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SUMMARY

Process capability analysis is designed to estimate the proportion of parts that do not meet engineering
requirements in a stable production process. In this paper, we review and criticize the capability indices
typically used in industry for this purpose, and propose a general multivariate Bayesian capability index
which contains the conventional index as a limiting case. We further derive its analytical expression under
standard assumptions, discuss numerical approximations, and illustrate the theory with some examples.
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1. INTRODUCTION

In manufacturing industry, process capability analysis is used to flag high values of the pro-
portion of parts being produced that do not meet engineering requirements, in order to prevent
further production of unacceptable output. This analysis assumes that the process is stable,
that is, that any random sample of observations from the process may be regarded as a random
sample from the same underlying distribution, a situation often described in the engineering
literature as that of a process in statistical control. Capability analysis is typically performed
by evaluating capability indices which relate the allowable spread of the process, defined by
the engineering specifications, to the natural spread of the process, represented by a multiple
of the standard deviation of the output. Assuming that the output is normally distributed, the
expected proportion of non-conforming parts, i.e., those which will lie outside the engineering
specification limits, may be estimated from the capability index.

However, the abundance of outputs from skewed distributions and the censoring effects
induced by the finite precision of actual measurements, make often rather unreasonable the
normality assumption on which traditional capability indices are intuitively based. Moreover,

José M. Bernardo is Professor of Statistics at the University of Valencia; his research was partially funded
with grant PB93-1204 of the DGICYT, Madrid, Spain. Dr. Telba Irony was supported by the US National Science
Foundation, Grant DDM-9209334



J. M. Bernardo and T. Irony. Bayesian Process Capability Analysis 2

the sampling distributions of the estimators of the capability indices are often intractable, even
under normality assumptions. As a consequence, point estimators of the capability indices,
with no reference to their precision, are usually quoted; this is a misleading practice, for even
relatively large samples may produce rather unreliable estimators.

In this paper, we propose a Bayesian approach to evaluating process capability which, within
a decision-theoretical framework, directly assesses the proportion of future parts which may
be expected to lie outside the tolerance limits. This results in a new general capability index
which (1) has a solid, decision theoretical foundation, (ii) does not require the process to be
normal, (iii) may be used for multivariate observations, (iv) may accommodate measurements
with error, and (v) contains the conventional index as a limiting case. The proposed capability
index is a direct function of the data, whose value is sufficient to solve the relevant decision
problem. Nevertheless, robustness considerations make it desirable to assess the “precision” of
the capability index thus obtained; within the Bayesian framework this is achieved by deriving
its posterior predictive distribution.

In Section 2, we review and criticize the indices traditionally used to evaluate process capa-
bility. In Section 3, we propose a new general capability index motivated by decision theoretical
considerations and discuss some of its properties. In Section 4, we propose a general hierarchical
model which describes the stochastic mechanism governing many production processes, derive
the corresponding expression for the proposed capability index, and obtain its analytical form
under the simplifying assumptions which are often made in industrial practice. In Section 5
the behaviour of the index proposed is evaluated with both real and simulated data. Section 6
contains some final remarks and suggests areas for additional research.

2. CONVENTIONAL CAPABILITY ANALYSIS

Letxq, ...z, be the actual values of a certain attribute which correspond to n randomly selected
items from a production process and suppose that such an attribute should lie between [y (lower
limit) and [/; (upper limit) in order to conform to engineering specifications. Items which lie
outside (lp, {1) will be termed non-conforming. The special cases where only one specification
limit is required are obtained by letting l[j — —oo or [{ — +o0.

Process capability analysis is designed to monitor the proportion of items which are expected
to fall outside the engineering specifications in order to prevent an excessive production of non-
conforming output. This is usually done at specified rating periods, using the measurements
{y1,...,yn} taken on, say, n produced items and assuming that (i) there is no measurement
error, so thaty; = x;,7 = 1,...,n, i.e., the measurements are taken to be the actual values, and
(i1) that the x;’s are identically distributed with, say, mean p and standard deviation o.

