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SUMMARY

In this paper, the problem of parametric point estimation is addressed from an objective Bayesian view-
point. Arguing that pure statistical estimation may be appropriately described as a precise decision
problem, where the loss function is a measure of the divergence between the assumed model and the
estimated model, the information-based intrinsic discrepancy is proposed as an appropriate loss function.
The intrinsic estimator is then defined as that minimizing the expected loss with respect to the appro-
priate reference posterior distribution. The resulting estimators are shown to have attractive invariance
properties. As demonstrated with illustrative examples, the proposed theory either leads to new, arguably
better estimators, or provides a new perspective on well-established solutions.
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1. INTRODUCTION

It is well known that, from a Bayesian viewpoint, the final result of any problem of statistical
inference is the posterior distribution of the quantity of interest. However, in more than two
dimensions, the description (either graphical or analytical) of the posterior distribution is difficult
and some “location” measure is often required for descriptive purposes. Moreover, there are
many situations where a point estimate of the quantity of interest is specifically needed (and
often even legally required) as part of the statistical report; simple examples include quoting the
optimal dose of a drug per kilogram of body weight, or estimating the net weight of a canned
food.

The typical Bayesian approach to point estimation formulates the problem as a decision
problem, where the action space is the set of possible values of the quantity of interest. For each
loss function and prior distribution on the model parameters, the Bayes estimator is obtained
as that which minimizes the corresponding posterior expected loss. It is well known that the
solution may dramatically depend both on the choice of the loss function and on the choice of
the prior distribution.

In practice, in most situations where point estimation is of interest, an objective point
estimate of the quantity of interest is actually required: objective in the very precise sense of
exclusively depending on the assumed probability model (i.e., on the conditional distribution of
the data given the parameters) and the available data. Moreover, in purely inferential settings
(where interest focuses on the actual mechanism which governs the data), this estimate is
typically required to be invariant under one-to-one transformations of either the data or the
parameter space. In this paper, an information-theory based loss function is combined with
reference analysis to propose an objective Bayesian approach to point estimation which satisfies
these desiderata.
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In Section 2, the standard Bayesian formulation of point estimation as a decision problem is
recalled and its conventional “automatic” answers are briefly discussed. Section 3 presents the
proposed methodology. In Section 4, a number of illustrative examples are discussed. Section 5
contains some final remarks and suggests areas for additional research.

2. THE FORMAL DECISION PROBLEM

Let {p(x |θ),x ∈ X ,θ ∈ Θ} be a probability model assumed to describe the probabilistic
behavior of the observable data x, and suppose that a point estimator θe = θe(x) of the
parameter θ is required. It is well known that this can be formulated as a decision problem
under uncertainty, where the action space is the class A = {θe ∈ Θ} of possible parameter
values. In a purely inferential setting, the optimal estimate θ∗ is supposed to identify the best
proxy, p(x |θ∗), to the unknown probability model, p(x |θa), where θa stands for the actual
(unknown) value of the parameter.

Let l(θe,θa) be a loss function measuring the consequences of estimating θa by θe. In
a purely inferential context, l(θe,θa) should measure the consequences of using the model
p(x |θe) instead of the true, unknown model p(x |θa). For any loss function l(θe,θa) and
(possibly improper) prior p(θ), the Bayes estimator θb = θb(x) of the parameter θ is that
minimizing the corresponding posterior loss, so that

θb(x) = arg min
θe∈Θ

∫
Θ
l (θe,θ) p (θ |x) dθ, (1)

where p (θ |x) ∝ p(x |θ) p(θ) is the posterior distribution of the parameter vector θ.

A number of conventional loss functions have been proposed in the literature, and their
associated Bayes estimators are frequently quoted in Bayesian analysis:

Squared error loss. If the loss function is quadratic, of the form (θe − θa)tW (θe − θa),
where W is a (known) symmetric positive definite matrix, then the Bayes estimator is the
posterior mean E[θ |x], provided it exists.

Zero-one loss. If the loss function takes the value zero if θe belongs to a ball of radius ε
centered at θa, and the value one otherwise, then the Bayes estimator tends towards the
posterior mode Mo[θ |x] as ε→ 0, provided the mode exists and is unique.

