.

But this actually makes vague proper priors more dangerous than a constant prior. When the

constant prior results in an improper posterior distribution, the vague proper prior will yield

an essentially arbitrary posterior, depending on the degree of vagueness that is chosen for

the prior. And to detect that the answer is arbitrary, one has to conduct a sensitivity study

concerning the degree of vagueness, something that can be difficult in complex problems

when several or high-dimensional vague proper priors are used. With the constant prior on

the other hand, the impropriety of the posterior will usually show up in the computation

(the MCMC will not converge) and hence can be recognized.

1.2.3 Jeffreys-rule prior

The Jeffreys-rule prior (Jeffreys, 1946, 1961) is the same for all parameters in a model, and

is, hence, an obvious candidate for an overall prior. If the data model density is p(x | θ) the

Jeffeys-rule prior for the unknown θ = {θ1, . . . , θm} has the form

π(θ1, . . . , θm) = |I(θ)|1/2,

where I(θ) is the m×m Fisher information matrix with (i, j) element

I(θ)ij = Ex |θ

[
− ∂2

∂θi∂θj
log p(x |θ)

]
.

This is the optimal objective prior (from many perspectives) for regular one-parameter

models, but has problems for multi-parameter models. For instance, the right-Haar prior in
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the earlier multi-normal mean problem is also the Jeffreys-rule prior there, and was seen to

result in an inconsistent estimator of θ. Even for the basic N(xi | µ, σ) model, the Jeffreys-

rule prior is π(µ, σ) = 1/σ2, which results in posterior inferences for µ and σ that have the

wrong ‘degrees of freedom.’

For the bivariate normal example, the Jeffreys-rule prior is 1/[σ2
1σ

2
2(1 − ρ2)2]; this yields

the natural marginal posteriors for the means and standard deviations, but results in quite

inferior objective posteriors for ρ and various derived parameters, as shown in Berger and

Sun (2008). More, generally, the Jeffreys-rule prior for a covariance matrix is studied in

Yang and Berger (1994), and shown to yield a decidedly inferior posterior.

There have been efforts to improve upon the Jeffreys-rule prior, such as consideration of

the “independence Jeffreys-rule prior,” but such prescriptions have been rather ad hoc and

have not lead to a general alternative definition.

Finally, consider the following well-known example, which suggests problems with the

Jeffreys-rule prior even when it is proper.

Example 1.4 Multinomial distribution (continued): Consider the multinomial

example where the sample size n is small relative to the number of classes m; thus

we have a large sparse table. The Jeffreys-rule prior, π(θ1, . . . , θm) ∝
∏m

i=1 θ
−1/2
i is a

proper prior, but is not a good candidate for the overall prior. For instance, suppose

n = 3 and m = 1000, with x240 = 2, x876 = 1, and all the other xi = 0. The posterior

means resulting from use of the Jeffreys-rule prior are

E[θi |x] =
xi + 1/2∑m
i=1(xi + 1/2)

=
xi + 1/2

n+m/2
=
xi + 1/2

503
,

so E[θ240 |x] = 2.5
503

, E[θ876 |x] = 1.5
503

, E[θi |x] = 0.5
503

otherwise. So, cells 240 and 876 only

have total posterior probability of 4
503

= 0.008 even though all 3 observations are in these

cells. The problem is that the Jeffreys-rule prior effectively added 1/2 to the 998 zero

cells, making them more important than the cells with data! That the Jeffreys-rule prior

can encode much more information than is contained in the data is hardly desirable for

an objective analysis.

An alternative overall prior that is sometimes considered is the uniform prior on the

simplex, but this is even worse than the Jeffreys prior, adding 1 to each cell. The prior

that adds 0 to each cell is
∏

i θ
−1
i , but this results in an improper posterior if any cell

has a zero entry, a virtual certainty for very large tables.

We actually know of no multivariable example in which we would recommend the Jeffreys-

rule prior. In higher dimensions, the prior always seems to be either ‘too diffuse’ as in the

multinormal means example, or ‘too concentrated’ as in the multinomial example.
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1.3 Three approaches to construction of the overall prior

1.3.1 Reference distance approach

In this approach, one seeks a prior that will yield marginal posteriors, for each θi of interest,

that are close to the set of reference posteriors {π(θi |x)}mi=1 (yielded by the set of reference

priors {πθi
(ω)}mi=1), in an average sense over both posteriors and data x ∈ X .

Example 1.5 Multinomial example (continued): In Example 1.4 consider, as an

overall prior, the Dirichlet Di(θ | a, . . . , a) distribution, having density proportional to∏
i θ

(a−1)
i . The marginal posterior for θi is then Be(θi |xi + a, n − xi + (m − 1)a). In

Section 2.2.3, we will study which choice of a yields marginal posteriors that are as close

as possible to the reference marginal posteriors Be(θi |xi + 1
2 , n−xi + 1

2), arising when θi

is the parameter of interest. Roughly, the recommended choice is a = 1/m, resulting in

the overall prior πo(θ1, . . . , θm) ∝
∏m

i=1 θ
(1−m)/m
i . Note that this distribution adds only

1/m = 0.001 to each cell in the earlier example, so that

E[θi |x] =
xi + 1/m∑m
i=1(xi + 1/m)

=
xi + 1/m

n+ 1
=
xi + 0.001

4
.

Thus E[θ240 |x] ≈ 0.5, E[θ876 |x] ≈ 0.25, and E[θi |x] ≈ 1
4000

otherwise, all sensible

results.

1.3.2 Prior averaging approach

Starting with a collection of reference (or other) priors {πi(θ), i = 1, . . . ,m} for differing

parameters or quantities of interest, a rather natural approach is to use an average of the

priors. Two natural averages to consider are the arithmetic mean

πA(θ) =
1

m

∑m

i=1
πi(θ) ,

and the geometric mean

πG(θ) =
∏m

i=1
πi(θ)1/m .

While the arithmetic average might seem most natural, arising from the hierarchical reason-

ing of assigning each πi probability 1/m of being correct, geometric averaging arises naturally

in the definition of reference priors (Berger, Bernardo and Sun, 2009), and also is the optimal

prior if one is trying to choose a single prior to minimize the average of the Kullback-Liebler

divergences of the prior from the πi’s (a fact of which we were reminded by Gauri Datta).