Traditional capability analysis then proceeds to evaluate capability indices which relate the
allowable spread of the process l; — [y to its “natural” spread, customarily taken to be 60.
Thus, the capability potential C), is defined to be

i — 1o
Cp - 60

’ (1)

i.e., the ratio of the allowable spread to the natural spread. In particular, if the x;’s are normally
distributed N(x | i1, o), and the process is centered at the midpoint m = (I; + lp)/2 of the
specification limits, so that E(x) = pu = m, then a capable process, defined as one for which
Cp > 1, will result in, at most, 0.27% of non-conforming items, i.e., 2700 non-conforming
items per million.
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The capability potential only takes care of the process spread. Obviously, it would be
possible to have any proportion of items outside the specification limits by merely relocating
the process mean; thus, C), only quantifies the potential performance of the process, which will
only be attained if the process is centered at the midpoint of the specification limits.

The actual performance of a production process is traditionally measured by the capability

index Cy, defined to be
Iy — —1
C'pk:min{l i 0}

30 30

which is a normalized distance between the process mean and its closest specification limit. It
can easily be verified that
2[m — p
Cpr, = Cp(1 —w), w=
h—1o
so that Cy;, modifies C), with a standardized measure w of non centrality of the process, and
Cpr, = C) if, and only if, the process is centered at the midpoint m of the specification limits.

The definition of C;, includes, as special cases, those processes where only one limit exists,
by setting either [j — —oo of [{ — +o00, in which case it reduces to the appropriate standardized
measure. Thus, if there is no lower specification limit, we obtain C;, = (I1 — j)/30 by simply
letting [g — —oo in the original definition. Similarly, if there is no upper specification limit,
Cor = (1 — o) /30

The capability index C)y,, originally introduced in Japan, has become an international
standard, especially in the car industry, to the point that it is often specified in contractual
agreements; typical requirements are C,; > 1.66 to qualify a supplier with pilot runs, and
Cpr > 1.33 for production runs. This guarantees the practical use of good capability indices,
but this also means that, to be accepted, new techniques must clearly relate to present standard
practice.

Given a random sample z1, ..., x, from the process, the capability index is typically esti-
mated by the naive estimator
~ . lh—z2 -1
C _, - ’ ’ 2
(T, 5) = min { 35 35 } (2)

where nz =Y, z;, and (n—1)s?> =3 .(x; — ). Note that C'pk(a_c, s) does not explicitely
depend on the sample size n. A “capability analysis” usually consists in (i) verifying the stability
of the process (ii) checking the normality assumption, and (iii) computing and reporting the
value of the estimated capability index C,;.. The sampling properties of C), under normality
have been studied by Kane (1986), Chou and Owen (1989), and by Zhang et al. (1990). From
a Bayesian point of view, Cheng and Spiring (1989) have derived the posterior distribution of
C, under normality which corresponds to a conventional “non-informative” prior; we are not
aware of a similar analysis for Cp;,. Chan et al. (1988) propose a variation of the capability
index which uses target values instead of the process mean p. Chan et al. (1991), Taam et
al. (1993), and Wierda (1993), extend the capability index to multivariate observations. Other
related references are Bisell (1990), Boyles (1991), Pearn et al. (1992), Kotz et al. (1993) and
Pearn and Chen (1996). See the monograph by Kotz and Johnson (1993), and references therein,
for further discussion of capability analysis.

It should be clear to the reader that the intuitive basis of the definition of the capability index
Ci heavily depends on an implicit assumption of normality of the output, for it is only in this
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case that 60 may be justifiable as a measure of “natural” spread; in particular, it is only under
normality that a centered process will have 0.27% of its output outside the ;1 £ 30 interval. It
is a fact, however, that production processes are very often non normal. Indeed,

(1) Skewed distributions are frequent, but quality practitioners are often not qualified to attempt
possible transformations to normality. Moreover, they usually prefer to work with non-
transformed values, for which they have areal experience, and which do not require awkward
transformations of the customer specifications.

(i) The precision limits of the measurement mechanisms often impose a discretization of oth-
erwise continuous attributes yielding discrete distributions which only sometimes may be
considered approximately normal.

Furthermore, a general capability index should be able to deal with multivariate observa-
tions. Indeed, several attributes are often measured on the same item. As one would expect,
those measurements tend to show strong correlation, since a non-conforming item is often faulty
in several related dimensions. The incorporation of such correlation into the analysis is bound
to enhance the results by (i) allowing the use of smaller sample sizes, and (ii) providing useful
information to identify possible causes for the observed defects.

The preceding discussion suggests the need for a general multivariate capability index
whose intuitive basis and formal definition should both be independent of any particular model
for the production process. Moreover, to gain acceptance, the new index should be related to
the established, conventional index under appropriate conditions.