Absolute error loss. If θ is one-dimensional, and the loss function is of the form c |θe− θa|,
for some c > 0, then the Bayes estimator is the posterior median Me[θ |x].

Neither the posterior mean nor the posterior mode are invariant under one-to-one trans-
formations of the parameter of interest. Thus, θe can be declared to be the best estimator of
θa, while φ(θe) is declared not to be the best estimator for φa = φ(θa); this is unattractive
in a scientific, purely inferential context, where interest is explicitly focused on identifying
the actual probability model p(x |θa) = p(x |φa). The one-dimensional posterior median is
invariant, but is not easily generalizable to more than one dimension. Naturally, if besides the
likelihood and the prior, the functional form of the loss function is consistently transformed,
invariance would be achieved, but this is rarely done in purely inferential problems. Hence,
it is suggested that invariant loss functions should be used. More precisely it is argued that,
in a purely inferential context, the loss function l(θe,θ) should not be chosen to measure the
discrepancy between θe and θa, but to directly measure the discrepancy between the models
p(x |θe) and p(x |θa) which they label. This type of intrinsic loss is typically invariant under
reparametrization, and therefore produces invariant estimators.
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An appropriate choice of the loss function is, however, only part of the solution. To obtain
an objective Bayes estimator, an objective prior must be used. It is argued that reference analysis
may successfully be used to provide an adequate prior specification.

3. INTRINSIC ESTIMATION

3.1. The Loss Function

Conventional loss functions typically depend on the particular metric used to index the model,
being defined as a measure of the distance between the parameter and its estimate. We claim
that, in a purely inferential context, one should rather be interested in the discrepancy between
the models labelled by the true value of the parameter and its estimate. A loss function of the
form l (θ1,θ2) = l {p (x |θ1) , p (x |θ2)} is called an intrinsic loss (Robert, 1996).

Bernardo (1979a) and Bernardo and Smith (1994, Ch. 3) argue that scientific inference is
well described as a formal decision problem, where the terminal loss function is a proper scoring
rule. One of the most extensively studied of these is the directed logarithmic divergence (Gibbs,
1902; Shannon, 1948; Jeffreys, 1948; Good, 1950; Kullback and Leibler, 1951; Chernoff, 1952;
Savage, 1954; Huzurbazar, 1955; Kullback, 1959; Jaynes, 1983). If p(x |θ1) and p(x |θ2) are
probability densities with the same support X , the directed logarithmic divergence of p(x |θ2)
from p(x |θ1) is defined as

kX (θ2 |θ1) =
∫
X
p(x |θ1) log

p (x |θ1)
p (x |θ2)

dx. (2)

The directed logarithmic divergence (often referred to as Kullback–Leibler divergence) is non-
negative, and it is invariant under one-to-one transformations of either x or θ. It is also
additive in the sense that, if x ∈ X and y ∈ Y are conditionally independent given θ, then the
divergence kX ,Y(θ2 |θ1) of p(x,y |θ2) from p(x,y |θ1) is simply kX (θ2 |θ1) + kY(θ2 |θ1);
in particular, if datax are assumed to be a random samplex = {x1, . . . , xn} from p(x |θ), then
the divergence of p(x |θ2) from p(x |θ1) is simply n times the divergence of p(x |θ2) from
p(x |θ1). Under appropriate regularity conditions, there are many connections between the
logarithmic divergence and Fisher’s information (see, e.g., Stone, 1959; Bernardo and Smith,
1994, Ch. 5; Schervish, 1995, p. 118). Furthermore, kX (θ2 |θ1) has an attractive interpretation
in information-theoretical terms: it is the expected amount of information (in natural units, nits)
necessary to recover p (x |θ1) from p (x |θ2).

However, the Kullback–Leibler divergence is not symmetric and it diverges if the support of
p (x |θ2) is a strict subset of the support of p (x |θ1). To simultaneously address these two un-
welcome features we propose to use the symmetric intrinsic discrepancy δX (θ1,θ2), introduced
in Bernardo and Rueda (2002), and defined as δX (θ1,θ2) = min {kX (θ1 |θ2), kX (θ2 |θ1)}.
To simplify the notation, the subindexX will be dropped from both δX (θ2 |θ1) and kX (θ2 |θ1)
whenever there is no danger of confusion.