Furthermore, the weights in arithmetic averaging of improper priors are rather arbitrary

because the priors have no normalizing constants, whereas geometric averaging is unaffected

by normalizing constants.
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Example 1.6 Bivariate Normal Distribution (continued): Faced with the two

right-Haar priors in this problem,

π1(µ1, µ2, σ1, σ2, ρ) = σ−2
1 (1− ρ2)−1, π2(µ1, µ2, σ1, σ2, ρ) = σ−2

2 (1− ρ2)−1,

the two average priors are

πA(µ1, µ2, σ1, σ2, ρ) =
1

2σ2
1(1− ρ2)

+
1

2σ2
2(1− ρ2)

, (1)

πG(µ1, µ2, σ1, σ2, ρ) =
1

σ1σ2(1− ρ2)
. (2)

Interestingly, Sun and Berger (2007) show that πA is a worse objective prior than either

right-Haar prior alone, while πG is the overall recommended objective prior.

One problem with the averaging approach is that the each of the reference priors can

depend on all of the other parameters, and not just the parameter of interest, θi, for which

it was created.

Example 1.7 Multinomial example (continued): The reference prior derived when

the parameter of interest is θi actually depends on the ordering chosen (in the reference

prior derivation) for all the parameters (e.g. {θi, θ1, θ2, . . . , θi−1, θi+1, . . . , θm}); there are

thus (m − 1)! different reference priors for each parameter of interest. Each of these

reference priors will result in the same marginal reference posterior for θi,

πθi
(θi |x) = Be(θi |xi + 1

2 , n− xi + 1
2),

but the full reference prior and the full posterior, πθi
(θ |x), do depend on the ordering

of the other parameters. There are thus a total of m! such full reference priors to be

averaged, leading to an often-prohibitive computation.

In general, the quality of reference priors as overall priors is unclear, so there is no obvious

sense in which an average of them will make a good overall reference prior. The prior

averaging approach is thus best viewed as a method of generating interesting possible priors

for further study, and so will not be considered further herein.

1.3.3 Hierarchical approach

Utilize hierarchical modeling to transfer the reference prior problem to a ‘higher level’ of the

model (following the advice of I. J. Good). In this approach one

(i) Chooses a class of proper priors π(θ | a) reflecting the desired structure of the problem.

(ii) Forms the marginal likelihood p(x | a) =
∫
p(x | a)π(θ | a) dθ.

(iii) Finds the reference prior, πR(a), for a in this marginal model.
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Thus the overall prior becomes

πo(θ) =

∫
π(θ | a) πR(a) da ,

although computation is typically easier in the hierarchical formulation.

Example 1.8 Multinomial (continued) The Dirichlet Di(θ | a, . . . , a) class of priors

is natural here, reflecting the desire to treat all the θi similarly. We thus need only to

find the reference prior for a in the marginal model.

p(x | a) =

∫ (
n

x1 . . . xm

)(
m∏
i=1

θxi
i

)
Γ(ma)

Γ(a)m

m∏
i=1

θa−1
i dθ

=

(
n

x1 . . . xm

)
Γ(ma)

Γ(a)m

∏m
i=1 Γ(xi + a)

Γ(n+ma)
. (3)

The reference prior for πR(a) would just be the Jeffreys-rule prior for this marginal

model; this is computed in Section 3. The implied prior for θ is, of course

π(θ) =

∫
Di(θ | a) πR(a) da .

Interestingly, πR(a) turns out to be a proper prior, necessary because the marginal

likelihood is bounded away from zero as a→∞.

As computations in this hierarchical setting are more complex, one might alterna-

tively simply choose the Type-II maximum likelihood estimate, i.e., the value of a that

maximizes (3). For the data given in the earlier example (one cell having two counts,

another one count, and the rest zero counts), this marginal likelihood is proportional to

[a(a+ 1)]/[(ma+ 1)(ma+ 2)], which is maximized at roughly a =
√

2/m. In Section 3

we will see that it is actually considerably better to maximize the reference posterior

for a, namely πR(a |x) ∝ p(x | a) πR(a).

1.4 Outline of the paper

In Section 2, we formalize the reference distance approach and apply it three models—the

multinomial model, the normal model where the coefficient of variation is also a parameter

of interest, and a hypergeometric model. In Section 3 we consider the hierarchical prior

modeling approach, applying it to three models—the multinomial model, the multinormal

model, and the bivariate normal model. Section 4 presents conclusions.
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2 Reference distance approach

Recall that the goal is to identify a single overall prior π(ω) that can be systematically used

for all the parameters θ = θ(ω) = {θ1(ω), . . . , θm(ω)} of interest. The idea of the reference

distance approach is to find a π(ω) whose corresponding marginal posteriors, {π(θi |x)}mi=1

are close, in an average sense, to the reference posteriors {πi(θi |x)}mi=1 arising from the

separate reference priors {πθi
(ω)}mi=1 derived under the assumption that each of the θi’s is of

interest. In the remainder of the paper, θ will equal ω, so we will drop ω from the notation.

We first consider the situation where the problem has an exact solution.

2.1 Exact solution

If one is able to find a single joint prior π(θ) whose corresponding marginal posteriors are

precisely equal to the reference posteriors for each of the θi’s, so that, for all x ∈ X ,

π(θi |x) = πi(θi |x), i = 1, . . . ,m,

then it is natural to argue that this should be an appropriate solution to the problem.

Notice, however, that there may be many joint priors which satisfy this condition. If the

joint reference priors for the θi’s are all equal, then

π(θ) = πθi
(θ), i = 1 . . . ,m,

will obviously satisfy the required condition, and is the overall reference prior.

Example 2.1 Univariate normal data. Consider data x which consist of a random sam-

ple of normal observations, so that p(x |θ) = p(x |µ, σ) =
∏n

i=1 N(x |µ, σ), and suppose

that one is equally interested in µ (or any one-to-one transformation of µ) and σ (or any

one-to-one transformation of σ, such as the variance σ2, or the precision σ−2.) The joint

reference prior when any of these is the quantity of interest is known to be the right

Haar prior πµ(µ, σ) = πσ(µ, σ) = σ−1, and this is thus an exact solution to the overall

prior problem under the reference distance approach.