In the next section, we use a decision analysis framework to motivate such an index. As is
always the case in the process capability literature, we shall assume that the process is stable, so
that the available observations may be regarded as exchangeable, i.e., as a random sample from
some underlying distribution. It is certainly not trivial to check such an assumption in practice;
the reader interested in a Bayesian formulation to such an important problem is referred to
Bernardo and Smith (1994, Ch. 6) and references therein.

3. CAPABILITY ANALYSIS AS A DECISION PROBLEM

The whole purpose of capability analysis is to help engineering decision making. Decision
problems such as to intervene or not in a production process, to accept or reject a production
batch, or to review or not managerial action, need often to be made by either quality engineers
or managers (see Singpurwalla, 1992, for a comprehensive view of quality engineering from a
decision analysis perspective). Moreover, the consequences of these decisions often depend on
the proportion of non-conforming items that are expected from the production process. Thus,
a large proportion of quality-related decision problems relative to a stable production process
may usefully be modelled as a decision problem with two possible actions:

d1 = accept (maintain the process as is)

ds = reject (intervene upon the process)

with uncertainty about the values of the relevant characteristics zy = {x/,..., 2y} of an
eventual production of, say, N items, where zc; is a vector which contains the values of the
attributes corresponding to an item 7 yet to be produced (we will use the superindex ' to denote
unobserved values). If y; denotes one measurement of x; —typically subject to error—, the
available data D usually consist in the measurements D = {y, ..., y, } of the characteristics of
interest {x1, ..., x,} which correspond to a random sample of, say, n items from the production
process.
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Basic decision theory (see, for example, Fishburn, 1981, or Bernardo and Smith, 1994,
Ch. 2), suggests that coherent decision making requires:

(i) to describe with a utility function the preferences of the decision maker among the possible
consequences of his or her decisions; here, one should specify the values u(d;, zy) and
u(da, z ) of, respectively, accepting or rejecting, as a function of the (unknown) charac-

. ! )
teristics zy = {/,...,x} of the NV items to be produced;
(i1) to describe, with a probability distribution, the available information about the uncertain

attributes of interest; here one should specify the predictive distribution p(zy | D) of the
values of the unknown characteristics z given the available measurements D

(iii) to choose the action d; which maximizes the expected utility

ﬂ(d”D) :/Z u(di,zN) p(ZN|D) dzy, 1=1,2.
N

With only two possible actions, the decision criterion takes the form
Accept iff /Z {u(di,zy) —u(dy, zN)} p(zn | D) dzy >0 (3)
N

so that it suffices to specify the conditional difference of utilities, u(d1, zny) — u(da, zn).

The consequences of quality-related decisions often solely depend on the proportion of
conforming items produced. Preferences in those decision problems are often described by a
linear difference of utilities of the form

U(dl,ZN) —U(dQ,ZN) :CLR—bN, (4>

where @ > b > 0, and R is the actual number of items which meet all the engineering speci-
fications among the [V items produced. For instance, the utility of accepting the production is
often of the form
u(di, zx) = gR — (N — R) — I(N),

where g is the unitary gain from accepting a conforming item, cis the unitary cost from accepting
a non-conforming item, and [(V) is the cost of producing N items; similarly, the utility from
rejecting the production —and then inspecting all items and repairing or substituting those
non-conforming— is often of the form

u(da, zy) = gN —iN —r(N — R) —I(N),
where ¢ < cis the unitary cost of inspecting an item, and r < g the unitary cost of repairing or
substituting a non-conforming item. In this case, the utility difference becomes
u(d,zn) —u(d2,zn) = (9 +c—r)R—(g+c—r—1i)N,
which is of the linear form specified above.