Definition 1. (Intrinsic Discrepancy Loss). Let {p(x |θ),x ∈ X (θ),θ ∈ Θ} be a family of
probability models for x ∈ X (θ), where the sample space may depend on the parameter value.
The intrinsic discrepancy, δX (θ1,θ2), between p(x |θ1) and p(x |θ2) is defined as

min

{∫
X (θ1)

p(x |θ1) log
[p(x |θ1)
p(x |θ2)

]
dx,

∫
X (θ2)

p(x |θ2) log
[p(x |θ2)
p(x |θ1)

]
dx

}

provided one of the two integrals is finite.

The intrinsic discrepancy inherits a number of attractive properties from the directed loga-
rithmic divergence. Indeed, it is non-negative and vanishes if, and only if, p(x |θ1) = p(x |θ2)
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almost everywhere; it is invariant under one-to-one transformations of either x or θ; if the
available data x consist of a random sample x = {x1, . . . , xn} from p(x |θ), then the in-
trinsic divergence between p(x |θ1) and p(x |θ2) is simply n times the intrinsic divergence
between p(x |θ1) and p(x |θ2). However, in contrast with the directed logarithmic divergence,
the intrinsic discrepancy is symmetric and, if p(x |θ1) and p(x |θ2) have nested supports, so
that p (x |θ1) > 0 iff x ∈ X (θ1), p (x |θ2) > 0 iff x ∈ X (θ2), and either X (θ1) ⊂ X (θ2)
or X (θ2) ⊂ X (θ1), then the intrinsic discrepancy is typically finite, and reduces to a directed
logarithmic divergence. More specifically, δ (θ1,θ2) = k (θ1 |θ2) when X (θ2) ⊂ X (θ1), and
δ (θ1,θ2) = k (θ2 |θ1) when X (θ1) ⊂ X (θ2).

3.2. The Prior Function
Under the Bayesian paradigm, the outcome of any inference problem (the posterior distribution
of the quantity of interest) combines the information provided by the data with relevant available
prior information. In many situations, however, either the available prior information on the
quantity of interest is too vague to warrant the effort required to have it formalized in the form
of a probability distribution, or it is too subjective to be useful in scientific communication
or public decision-making. It is, therefore, important to be able to identify the mathematical
form of a “relatively uninformative” prior function, i.e., a function (not necessarily a probability
distribution) that, when formally used as a prior distribution in Bayes theorem, would have a
minimal effect, relative to the data, on the posterior inference. More formally, suppose that the
probability mechanism which has generated the available data x is assumed to be p(x |θ), for
some θ ∈ Θ, and that the quantity of interest is some real-valued function φ = φ(θ) of the
model parameter θ. Without loss of generality, it may be assumed that the probability model
is of the form p(x |φ,λ), φ ∈ Φ, λ ∈ Λ, where λ is some appropriately chosen nuisance
parameter vector. What is then required is to identify that joint prior function πφ(φ,λ) which
would have a minimal effect on the corresponding marginal posterior distribution of the quantity
of interest φ,

π(φ |x) ∝
∫

Λ
p(x |φ,λ)πφ(φ,λ) dλ,

a prior which, to use a conventional expression, “would let the data speak for themselves” about
the likely values of φ. Note that, within a given probability model p(x |θ), the prior which
could be described as “relatively uninformative” about the value of φ = φ(θ) will typically
depend on the particular quantity of interest, φ = φ(θ).

Much work has been done to formulate priors which make the idea described above math-
ematically precise. Using an information-theoretic approach, Bernardo (1979b) introduced an
algorithm to derive reference distributions; this is possibly the most general approach available.
The reference prior πφ(θ) identifies a possible prior for θ, namely that describing a situation
were relevant knowledge about the quantity of interest φ = φ(θ) (beyond that universally ac-
cepted) may be held to be negligible compared to the information about that quantity which
repeated experimentation from a particular data generating mechanism p(x |θ) might possibly
provide. More recent work containing many refinements to the original formulation include
Berger and Bernardo (1989, 1992), Bernardo and Smith (1994, Ch. 5) and Bernardo (1997).
Bernardo and Ramón (1998) offers a simple introduction to reference analysis.