Interestingly, this prior also works well for making joint inferences on (µ, σ) in that it

can be verified that the corresponding joint credible regions for (µ, σ) have appropriate

coverage properties. This does not mean, of course, that the overall prior is neces-

sarily good for any function of the two parameters. For instance, if the quantity of

interest is the centrality parameter θ = µ/σ, the reference prior is easily found to be

πθ(θ, σ) = (1 + 1
2θ

2)−1/2σ−1 (Bernardo, 1979), which is not the earlier overall reference

prior.
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2.2 Reference distance solution

When an exact solution is not possible, it is natural to consider a family of candidate prior

distributions, F = {π(θ |a),a ∈ A}, and choose, as the overall prior, the distribution

from this class which yields marginal posteriors that are closest, in an average sense, to the

marginal reference posteriors.

2.2.1 Directed logarithmic divergence

It is first necessary to decide how to measure the distance between two distributions. We will

actually use a divergence, not a distance, namely the directed logarithmic or Kullback-Leibler

divergence (Kullback and Leibler, 1951) given in the following definition.

Definition 1 Let p(ψ) be the probability density of a random vector ψ ∈ Ψ, and consider an

approximation p0(ψ) with the same or larger support. The directed logarithmic divergence

of p0 from p is

κ{p0 | p} =

∫
Ψ

p(ψ) log
p(ψ)

p0(ψ)
dψ ,

provided that the integral exists.

The non-negative directed logarithmic divergence κ{p0 | p} is the expected log-density ratio

of the true density over its approximation; it is invariant under one-to-one transformations

of the random vector ψ; and it has an operative interpretation as the amount of information

(in natural information units or nits) which may be expected to be required to recover p

from p0. It was first proposed by Stein (1964) as a loss function and, in a decision-theoretic

context, it is often referred to as the entropy loss.

2.2.2 Weighted logarithmic loss

Suppose the relative importance of the θi is given by a set of weights {w1, . . . , wm}, with

0 < wi < 1 and
∑

iwi = 1. A natural default value for these is obviously wi = 1/m, but

there are many situations where this choice may not be appropriate. To define the proposed

criterion, we will also need to utilize the reference prior predictives for i = 1, . . . ,m,

pθi
(x) =

∫
Θ

p(x |θ) πθi
(θ) dθ .
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Definition 2 The best overall prior πo(θ) within the family F = {π(θ |a),a ∈ A} is defined

as that which minimizes the weighted average expected logarithmic loss, so that

πo(θ) = π(θ |a∗), a∗ = arg inf
a∈A

d(a),

d(a) =
m∑
i=1

wi

∫
X
κ{πθi

(· |x,a) |πθi
(· |x)} pθi

(x) dx, a ∈ A .

This can be rewritten, in terms of the sum of expected risks, as

d(a) =
m∑
i=1

wi

∫
Θ

ρi(a |θ)πθi
(θ) dθ, a ∈ A ,

where

ρi(a |θ) =

∫
X
κ{πθi

(· |x,a) | πθi
(· |x)} p(x |θ) dx, θ ∈ Θ.

Note that there is no assurance that d(a) will be finite if the reference priors are improper.

Indeed, in cases we have investigated with improper reference priors, d(a) has failed to be

finite and hence the reference distance approach cannot be directly used. However, as in

the construction of reference priors, one can consider an approximating sequence of proper

priors {πθi
(θ | k), k = 1, 2 . . .} on increasing compact sets. For each of the πθi

(θ | k), one can

minimize the expected loss

d(a | k) =
m∑
i=1

wi

∫
Θ

ρi(a |θ) πθi
(θ | k) dθ,

obtaining a∗k = arg infa∈A d(a | k). Then, if a∗ = limk→∞ a
∗
k exists, one can declare this to

be the solution.

2.2.3 Multinomial model

In the multinomial model with m cells and parameters {θ1, . . . , θm}, with
∑m

i=1 θi = 1,

the reference posterior for each of the θi’s is πi(θi |x) = Be(θi |xi + 1
2 , n − xi + 1

2), while

the marginal posterior distribution of θi resulting from the joint prior Di(θ1, . . . , θm−1 | a)

is Be(θi |xi + a, n − xi + (m − 1)a). The directed logarithmic discrepancy of the posterior

Be(θi |xi + a, n− xi + (m− 1)a) from the reference posterior Be(θi |xi + 1
2 , n− xi + 1

2) is

κi{a |x,m, n} = κi{a |xi,m, n} = κBe{xi + a, n− xi + (m− 1)a |xi + 1
2 , n− xi + 1

2}

where
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κBe{α0, β0 |α, β} =

∫ 1

0

Be(θi |α, β) log
[ Be(θi |α, β)

Be(θi |α0, β0)

]
dθi

= log

[
Γ(α + β)

Γ(α0 + β0)

Γ(α0)

Γ(α)

Γ(β0)

Γ(β)

]
+ (α− α0)ψ(α) + (β − β0)ψ(β)− ((α + β)− (α0 + β0))ψ(α + β),

and ψ(·) is the digamma function.

a
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Figure 1: Expected logarithmic losses, when using a Dirichlet prior with parameter {a, . . . , a}, in

a multinomial model with m cells, for sample sizes n = 5, 10, 25, 100 and 500. Clockwise panels

from upper left, m = 10, 100, 200 and 1000. In all cases, the optimal value for all sample sizes is

a∗ ≈ 0.8/m.

The divergence κi{a |xi,m, n} between the two posteriors of θi depends on the data only

through xi and the sampling distribution of xi is Bi(xi |n, θi), which only depends of θi.

Moreover, the marginal reference prior for θi is πθi
(θi) = Be(θi | 1/2, 1/2) and, therefore, the
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corresponding reference predictive for xi is

p(xi |n) =

∫ 1

0

Bi(xi |n, θi) Be(θi | 1/2, 1/2) dθi =
1

π

Ga(xi + 1
2) Ga(n− xi + 1

2)

Ga(xi + 1) Ga(n− xi + 1)
.