If the preferences of the decision maker are well described by a utility function which
satisfies (4), then the decision criterion (3) reduces to

Accept iff /(aR —bN)p(zy | D)dzn =

N

=Y (aR—bN)p(R|N, D) = aE[R|N, D] — bN
R=0

=aNPr(x e A|D)—-bN >0,
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where A is the region of acceptable attributes, or folerance region as defined by the engineering
specifications. Since a > b > 0 and N is positive, this decision criterion may be re-expressed

as
Acceptiff  Pr(z € A|D) > py, po= % : (5)
that is, if the expected proportion of conforming items
Pr(z € A|D) :/p(a:|D)d:z:, (6)
A

is larger than some threshold limit pg, defined by the decision maker’s preferences. Here,
p(x | D) is the predictive distribution of & given the available data. This provides a normative
justification for the intuitive idea, already present in Aitchison and Dunsmore (1975), or Carr
(1991), that process performance should be directly evaluated in terms of the expected proportion
of conforming items. Moreover, it provides a precise procedure to specify the lower limit of
the expected proportion of conforming items required to accept the production, as an explicit
function of the economic characteristics of the problem.

Of course, there is nothing in the general theory that requires the use of linear utility
functions. If industrial economics are best described by non-linear utility functions, such
functions should be used to derive the corresponding optimal decision criterion. We will now
show that the criterion implied by utility functions which satisfy (4) is formally equivalent to a
criterion which contains that based on the conventional index as a limiting case. It follows that,
if industrial economics are not linear in this sense, then the use of the traditional index would
be inappropriate, even in those limiting conditions.

The preceding analysis shows that attention should be centered on the expected probability
(6) of an item being conforming. However, this probability will typically be very high, usually
larger than 0.999, and most engineers are not trained to appreciate the implications of extreme
probabilities. It is, therefore, convenient to use some one-to-one monotone transformation to
substitute the probability scale by some other appropriate scale where large probabilities become
more spaced. A natural choice would be the log-odds scale but, as mentioned before, for a new
methodology to gain acceptance in practice it is important that it is easily related to established
standards; as we shall immediately establish, this may easily be done using a probit scale. This
motivates the following

Definition. The Bayes capability index Cj, (b for Bayes), is given by

Cy(D) = %Ql{Pr(w € A| D))

where A is the tolerance region, ® is the distribution function of the standard normal
distribution, and D the available data.

We shall now prove that the corresponding criterion
Acceptiff  Cy(D) > cp, (7)
where ¢ is some threshold value, encompasses the standard criterion

Acceptiff — Cpi(Z,s) > o (8)

as a particular limiting case. Note that criterion (7) is equivalent to criterion (5), as a trivial
consequence of the fact that ® is a one-to-one monotone function.
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Note that Cj,(D) is a direct function of the data, so that no estimation problem arises. This
is an immediate consequence of a Bayesian approach, and it is in direct contrast with other
apparently related proposals, such as Wierda (1993), where the capability index is defined in
terms of an unknown ‘true’ proportion, say €, of conforming items, which has to be estimated.

We also note that, as a monotone function of the probability Pr(z € A| D) of an item being
conforming, the proposed capability index is invariant under one-to-one transformations of the
characteristics of interest. Indeed, if f is such a function,

Pr(z € A|D) = Pr(f(z) € f(A)| D).

Thus, if an engineer is interested in, say, the area within a circle, a Bayesian capability analysis
may indistinctly be carried out in terms of the area itself, or in terms of its diameter. The choice
may depend on which is the magnitude easier to measure, a legal requirement, or whatever,
but the result will not depend on the particular scale chosen. This highly desirable invariance
property is not shared by conventional capability indices.

In most practical problems, one is interested in assessing the robustness of the optimal deci-
sion with respect to the particular sample obtained. Obviously, this depends on the uncertainty
associated with the value of capability index which corresponds to that sample. Within the
Bayesian framework, this is described by its posterior predictive distribution p(Cj, | D) given by

p(Cy| D) = p(Cy |y, Yn)

(9)
where p(y}, ..., ¥, | Y1, ., y,) is the joint posterior predictive distribution of a future sample
Y}, ...,y of the same size.

Often, the integral (9) will not be analytically feasible. If a collection of, say m exchangeable
data sets of size n, {(y;1,..-,Yin),? = 1,...,m}, were available, then p(Cj, | D) could be
approximated by Monte Carlo to

Cb’D Zp Cb|yz17-'-7yin)' (1())
Otherwise, resampling m times with replication from the original sample {y,...,y,}, and
using this as a proxy for {(y;1,.-.,Yin),? = 1,...,m} in (10), would provide a bootstrap

(Efron, 1982) approximation for the desired posterior predictive distribution (9).
We conclude this section by deriving the precise relationship between the general Bayesian

index Cy(yy, - - . ,vy,,) and the traditional univariate index C'pk(xl, ..., Zy). To do this, we spe-
cialize to the univariate normal case and further assume that (i) there are no observation errors,
—so that y; = x;,7 = 1, ..., n, and the data consist of a random sample D = {x1,...,x,} of

measurements from a normal process N(z; | 4, 0)—, and that (ii) n is sufficiently large for C,
to be well approximated by its estimator Cy.