Any statistical analysis obviously contains a fair number of subjective elements; these
include (among others) the data selected, the model assumptions and the choice of the quantities
of interest. Reference analysis may be argued to provide “objective” Bayesian inferences in
precisely the same sense that conventional statistical methods claim to be “objective”; namely
in the sense that the solutions provided depend exclusively on the model assumptions and on
the observed data.
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In any decision problem, the quantity of interest is that function of the parameters which
enters the loss function. Formally, in a decision problem with uncertainty about θ, actions
{a ∈A}, and loss function l(a, φ(θ)), the quantity of interest is φ = φ(θ). We have argued that,
in point estimation, an appropriate loss function is the intrinsic discrepancy l(θe,θ) = δ(θe,θ).
It follows that, to obtain an objective (reference) intrinsic estimator, one should minimize
the expected intrinsic loss with respect to the reference posterior distribution πδ(θ |x), derived
from the reference prior πδ(θ) obtained when the quantity of interest is the intrinsic discrepancy
δ = δ(θe,θ); thus, one should minimize

d(θe |x) = E[δ |x] =
∫

Θ
δ(θe,θ)πδ(θ |x) dθ. (3)

Definition 2. (Intrinsic Estimator). Let {p(x |θ),x ∈ X (θ),θ ∈ Θ} be a family of probability
models for some observable data x, where the sample space may possibly depend on the
parameter value. The intrinsic estimator,

θ∗(x) = arg min
θe∈Θ

d(θe |x) = arg min
θe∈Θ

∫
Θ
δ (θe,θ) πδ (θ |x) dθ

is that minimizing the reference posterior expectation of the intrinsic discrepancy.

Reference distributions are known to be invariant under piecewise invertible transformations
of the parameter (Datta and Ghosh, 1996) in the sense that, for any such transformation ω(θ)
of θ, the reference posterior ofω, π(ω |x) is that obtained from π(θ |x) by standard probability
calculus. Since the intrinsic discrepancy is itself invariant, it follows that (for any dimensionality)
the intrinsic estimator is invariant under piecewise invertible transformations; thus, for any such
transformation ω(θ) of the parameter vector, one has ω∗(x) = ω(θ∗(x)).

3.1. A Simple Example: Bernoulli Data

Let data x = {x1, . . . , xn} consist of n conditionally independent Bernoulli observations with
parameter θ, so that p(x | θ) = θx(1 − θ)1−x, x ∈ {0, 1}. It is easily verified that the directed
logarithmic divergence of p(x | θ2) from p(x | θ1) is

k(θ2 | θ1) = θ1 log[θ1/θ2] + (1− θ1) log[(1− θ1)/(1− θ2)]

Moreover, it is easily shown that k(θ2 | θ1) < k(θ1 | θ2) iff θ1 < θ2 < 1− θ1; thus, the intrinsic
discrepancy between p(x | θe) and p(x | θ), represented in the left pane of Figure 1, is

δ(θe, θ) = n

{
k(θ | θe) θ ∈ (θe, 1− θe),

k(θe | θ) otherwise.

Since δ(θe, θ) is a piecewise invertible function of θ, the δ-reference prior is just the θ-reference
prior and, since Bernoulli is a regular model, this is Jeffreys prior, π(θ) = Be(θ | 1

2 ,
1
2 ). The

corresponding reference posterior is the Beta distribution π(θ |x) = Be(θ | r+ 1
2 , n− r+ 1

2 ),
with r =

∑
xi, and the reference expected posterior intrinsic discrepancy is the concave function

d (θe,x) =
∫ 1

0
δ (θe, θ) Be(θ | r + 1

2 , n− r + 1
2) dθ.

The intrinsic estimator is its unique minimum θ∗(x) = arg minθe∈(0,1) d (θe,x) ,which is easily
computed by one-dimensional numerical integration. A very good approximation is given by



470 J. M. Bernardo and M. A. Juárez
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Figure 1. Intrinsic discrepancy and reference posterior density for a Bernoulli parameter.

the arithmetic average of the Bayes estimators which corresponds to using k(θ | θe) and k(θe | θ)
as loss functions,

θ∗(x) ≈ 1
2

(
r + 1/2
n + 1

+
exp[ψ(r + 1/2)]

exp[ψ(r + 1/2)] + exp[ψ(n− r + 1/2)]

)
, (4)

where ψ(.) is the digamma function.
As a numerical illustration, suppose that, to investigate the prevalence of a rare disease,

a random sample of size n = 100 has been drawn and that no affected person has been
found, so that r = 0. The reference posterior is Be(θ | 0.5, 100.5) (shown in the right pane
of Figure 1), and the exact intrinsic estimator (shown with a dashed line) is θ∗(x) = 0.00324.
The approximation (4) yields θ∗(x) ≈ 0.00318. The posterior median is 0.00227. We note in
passing that the MLE estimator, θ̂ = r/n = 0, is obviously misleading in this case.