Hence, using Definition 2 with uniform weights, the average expected logarithmic loss of

using a joint Dirichlet prior with parameter a with a sample of size n is simply

d(a |m,n) =
n∑
x=0

κ{a |x,m, n} p(x |n)

since, by the symmetry of the problem, the m parameters {θ1, . . . , θm} yield the same ex-

pected loss.

The function d(a |m = 10, n) is graphed in the upper left panel of Figure 1 for several

values of n. The expected loss decreases with n and, for any n, the function d(a |m,n) is

concave, with a unique minimum numerically found to be at a∗ ≈= 0.8/m = 0.08. The

approximation is rather precise. For instance, the minimum is achieved at 0.083 for n = 100.

Similarly, the function d(a |m = 1000, n) is graphed in the lower right panel of Figure 1 for

the same values of n and with the same vertical scale, yielding qualitatively similar results

although, as one may expect, the expected losses are now larger than those obtained with

m = 10. Once more, the function d(a |m = 1000, n) is concave, with a unique minimum

numerically found to be at a∗ ≈ 0.8/m = 0.0008, with the exact value very close. For

instance, for n = 100, the minimum is achieved at 0.00076.

If can be concluded that, for all practical purposes when using the reference distance

approach, the best global Dirichlet prior, when one is interested in all the parameters of a

multinomial model, is that with parameter vector {1/m, . . . , 1/m} (or 0.8×{1/m, . . . , 1/m}
to be slightly more precise), yielding an approximate marginal reference posterior for each

of the θi’s as Be(θi |xi + 1/m, n− xi + (m− 1)/m), having mean and variance

E[θi |xi, n] = θ̂i = (xi + 1/m)/(n+ 1), Var[θi |xi, n] = θ̂i(1− θ̂i)/(n+ 2).

2.2.4 Multivariate hypergeometric model

Let N+ be the set of all nonnegative integers. Consider a multivariate hypergeometric

distribution Hyk(rk |n,R, N) with the probability mass function

Hyk(rk |n,Rk, N) =

(
R1

r1

)
· · ·
(
Rk

rk

)(
Rk+1

rk+1

)(
N
n

) , rk ∈ Rk,n, (4)

Rk,n = {rk = (r1, · · · , rk); rj ∈ N+, r1 + · · ·+ rk ≤ n},

13



where the k unknown parameters Rk = (R1, · · · , Rk) are in the parameter space Rk,N . Here

and in the following, Rk+1 = N − (R1 + · · ·+Rk). Notice that the univariate hypergeometric

distribution is the special case when k = 1.

A natural hierarchical model for the unknown Rk is to assume that it is multinomial

Muk(Rk |N,pk), with pk ∈ Pk ≡ {pk = (p1, · · · , pk)}, 0 ≤ pj ≤ 1, and p1 + · · · + pk ≤ 1.

The probability mass function of Rk is then

Muk(Rk |N,pk) =
N !∏k+1
j=1 Rj!

k+1∏
j=1

p
Rj

j .

Berger, Bernardo and Sun (2012) prove that the marginal likelihood of rk given (pk, n,N)

depends only on (n,pk) and it is given by

p(rk |pk, n,N) =
∑

Rk∈Nk,N

Hyk(rk |n,Rk, N) Muk(Rk |N,pk) (5)

= Muk(rk |n,pk), rk ∈ Rk,n.

This reduces to the multinomial problem. Hence, the overall (approximate) reference prior

for (Rk |N,pk) would be Dirichlet Di(Rk | 1/k, · · · , 1/k).

2.2.5 The normal model with coefficient of variation

Consider a random sample z = {x1, . . . , xn} from a normal model N(x |µ, σ), with both pa-

rameters unknown, and suppose that one is interested in µ and σ, but also in the standardized

mean φ = µ/σ (and/or any one-to-one function of them such as log σ, or the coefficient of

variation σ/µ).

The joint reference prior when either µ or σ are the quantities of interest is

πµ(µ, σ) = πσ(µ, σ) = σ−1 (6)

and this is known to lead to the reference posteriors

πrefµ (µ | z) = St(µ |x, s/
√
n− 1, n− 1) , πrefσ (σ | z) = Ga−1/2(σ | (n− 1)/2, ns2/2),

with nx =
∑n

i=1 xi and ns2 =
∑n

i=1(xi − x)2, which are proper if n ≥ 2, and have the

correct probability matching properties. However, the reference prior if φ is the parameter

of interest is πφ(φ, σ) = (2 + φ2)−1/2σ−1 (Bernardo, 1979), and the corresponding reference

posterior distribution for φ can be shown to be

πrefφ (φ | z) = πrefφ (φ | t) ∝ (2 + φ2)−1/2p(t |φ) ,

14



where t = (
∑n

i=1 xi)/(
∑n

i=1 x
2
i )

1/2 has a sampling distribution p(t |φ) depending only on φ

(see Stone and Dawid, 1972). Note that all posteriors can be written in terms of the sufficient

statistics x and s2 and the sample size n, which we will henceforth use.

A natural choice for the family of joint priors to be considered as candidates for an overall

prior is the class of relatively invariant priors (Hartigan, 1964),

F = {π(µ, σ | a) = σ−a, a > 0}

which contains, for a = 1, the joint reference prior (6) when either µ or σ are the parameters

of interest, and the Jeffreys-rule prior, for a = 2. Since these priors are improper, a compact

approximation procedure, as described at the end of Section 2.2.2, is needed. The usual

compactification for location-scale parameters considers the sets

Ck = {µ ∈ (−k, k), σ ∈ (e−k, ek)}, k = 1, 2, . . . .