In those conditions, the predictive distribution p(z|z1, .. ., x,) will converge to the normal
distribution N(z|u, o) and, hence, the decision criterion (7) will reduce to

1 I — lo —
Accept iff —@1{¢(1 “)—@(0 “)}2m
3 o o

If the process is non-centered and potentially capable, i.e., if pi is appreciably different from
= (lo + 11)/2 and its “allowable” spread is sufficiently large, then either
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() (lh —p) >> (w—1Ip) and (I — p) >> o, in which case ®((l; — p)/0)) ~ 1, and the
criterion reduces to accepting iff

1 lo — 1 —1
o oo ()b fo ()

(i) (u—1lo) >> (I3 — p) and (p — lp) >> o, in which case ®{(lp — p)/o)} ~ 0, and the
criterion reduces to accepting iff

1 Iy —
o fo(552)) e

It follows that, under univariate normal conditions, with no observation errors, and for non-
centered potentially capable processes, the Bayesian criterion (7) is asymptotically equivalent to
the traditional criterion (8). Note that if either |;n—m| or (I; —l) are not large enough compared
to o, then both specification limits become relevant and the Bayesian index will (appropriately)
not reduce to the conventional index. This demonstrates one advantage of the Bayesian index,
for it automatically takes into account the possibility of having non-conforming units in both
sides of the interval defined by the specification limits, whereas C), will only consider that side
in which g is closer to the specification limit, however small the difference between both sides
might be. This is the reason why, in practice, quality engineers insist on a two stages strategy,
whereby the potential capability C), of the process is established before the €, index is used.
This precaution is unnecessary if the Bayesian index is used.

We should stress that even with non-centered potentially capable normal process with no
observation errors, the equivalence between Bayesian and traditional capability indices is only
asymptotic. Thus, even for relatively large samples, numerical differences will remain; this is a
good example of the known inadequacies of classical prediction techniques, which, by simply
substituting the unknown parameters by their estimates, totally ignore the uncertainty thereby
added to the intended prediction.

In the next section, we propose a hierarchical model intended to describe standard production
processes. As a simple, particular case, we derive the exact analytic form of the Bayesian
capability index under the assumptions of normality and no observation errors usually made in
industrial practice.

4. A HIERARCHICAL MODEL FOR PROCESS OUTPUT

As mentioned before, standard capability analysis typically assumes that the observed mea-
surements y; are identical to the actual values x;, thereby ignoring any limitations of the
measurement mechanism. In this section, we formulate a hierarchical model which describes
the stochastic behaviour of many stable output processes. The actual values, x1, . .., x,, of the
vector of interest in a random sample of production items may be assumed to be exchangeable,
i.e., arandom sample from some fixed underlying distribution, and the observed measurements
Yi,--.,Y, are assumed to be an approximation, with finite precision, to the actual values
r1,...,Lp.

Thus, we assume that, for any produced item,
yj = +9;

so that the actual attributes of interest, x;, are observed as Y; with a measurement error 6;;
we will further assume that the measurement errors are independently distributed according
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to some probability distribution p(é; | &), indexed by a hyperparameter o associated to the
measurement procedure, and such that F[8; | a] = 0. Moreover, we assume that

zj=p+Ej

so that the production process is centered at p, and the €;’s describe the “common” causes of
variation (see, e.g., Deming, 1986); we further assume that the €;’s are independently distributed
according to some probability distribution p(e; | 3), indexed by a hyperparameter 3 and such
that E[e; | 8] = 0. Finally, to complete the specification of the model, and hence to be able to
compute the capability index, we have to specify a joint prior probability distribution p(p, c, 3)
describing the information available on the values of the hyperparameters. Very often, however,
either no reliable information is available on those values, or the engineers prefer not to use
such information, so that the capability index only depends on the observed data; indeed, the
supplier is often bound by contractual agreement to “pass” some “test” which only depends on
the collected sample. The situation of no relevant prior may be mathematically described by the
appropriate reference prior distribution (Bernardo, 1979, Berger and Bernardo, 1992, Bernardo
and Smith, 1994, Ch. 5), which will be denoted by 7(u, ¢, 3)