4. FURTHER EXAMPLES

To illustrate the above methodology and to compare the resulting estimators with those derived
by conventional methods, a few more examples will be discussed.

4.1. Uniform model, Un(x | 0, θ)
Consider first a simple non-regular example. Let x = {x1, . . . , xn}, be a random sample
from the uniform distribution Un(x | 0, θ) = θ−1, 0 < x < θ. It is immediately verified
that t = max {x1, . . . , xn} is a sufficient statistic. The directed logarithmic divergence of
Un(x | 0, θ2) from Un(x | 0, θ1) is

k (θ1 | θ2) = n

{
log (θ1/θ2) θ1 ≥ θ2,

∞ θ1 < θ2;

thus the intrinsic discrepancy between p(x | θe) and p(x | θ) is

δ(θe, θ) = n

{
log (θe/θ) θ ≤ θe,

log (θ/θe) θ ≥ θe,

shown in the left pane of Figure 2. Since the intrinsic discrepancy δ(θe, θ) is a piecewise
invertible function of θ, the δ-reference prior is also the θ-reference prior. Since the sample space
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X (θ) = (0, θ) depends on the parameter θ, this is not a regular problem and, hence, Jeffreys prior
is not defined. The general expression for the reference prior in one-dimensional continuous
problems with an asymptotically sufficient, consistent estimator θ̃ = θ̃(x) is (Bernardo and
Smith, 1994, p. 312)

π(θ) ∝ p∗(θ | θ̃)
∣∣∣
θ̃=θ

(5)

where p∗(θ | θ̃) is any asymptotic approximation to the posterior distribution of θ (an expression
that reduces to Jeffreys prior in regular problems).
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Figure 2. Intrinsic discrepancy and reference density for the parameter θ of a uniform Un(· | 0, θ) model.

In this problem, the likelihood function is L(θ |x) = θ−n, if θ > t, and zero otherwise,
where t = max{x1, . . . , xn}. Hence, an asymptotic posterior is p∗(θ | t, n) ∝ θ−n, θ > t.
Computing the missing proportionality constant yields p∗(θ | t, n) = (n− 1)tn−1θ−n. Since t
is a sufficient, consistent estimator of θ, Eq. (5) may be used to obtain the θ-reference prior as
π(θ) ∝ tn−1θ−n|t=θ = θ−1. The corresponding posterior is the Pareto distribution π(θ |x) =
Pa(θ |n, t) = n tn θ−(n+1), θ > t. The reference expected posterior intrinsic discrepancy is
then easily found to be

d (θe,x) =
∫ ∞
t

δ(θe, θ) Pa(θ |n, t) dθ = 2
( t

θe

)n
− n log

( t

θe

)
− 1,

which is minimized at θe = 21/n t. Hence, the intrinsic estimator is θ∗(x) = 21/n t, which is
actually the median of the reference posterior.

As an illustration, a random sample of size n = 10 was simulated from a Uniform distri-
bution Un(x | 0, θ) with θ = 2, yielding a maximum t = 1.897. The corresponding reference
posterior, Pa(θ | 10, 1.897), is shown in the right pane of Figure 2. The intrinsic estimator,
θ∗(x) = 2.033 is indicated with a dashed line.

4.2. Normal Variance with Known Mean

Combining the invariance properties of the intrinsic discrepancy with a judicious choice of
the parametrization often simplifies the required computations. As an illustration, consider
estimation of the normal variance.

Let x = {x1, . . . , xn} be a random sample from a Normal N(x |µ, σ2) distribution with
known mean µ, and let s2

x be the corresponding sample variance, so that ns2
x =

∑
j(xj − µ)2.