One must therefore derive

d(a |n, k) = dµ(a |n, k) + dσ(a |n, k) + dφ(a |n, k),

where each of the di’s is found by integrating the corresponding risk with the appropriately

renormalized joint reference prior. Thus,

dµ(a |n, k) =

∫
Ck

[∫
T
κ{πµ(· |n, t, a) |πrefµ (· |n, t)} p(t |n, µ, σ) dt

]
πµ(µ, σ | k) dµ dσ,

dσ(a |n, k) =

∫
Ck

[∫
T
κ{πσ(· |n, t, a) |πrefσ (· |n, t)} p(t |n, µ, σ) dt

]
πσ(µ, σ | k) dµ dσ,

dφ(a |n, k) =

∫
Ck

[∫
T
κ{πφ(· |n, t, a) | πrefφ (· |n, t)} p(t |n, µ, σ) dt

]
πφ(µ, σ | k) dµ dσ,

where t = (x, s), and the πi(µ, σ | k)’s are the joint proper prior reference densities of each of

the parameter functions obtained by truncation and renormalization in the Ck’s.
It is found that the risk associated to µ (the expected KL divergence of πµ(· |n, t, a) from

πrefµ (· |n, t) under sampling) does not depend on the parameters, so integration with the

joint prior is not required, and one obtains

dµ(a |n, k) = dµ(a |n) = log

[
Γ[n/2] Γ[(a+ n)/2− 1]

Γ[(n− 1)/2] Γ[(a+ n− 1)/2]

]
− a− 1

2

(
ψ[
n− 1

2
]− ψ[

n

2
]

)
,

where ψ[·] is the digamma function. This is a concave function with a unique minimum

d1(1 |n) = 0 at a = 1, as one would expect from the fact that the target family F contains

the reference prior for µ when a = 1. The function dµ(a |n = 10) is the lower dotted line in
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Figure 2: Expected average intrinsic logarithmic losses d(a |n, k) associated with the use of the

joint prior π(µ, σ | a) = σ−a rather than the corresponding reference priors when n = 10 and k = 3.

Figure 2. Similarly, the risk associated to σ does not depend either of the parameters, and

one obtains

dσ(a |n, k) = dσ(a |n) = log

[
Γ[(a+ n)/2− 1]

Γ[(n− 1)/2]

]
− a− 1

2
ψ[
n− 1

2
],

another concave function which a unique minimum d2(1 |n) = 0, at a = 1. The function

dσ(a |n = 10) is the upper dotted line in Figure 2.

The risk associated with φ cannot be analytically obtained and is numerically computed,

using one-dimensional numerical integration over φ to obtain the KL divergence, and Monte

Carlo sampling to obtain its expected value with the truncated and renormalized reference

prior πφ(µ, σ | k). The function dφ(a |n = 10, k = 3) is represented by the black line in

Figure 2. It may be appreciated that, of the three components of the expected loss, the

contribution corresponding to σ is the largest, and that corresponding to µ is the smallest,

in the neighborhood of the optimal choice of a. The sum of the three is the expected loss

to be minimized, d(a |n, k). The function d(a |n = 10, k = 3) is represented by the solid

line in Figure 2, and has a minimum at a∗3 = 1.016. The sequence of numerically computed

optimum values is {a∗k} = {1.139, 1.077, 1.016, . . .} quickly converging to some value a∗ larger

than 1 and smaller than 1.016, so that, pragmatically, the overall objective prior may be

taken to be the usual objective prior for the normal model,

πo(µ, σ) = σ−1.

It is of interest to study the difference in use of this overall prior when compared with
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Figure 3: Reference posterior (solid) and marginal overall posterior (black) for φ given a minimal

random sample of size n = 2. The dotted line is the marginal posterior for the prior with a = 2,

which is the Jeffreys-rule prior.

the reference prior for φ = µ/σ. The difference is greater for smaller samples, and the

minimum sample size here is n = 2. A random sample of two observations from N(x | 1, 1
2)

(so that the true value of the standardized mean is φ = 2) was simulated yielding {x1, x2} =

{0.959, 1.341}. The corresponding reference posterior for φ is the solid line in Figure 3.

The posterior that corresponds to the recommended overall prior a = 1 is the black line

in the figure. For comparison, the posterior corresponding to the prior with a = 2, which

is Jeffreys-rule prior, is also given, as the dotted line. Thus, even with a minimum sample

size, the overall prior yields a marginal posterior for φ which is quite close to that for the

reference posterior. For sample sizes beyond n = 4 the differences are visually inappreciable.

3 Hierarchical approach with hyperpriors

If a natural family of proper priors π(θ | a), indexed by a single parameter a, can be

identified for a given problem, one can compute the marginal likelihood p(x | a) (necessarily

a proper density), and find the reference prior πR(a) for a for this marginal likelihood. This

hierarchical prior specification is clearly equivalent to use of

πo(θ) =

∫
π(θ | a) πR(a) da

as the overall prior in the original problem.
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3.1 Multinomial problem

3.1.1 The hierarchical prior

For the multinomial problem with the Di(θ | a, . . . , a) prior, the marginal density of any of

the xi’s is

p(xi | a,m, n) =

(
n

xi

)
Γ(xi + a) Γ(n− xi + (m− 1)a) Γ(ma)

Γ(a) Γ((m− 1)a) Γ(n+ma)
,

following immediately from the fact that, marginally,

p(xi | θi) = Bi(xi |n, θi) π(θi | a) = Be(θi | a, (m− 1)a).

Then πR(a), the reference (Jeffreys) prior for the integrated model p(x | a) in (3), is given in

the following proposition:

Proposition 3.1

πR(a |m,n) ∝

[
n−1∑
j=0

(
Q(j | a,m, n)

(a+ j)2
− m

(ma+ j)2

)]1/2

, (7)

where Q(· | a,m, n) is the right tail of the distribution of p(x | a,m, n), namely

Q(j | a,m, n) =
n∑

l=j+1

p(l | a,m, n), j = 0, . . . , n− 1.

Proof. Computation yields that

E
[
− d2

da2
log p(x | a)

]
= −

n−1∑
j=0

m2

(ma+ j)2
+ E

 m∑
i=1

xi−1∑
j=0

1
(a+ j)2

 , (8)

where
∑−1

j=0 ≡ 0. Since the xi are exchangeable, this equals

−
n−1∑
j=0

m2

(ma+ j)2
+mEX1

X1−1∑
j=0

1
(a+ j)2

 ,
and the result follows by rearranging terms.