In terms of the established notation, the Bayesian capability index, C(D), of the process
may then be written as

1

Cb(yl,---,yn)=§<1>_1{/Ap(wlyb---,yn) dw}, (11)

where A is the tolerance region, i.e., the region of acceptable attributes, as defined by the
engineering specifications, and where

p<w|y1,...,yn>://p<m|u,ﬂ>p<u,ﬁ|y1,...,yn> dpdp

p(u,ﬁ|y1,..-,yn>Z/p(u,a,ﬂlyla---,yn) da

n

p(l"'7a7ﬂ | Y15 7yn) X Hp(y] | l‘l'?avﬂ) W(Haaaﬂ)
j=1

p(y;lpm,a,B) = /p(yj |zj, o) p(zj |, B) dz;

The equations above outline the evaluation of the Bayesian capability index (11) under very
general conditions. Under simplifying assumptions, the integrations involved may be solved in
closed form, and the Bayesian capability index may then be analytically obtained. We conclude
this section by deriving an analytic expression for (11) when, as typically assumed in industrial
practice, (i) observation errors are negligible compared to data variation, and (ii), observations
may plausibly be regarded as a random sample from a normal multivariate distribution.

If there are no appreciable observation errors, so that y; ~ x;, the data D = {z1,...,2n}
will consist of a random sample from a multivariate normal distribution of, say, dimension
k, so that p(x; | u, 3) = Ngi(z; |, X). If no prior information about & and ¥ is available,
then the predictive distribution of a future observation which corresponds to the conventional
“non-informative” default prior

m(p, E) o [BH1/2
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is given (see e.g., Geisser, 1993, p. 192) by the k-variate Student density with n — &k degrees of
freedom

—n/2

L " oz s a-2) : (12)

n—1n+1

p(@| @1, @) o |1+

where, nT = > . x;, and (n —1)S = > .(x; — T)(x; — T)'. Therefore, the Bayesian
capability index Cj,(D) is given by

1__
Cy(x1,...,xy) = §q) UPr(x € A|xy,..., )}

where A is the tolerance region, which is often —but not always— of the form
{z; loi <o <y, i=1,...,k}.

The desired predictive probability Pr(x € A|xy,...,x,) may then be obtained by numerical
integration with the Student density (12).

In particular, with univariate observations, the predictive distribution (12) reduces to the
univariate Student density with n — 1 degrees of freedom

1 n r—7)\> e
1 13

where, nz = Y, x;, and (n —1)s? = Y. (v; — )%. We have thus proved the following
result:

Theorem. With no observation errors, conditionally independent univariate normal data
N(z | p, o), and default prior w(u, o) < 1/0, the Bayesian capability index is

1 lh—Z lp —
Cy(z1,...,2) = Cy(n,z,s) = ~® 1 { F, L7 0%

3 - anl
e e
where F),_1 is the distribution function of a (univariate) standard Student t density with
n — 1 degrees of freedom, & = > x;/n and s*> = > (x; — )%/(n — 1).

(14)

As suggested by a referee, it may be proved that, for any sample, the value of Cy(n, Z, s)
given above is smaller than the value of C)(Z, s) given by (2). In fact, it may be established
that, for fixed z and s, Cy(n, Z, s) increases with n and, as n — oo, either tends to C'pk(:_c, s), if

the process is non-centered and capable, or to some quantity smaller than C’pk(@, s) if it is not.
This is a mathematical consequence of the fact that Student densities have lighter tails as their
degrees of freedom increase and tend to normal tails as their degrees of freedom tend to infinity.
This provides an interesting example of the way in which Bayesian prediction automatically
takes into account the residual uncertainty about the parameters left after any sample. Indeed,
while two samples of different sizes but the same = and s would produce identical C, values,
(a rather dubious property!), the corresponding Bayesian indices will be different, with the
smaller index corresponding to the smaller sample, reflecting a smaller confidence in producing
conforming items.
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We claim that in the frequent applications where the simplifying assumptions discussed
above may apply (stable univariate normal process with no appreciable measurement errors),
one should routinely replace (2) by (14). This simultaneously corrects the two more obvious
pitfalls of the conventional index, by (i) automatically taking into account both extremes when
necessary, and (ii) appropriately accounting for the actual (finite!) sample size.