The required intrinsic discrepancy is n δ{N(x |µ, σ2), N(x |µ, σ2
e)}; letting y = (x − µ)/σe

and using the fact that the intrinsic discrepancy is invariant under one-to-one transformations
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of the data, this may be written as n δ{N(y | 0, σ2/σ2
e), N(y | 0, 1)}. The last discrepancy has

a simple expression in terms of θ = θ(σe) = log(σ/σe); specifically,

δ{N(x |µ, σ2), N(x |µ, σ2
e)} = δ(θ) = 2|θ|+ 2 exp(−2|θ|)− 1, (6)

a symmetric function around zero, which is represented in the left pane of Figure 3. Moreover,
since δ is a piecewise invertible function of θ (and hence of σ) and this is a regular problem, the
reference prior for δ is the same as the reference prior for σ, the corresponding Jeffreys prior,
π(σ) = σ−1; in terms of θ, this transforms into the uniform prior πδ(θ) = 1. The corresponding
reference posterior is easily found to be

π(θ |x, σe) = 2e−2θ Ga
(
λ

∣∣∣ n

s
,
ns2

y

2

)∣∣∣
λ=e−2θ

, ns2
y =

ns2
x

σ2
e
.

The intrinsic estimator σ∗(x) is that value of σe which minimizes the expected reference pos-
terior discrepancy:

σ∗(x) = arg min
σe>0

d(σe |x) = arg min
σe>0

∫
�
δ(θ)π(θ |x, σe) dθ, (7)

which may easily found by numerical methods. A simple, extremely good approximation to
σ∗(x) is easily derived. Indeed, expanding δ(θ) around zero shows that δ(θ) behaves as θ2 near
the origin; thus,

d(σe |x) =
∫
�
δ(θ)π(θ |x, σe) dθ ≈

∫ ∞
0

(log σ − log σe)2 π(σ |x) dσ,

and the last integral is minimized by σ∗e such that

log σ∗e = E[log σ |x] =
1
2

[
log

ns2
x

2
− ψ

(n

2

)]
,

where ψ(.) is the digamma function which, for moderate values of x, is well approximated by
log x − (2x)−1. Since intrinsic estimation is an invariant procedure under reparametrization,
this provides an approximation to the intrinsic estimator of the standard deviation given by

σ∗(x) ≈ sx
n + 1/2

n
; sx =

√∑n
j=1(xj − µ)2

n
, (8)

which is slightly larger than the MLE estimator σ̂ = sx.
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Figure 3. Intrinsic discrepancy between N(x |µ, σ2) and N(x |µ, σ2
e) in terms of θ = log(σ/σe), and

marginal reference posterior of the standard deviationσ, given a simulated random sample of sizen = 10
from a Normal N(x | 0, 22) distribution.
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As a numerical illustration, a sample of size n = 10 was simulated from a Normal distribu-
tion, N(x | 0, 22), yielding s2

x = 4.326. The corresponding reference posterior, the square root
of an inverted gamma with parameters 5 and 21.63, is shown in the right pane of Figure 3. The
exact intrinsic estimator, obtained from (7), is σ∗(x) = 2.178, indicated with a dashed line.
The approximation (8) yields σ∗(x) ≈ 2.184. The MLE is σ̂ = sx = 2.080.

4.3. Multivariate Mean Vector

Let data consist of the mean vector x from k-variate normal Nk(x |µ, n−1I). The directed
logarithmic divergence of p(x |µe) from p(x |µ) is symmetric in this case, and hence equal to
the intrinsic discrepancy

δ(µe,µ) =
n

2
(µe − µ)t(µe − µ) =

n

2
φ,

where φ = (µe − µ)t(µe − µ). Thus, in this problem, the intrinsic discrepancy loss is a
quadratic loss in terms of the parameter vector µ.

The intrinsic discrepancy is a linear function of φ = ‖µe − µ‖. Changing to centered
generalized polar coordinates, it is found (Bernardo, 1979b; Ferrándiz, 1985; Berger et al.,
1998) that the reference posterior density for φ is

π(φ |x) = π(φ | t) ∝ p(t |φ)π(φ) ∝ χ2(nt | k, nφ)φ−1/2,

where t = (µe − x)t(µe − x). Note that this is very different from the posterior for φ which
corresponds to the usual uniform prior for µ, known to lead to Stein’s (1959) paradox. The
expected reference posterior intrinsic loss may then be expressed in terms of the hypergeomet-
ric 1F1 function as

d(µe,x) =
n

2
E[φ |x] =

1
2

1F1(3/2, k/2, nt/2)
1F1(1/2, k/2, nt/2)

= d(nt, k),

which only depends on the data through

t = t(µe,x) = ‖µe − x‖ .