Proposition 3.2 πR(a) is a proper prior.

Proof. The prior is clearly continuous in a, so we only need show that it is integrable at 0 and at∞.
Consider first the situation as a→∞. Then

p(0 | a,m, n) =
Γ(a)Γ(n+ [m− 1]a)Γ(ma)
Γ(a)Γ([m− 1]a)Γ(n+ma)

=
(m− 1)a[(m− 1)a+ 1] · · · [(m− 1)a+ n− 1]

ma(ma+ 1) · · · (ma+ n− 1)

=
(m− 1)
m

(1− cna+O(a2)) ,
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where cn = 1 + 1/2 + · · ·+ 1/(n− 1). Thus the first term of the sum in (7) is

1− p(0 | a,m, n)
a2

− 1
ma2

=
(m− 1)cn

ma
+O(1) .

All of the other terms of the sum in (7) are clearly O(1), so that

πR(a) =

√
(m− 1)cn/m√

a
+O(

√
a) ,

as a→ 0, which is integrable at zero (although unbounded).

To study propriety as a→∞, a laborious application of Stirling’s approximation yields

p(x1 | a,m, n) = Bi(x1 |n, 1/m)(1 +O(a−1)) ,

as a→∞. Thus

πR(a,m, n) =

n−1∑
j=0

(∑n
l=j+1 Bi(l |n, 1/m)

a2
− 1
ma2

)
+O(a−3)

1/2

=
[(∑n

l=1 lBi(l |n, 1/m)
a2

− n

ma2

)
+O(a−3)

]1/2

= O(a−3/2) ,

which is integrable at infinity, completing the proof.

As suggested by the proof above, the reference prior πR(a |m,n) behaves as O(a−1/2) near

a = 0 and behaves as O(a−2) for large a values. Using series expansions, it is found that, for

sparse tables where m/n is relatively large, the reference prior is well approximated by the

proper prior

π∗(a |m,n) =
1

2

n

m
a−1/2

(
a+

n

m

)−3/2

, (9)

which only depends on the ratio m/n, and has the behavior at the extremes described above.

This can be restated as saying that φ(a) = a/(a+(n/m)) has a Beta distribution Be(φ | 12 , 1).

Figure 4 gives the exact form of πR(a |m,n) for various (m,n) values, and the corresponding

approximation given by (9). The approximate reference prior π∗(a |m,n) appears to be a

good approximation to the actual reference prior, and hence can be recommended for use

with large sparse contingency tables.

It is always a surprise when a reference prior turns out to be proper, and this seems to

happen when the likelihood does not go to zero at a limit. Indeed, it is straightforward to

show that

p(x | a) =

 O(ar0−1), as a→ 0,(
n
x

)
m−n, as a→∞,

where r0 is the number of nonzero xi. Thus, indeed, the likelihood is constant at ∞, so that

the prior must be proper at infinity for the posterior to exist.
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Figure 4: Reference priors πR(a |m,n) (solid lines) and their approximations (dotted lines) for

(m = 150, n = 10) (upper curve) and for (m = 500, n = 10) (lower curve).

3.1.2 Computation with the hierarchical reference prior

If a full Bayesian analysis is desired, the obvious MCMC sampler is as follows:

Step 1. Use a Metropolis Hastings move to sample from the marginal posterior

πR(a |x) ∝ πR(a) p(x | a).

Step 2. Given a, sample from the usual beta posterior π(θ | a,x).

This will be highly efficient if a good proposal distribution for Step 1 can be found. As it

is only a one-dimensional distribution, standard techniques should work well. Even simpler

computationally is the use of the approximate reference prior π∗(a | m,n) in (9), because of

the following result.

Proposition 3.3 Under the approximate reference prior (9), and provided there are at least

three nonempty cells, the marginal posterior distribution of a is log-concave.

Proof. It follows from (8) that

d2

da2
log[p(x | a)π∗(a |m,n)] =

n−1∑
j=0

m2

(ma+ j)2
−

m∑
i=1

xi−1∑
j=0

1
(a+ j)2

+
1

2a2
+

3
2(a+ n/m)2

.

Without loss of generality, we assume that xi > 0, for i = 1, 2, 3. Then

d2

da2
log[p(x | a)p∗(a |m,n)] < −

3∑
i=2

xi−1∑
j=0

1
(a+ j)2

+
1

2a2
+

3
2a2

< 0.

Thus log-concave rejection sampling (Gilks and Wild, 1992) can be used to sample from

the posterior of a.
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Alternatively, one might consider the empirical Bayes solution of fixing a at it’s posterior

mode âR. The one caveat is that, when r0 = 1, it follows from (10) that the likelihood is

constant at zero, while πR(a) is unbounded at zero; hence the posterior mode will be a = 0,

which cannot be used. When r0 ≥ 2, it is easy to see that πR(a)p(x | a) goes to zero as

a→ 0, so there will be no problem.

It will typically be considerably better to utilize the posterior mode than the maximum of

p(x | a) alone, given the fact that the likelihood does not go to zero at ∞. For instance, if

all xi = 1, it can be shown that p(x | a) has a likelihood increasing in a, so that there is no

mode. (Even when r0 = 1, use of the mode of p(x | a) is not superior, in that the likelihood

is also maximized at 0 in that case.)

3.1.3 Posterior behavior as m→∞

Since we are contemplating the “large sparse” contingency table scenario, it is of considerable

interest to study the behavior of the posterior distribution as m→∞. It is easiest to state

the result in terms of the transformed variable v = ma. Let πRm(v |x) denote the transformed

reference posterior.

Proposition 3.4

Ψ(v) = lim
m→∞

πRm(v |x) =
Γ(v + 1)

Γ(v + n)
v(r0− 3

2
)

[
n−1∑
i=1

i

(v + i)2

]1/2

. (10)

Proof. Note that

πR(a |x) ∝ m(x | a)πR(a)

∝ Γ(ma)
Γ(ma+ n)

[
m∏
i=1

Γ(a+ xi)
Γ(a)

]
πR(a)

∝ Γ(ma)
Γ(ma+ n)

 ∏
i:xi 6=0

a(a+ 1) s(a+ xi − 1)

πR(a)

∝ Γ(ma)
Γ(ma+ n)

n−1∏
j=0

(a+ j)rj

πR(a) ,

where rj = {#xi > j}. Change of variables to v = ma yields

πRm(v |x) ∝ Γ(v)
Γ(v + n)

n−1∏
j=0

( v
m

+ j
)rjπR ( v

m

)

∝ Γ(v) vr0

Γ(v + n)

[
C +

n−r0∑
i=1

Ki

( v
m

)i]
πR
( v
m

)
, (11)
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where C =
∏n−1
j=2 j

rj and the Ki are constants.

Next we study the behavior of πR(v/m) for large m. Note first that, in terms of v, the marginal
density of x1 = 0 is

p(0 | v) =
Γ( (m−1)

m v + n)

Γ( (m−1)
m v)

Γ(v)
Γ(v + n)

=
(m−1)
m v[ (m−1)

m v + 1] · · · [ (m−1)
m v + n− 1]

v(v + 1) · · · (v + n− 1)

=
(m− 1)
m

(
1− v

m[v + 1]

)
· · ·
(

1− v

m[v + n− 1]

)
=

(m− 1)
m

(
1− v

m

n−1∑
i=1

1
v + i

+O

(
v2

m2(v + 1)2

))
.

Hence

Q(0 | a) = 1− p(0 | v) =
1
m

+
v(m− 1)
m2

n−1∑
i=1

1
v + i

+O

(
v2

m2(v + 1)2

)
= O

(
1
m

)
(uniformly in v) .

It follows that all Q(i | a) ≤ O(1/m), so that

πR
( v
m

)
∝

(m
v

)2
(

1
m

+
v(m− 1)
m2

n−1∑
i=1

1
v + i

)
+O(1) +

n−1∑
j=1

1
( vm + j)2

O

(
1
m

)
−
n−1∑
i=0

m

(v + i)2

1/2

=

[
n−1∑
i=1

1
v + i

(
(m− 1)

v
− m

(v + i)

)
+O(1)

]1/2

=

[
(m− 1)

v

n−1∑
i=1

i

(v + i)2
+O(1)

]1/2

=
√
m− 1

[
1
v

n−1∑
i=1

i

(v + i)2
+O

(
1
m

)]1/2

.

Combining this with (11), noting that vΓ(v) = Γ(v + 1), and letting m→∞, yields the result.

It follows, of course, that a behaves like v/m for large m, where v has the distribution

in (10). It is very interesting that this “large m” behavior of the posterior depends on the

data only through r0, the number of nonzero cell observations.

If, in addition, n is moderately large (but much smaller than m), we can explicitly study

the behavior of the posterior mode of a.

Proposition 3.5 Suppose m→∞, n→∞, and n/m→ 0. Then (10) has mode

v̂ ≈

{
(r0−1.5)

log(1+n/r0)
if r0

n
→ 0,

c∗n if r0
n
→ c < 1,
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where r0 is the number of nonzero xi, c
∗ is the solution to c∗ log(1 + 1

c∗
) = c, and f(n,m) ≈

g(n,m) means f(n,m)/g(n,m)→ 1. The corresponding mode of the reference posterior for

a is âR = v̂/m.

Proof. Taking the log of (10) and differentiating with respect to v results in

Ψ′(v) =
(r0 − 1.5)

v
−
n−1∑
i=1

1
v + i

−
∑n−1

i=1
i

(v+i)3∑n−1
i=1

i
(v+i)2

.

Note first that, as n grows, and if v also grows (no faster than n), then

n−1∑
i=1

1
v + i

=
∫ n

1

1
v + x

dx+O

(
1

v + 1

)
+O

(
1
n

)
= log

(
v + n

v + 1

)
+O

(
1

v + 1

)
+O

(
1
n

)
.

Next,

n−1∑
i=1

i

(v + i)3
=

∫ n

1

x

(v + x)3
dx+O

(
1

(v + 1)2

)
+O

(
1
n2

)
=

1
2

[
(v + 2)
(v + 1)2

− (v + 2n)
(v + n)2

]
+O

(
1

(v + 1)2
+

1
n2

)
= O

(
1

v + 1

)
+O

(
1
n

)
,

n−1∑
i=1

i

(v + i)2
=

∫ n

1

x

(v + x)2
dx+O

(
1

(v + 1)

)
+O

(
1
n

)
=

v(1 + n)
(v + 1)(v + n)

+ log
(
v + n

v + 1

)
+O

(
1

v + 1
+

1
n

)
≥ log 2 ,

again using that v will not grow faster than n. Putting these together we have that

Ψ′(v) =
(r0 − 1.5)

v
− log

(
v + n

v + 1

)
+O

(
1

v + 1

)
+O

(
1
n

)
.

Case 1. r0
n → c, for 0 < c < 1. For this case, write v = c∗n/(1 + δ) for δ small, and note that

then
Ψ′(v) =

c

c∗
(1 + o(1))(1 + δ)− log

(
(c∗ + 1)
c∗

)
+ o(1) .

Since c
c∗ − log

(
(c∗+1)
c∗

)
= 0, it is clear that δ can be appropriately chosen as o(1) to make the

derivative zero.

Case 2. r0
n → 0. Now choose v = (r0−1.5)

(1+δ) log(1+n/r0) and note that v
n → 0. It follows that

log
(

1 +
n

r0

)
= (log n− log r0 + o(1))(1 + δ) and log

(
v + n

v + 1

)
= [log n− log(v + 1)](1 + o(1)) .

Consider first the case v →∞. Then

log(v + 1) = (1 + o(1))(log r0 − log log(1 + n/r0)) = (1 + o(1)) log r0 ,
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so that
Ψ′(v) = (log n− log r0 + o(1))(1 + δ)− (log n− log r0)(1 + o(1)) + o(1) ,

and it is clear that δ can again be chosen o(1) to make this zero. Lastly, if v ≤ K < ∞, then
(log r0)/(log n) = o(1), so that Ψ′(v) = (log n)(1 + o(1))(1 + δ)− (log n)(1 + o(1)) + o(1), and δ can
again be chosen o(1) to make this zero, completing the proof.