The expected intrinsic loss d(nt, k) increases with nt for any dimension k and attains its
minimum at t = 0, that is, when µe = x. The behavior of d(nt, k) as a function of nt is shown
in the left pane of Figure 4 for different values of k. It follows that, if the model is multivariate
normal and there is no further assumption on exchangeability of the µj’s, then the intrinsic
estimator µ∗ is simply the sample mean x. The expected intrinsic loss of the Bayes estimator,
namely µ∗ = x, is

d(µ∗,x) = d(0, k) = 1
2

.

Shrinking towards the overall mean x0, leading to ridge-type estimates of the general form

µ̃(α) = αx0 + (1− α)x, 0 < α < 1,

will only increase the expected loss. Indeed,

d(µ̃(α),x) =
1
2

1F1(3/2, k/2, nrα/2)
1F1(1/2, k/2, nrα/2)

, rα =
α2

k

∑
i�=j

(µi − µj)2,
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is an increasing function of nrα and, hence, an increasing function of α. It follows that, with
respect to the reference posterior, all ridge estimators have a larger expected loss than the sample
mean. Similarly, the James–Stein estimator (James and Stein, 1961),

µ̃js = (1− (k − 2)||x||−1)x, k > 2,

which shrinks towards the origin rather than towards the overall mean, corresponds to rα = 1
and, hence, also has a larger expected loss than the sample mean. The expected intrinsic
losses (quadratic in this case) of these estimators, for k = 3 and the particular random sample
x = {0.72,−0.71, 1.67}, simulated from N3(x | 0, I3), are compared in the right pane of
Figure 4.
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Figure 4. Reference expected posterior losses in estimating a multivariate normal mean.

The preceding analysis suggests that the frequent practice of shrinking towards either the
origin or the overall mean may be inappropriate, unless there is information which justifies an
exchangeability assumption for the µi’s; in this case, a hierarchical model should be developed,
and the intrinsic estimator will indeed be a ridge-type estimator. However, with a plain multi-
variate normal assumption, shrinking will only increase the (reference) expected loss. Thus, do
not shrink without a good reason!

5. FINAL REMARKS
The intrinsic discrepancy, based on the theory of information, introduced in Bernardo and Rueda
(2002) for densities which either have the same or nested supports, and further explored in this
paper, has been shown to have many attractive properties. It is symmetric; it is invariant; it
is typically finite for non-regular problems, and it is calibrated in natural information units.
Indeed, the intrinsic divergence may be used to define a new type of convergence which is
natural to consider in Bayesian statistics:

Definition 3. (Intrinsic Convergence). The sequence of probability densities {pi}∞i=1 converges
intrinsically to the probability density p if, and only if, limi→∞ δ{pi, p} = 0.

Exploring the properties of this new definition of convergence will be the subject of future
research. Further work is also needed to extend this definition to situations in which the
densities are defined over arbitrary supports.

Intrinsic estimators were obtained by minimizing the reference posterior expectation of the
intrinsic loss,

d(θe |x) =
∫
Θ

δ(θe,θ)πδ(θ |x) dθ.

Conditional on the assumed model, the positive statistic d(θ0 |x) is a natural measure of the
compatibility of any θ0 ∈ Θ with the observed data x. Consequently, the intrinsic statistic



Intrinsic Estimation 475

d(θ0 |x) is a natural test statistic which finds immediate applications in precise hypothesis
testing, leading to BRC, the Bayesian reference criterion (Bernardo, 1999; Bernardo and Rueda,
2002).

We have focused on the use of the intrinsic discrepancy in reference problems, where no
prior information is assumed on the parameter values. However, because of its nice properties,
the intrinsic discrepancy is an eminently reasonable loss function to consider in problems where
prior information (possibly in the form of a hierarchical model) is, in fact, available.
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