Table 1 gives the limiting behavior of v̂ for various behaviors of the number of nonzero

cells, r0. Only when r0 = log n does the posterior mode of a (i.e., v/m) equal 1/m, the

value selected by the reference distance method. Of course, this is not surprising; empirical

Bayes is using a fit to the data to help select a whereas the reference distance method is

pre-experimental.

r0 cn (0 < c < 1) nb (0 < b < 1) (log n)b log n O(1)

v̂ c∗n nb

(1−b) logn
(log n)(b−1) 1 O(1/ log n)

Table 1: The limiting behavior of v̂ as n→∞, for various limiting behaviors of r0, the number of

non-zero cells.

3.2 Multi-normal means

Let xi be independent normal with mean µi and variance 1, for i = 1 · · · ,m. We are

interested in all the µi and in |µ|2 = µ2
1 + · · ·+ µ2

m.

The natural hierarchical prior modeling approach is to assume that µi
iid∼ N(µi | 0, τ). Then,

marginally, the xi are iid N(x1 | 0,
√

1 + τ 2) and the reference (Jeffreys) prior for τ 2 in this

marginal model is

πR(τ 2) ∝ (1 + τ 2)−1.

The hierarchical prior for µ (and recommended overall prior) is then

πo(µ) =

∫ ∞
0

1

(2πτ 2)m/2
exp

(
−|µ|

2

2τ 2

)
1

1 + τ 2
dτ 2 . (12)

This prior is arguably reasonable from a marginal reference prior perspective. For the

individual µi, it is a shrinkage prior known to result in Stein-like shrinkage estimates of the

form

µ̂i =

(
1− r(|x|)

|x|2

)
xi ,

with r(·) ≈ p for large arguments. Such shrinkage estimates are often viewed as actually

being superior to the reference posterior mean, which is just xi itself. The reference prior
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when |µ| is the parameter of interest is

π|µ|(µ) ∝ 1

|µ|m−1
∝
∫ ∞

0

1

(2πτ 2)m/2
exp

(
−|µ|

2

2τ 2

)
1

τ
dτ 2 , (13)

which is clearly very similar to (12). Thus the hierarchical prior appears to be quite satis-

factory in terms of its marginal posterior behavior for any of the parameters of interest. Of

course, the same could be said for the single reference prior in (13); thus here is a case where

one of the reference priors would be fine for all parameters of interest, and averaging among

reference priors would not work.

Computation with the reference prior in (13) can be done by a simple Gibbs sampler.

Computation with the hierarchical prior in (12) is almost as simple, with the Gibbs step

for τ 2 being replaced by the rejection step:

Step 1. Propose τ 2 from the inverse gamma density proportional to

1

(τ 2)(1+m/2)
exp

(
−|µ|

2

2τ 2

)
,

Step 2. Accept the result with probability τ 2/(τ 2 + σ2/n) (or else propose again).

3.3 Bivariate normal problem

Earlier for the bivariate normal problem, we only considered the two right-Haar priors. More

generally, there is a continuum of right-Haar priors given as follows. Define an orthogonal

matrix by

Γ =

(
cos(β) − sin(β)

sin(β) cos(β)

)
where −π/2 < β ≤ π/2. Then it is straightforward to see that the right-Haar prior based

on the transformed data ΓX is

π(µ1, µ2, σ1, σ2, ρ | β) =
sin2(β)σ2

1 + cos2(β)σ2
2 + 2 sin(β) cos(β) ρ σ1 σ2

σ2
1 σ

2
2 (1− ρ2)

.

We thus have a class of priors indexed by a hyperparameter β, and can apply the hierarchi-

cal approach to obtain an overall prior. The natural prior distribution on β is the (proper)

uniform distribution (being uniform over the set of rotations is natural.) The resulting joint

prior is

πo(µ1, µ2, σ1, σ2, ρ) =
1

π

∫ π/2

−π/2
π(µ1, µ2, σ1, σ2, ρ | β) dβ ,

which equals the prior πA in (1), since∫ π/2

−π/2
sin(β) cos(β)dβ = 0,

∫ π/2

−π/2
sin2(β)dβ =

∫ π/2

−π/2
cos2(β)dβ = constant .
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Thus the overall prior obtained by the hierarchical approach is the same prior as obtained

by just averaging the two reference priors. It was stated there that this prior is inferior as

an overall prior to either reference prior individually, so the hierarchical approach has failed.

Empirical hierarchical approach: Instead of integrating out over β, one could find the

empirical Bayes estimate β̂ and use π(µ1, µ2, σ1, σ2, ρ | β̂) as the overall prior. This was

shown in Sun and Berger (2007) to result in a terrible overall prior, much worse than either

the individual reference priors, or even πA in (1).

4 Discussion

The reference distance approach to developing an overall prior is natural, and seems to

work well when the reference priors themselves are proper. It also appears to be possible to

implement the approach in the case where the reference priors are improper, by operating

on suitable large compact sets and showing that the result is not sensitive to the choice of

compact set.

The hierarchical approach seems excellent (as usual), and can certainly be recommended if

one can find a natural hierarchical structure based on a class of proper priors. In particular,

the overall prior obtained for the multi-normal mean problem seems fine, and the recom-

mended hierarchical prior for the contingency table situation is very interesting, and seems

to have interesting adaptations to sparsity; the same can be said for its empirical Bayes

implementation. In contrast, the hierarchical and empirical Bayes implementations were

very unsatisfactory for the bivariate normal problem, when based on the class of right-Haar

priors, even though the hyperprior was proper. This is a clear warning to use the hierarchical

or empirical Bayes approach only with a base class of proper priors.

The failure of arithmetic prior averaging in the bivariate normal problem was also dramatic;

the initial averaging of two right-Haar priors gave an inferior result, which was duplicated by

the continuous average over all right-Haar priors. Curiously in this example, the geometric

average of the two right-Haar improper priors seems to be reasonable, suggesting that, if

averaging of improper priors is to be done, the geometric average should be used.
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