We have derived an analytical expression for C,(D) under some simplifying assumptions.
In more complex problems, however, the value of (11) cannot be analytically obtained without
strong, often unwarranted, distributional assumptions. Today’s ubiquitous numerical approxi-
mations then become necessary. The hierarchical structure of the model suggested facilitates
the implementation of a Markov chain Monte Carlo algorithm.

5. EXAMPLES

To study the behaviour of the proposed methodology under different sets of assumptions, we
simulated 1000 samples of size 100 from a normal distribution N (z |10, 1), which we have
systematically used through the examples.

5.1. Normal data, capable process

The engineering specifications are assumed to be [p = 5 and [; = 13, so that the tolerance
region is A = {z;5 < x < 13}, with a negligible probability of non-conforming items in the
left tail. The conditional C,, value is

10-5 13-10

Cpi(p,0) = min{ 5 '3 } = 1.000,

and the conditional probability of an item being conforming is
13
P(A|p,0) = / N(z |10, 1) dz = 0.99865.
5

The results in Section 3 indicate that, in those conditions, one would expect an approximate
numerical agreement between the conventional and the Bayesian indices.

Table 1. 1000 samples of size 100 from N(x|10,1); lo =5 and l; = 13.

Cor(D) Pz e AID) Cy(D)

Mean 0.98367 0.99754 0.95543
StDev. 0.07297 0.00149 0.06792

Table 1 reproduces the mean and standard deviation of the C);’s, the predictive probabilities
of conforming items, and the Bayesian indices, which correspond to the 1000 simulated samples.
We note that, although the results are not qualitatively different, the Bayesian index is appreciably
smaller; as pointed out by a referee, a frequentist statistician may like to check that C(n, Z, s)
will typically be “significantly” smaller that C'pk(i‘, s). As mentioned before, this is due to
the thicker tails of the Student densities, and reflects the consequences on inferences about the
distribution tails of the residual uncertainty about the parameters.
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Table 2. 1000 samples of size 10 from N(x|10,1); ly =5 and l; = 13.

Cu(D) P(xeA|D) CyD)

Mean 1.09220 0.98137 0.77691
StDev. 0.43232 0.02396 0.17385

As expected, this tail effect is larger as the sample decreases. Table 2 shows the results with
1000 subsamples of size 10; those show C,, values which are, on average, 40% higher than
what we claim they should be.

5.2. Normal data, non-capable process

The tolerance region is assumed to be {z;7 < z < 13}, so that the probability of non-
conforming items is now the same in both tails. The conditional Cyy, (11, o) value is still 1.000,
for the conventional index can only take one tail into account, but the conditional probability of
an item being conforming is now P(A | u, o) = 0.99730. Here, the conventional approach, by
ignoring one of the tails, is bound to give too large a value.

Table 3. 1000 samples of size 100 from N (x|10,1); lp = 7T and l; = 13.

Co(D) P(ze A|D) Cy(D)

Mean 0.96809 0.99554 0.88747
StDev. 0.06761 0.00251 0.06521

Table 3 reproduces the results which correspond to the 1000 simulated samples of size 100.
We note that the C);,’s are, on average, 9% higher than what we claim they should be. Again,
the difference would dramatically increase as the sample decreases.

5.3. Log-Normal data, two-sided tolerance region

To study the behaviour of the proposed methodology with skewed distributions, we use again
the 1000 samples of size 100 from a normal distribution N (x| 10, 1) and made the exponential
transformation z = exp(x/2), to obtain 1000 samples of size 100 from a log-normal distribution
with mean E[z] = 168.17 and standard deviation D[z] = 89.62 (see e.g., Johnson and Kotz,
1970, Ch. 14). We further assume the engineering specifications to be [y = exp(5/2) =
12.182 and [} = exp(13/2) = 665.14 i.e., we chose as tolerance region the image by z =
f(x) = exp(x/2) of the tolerance region used in Example 5.1. The conditional value of the
(untransformed) conventional index is now

. 168.17 — 12.182 665.14 — 168.17
Cyi(j1,) = min

3%80.62 3x89.62
However the conditional probability of an item being conforming remains invariant:

} = (0.58018.

13
PUF(A)| o) = / LogN(z|10,1) dz = / N(z|10,1) dz = 0.99865. (15
f(A) 5
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and, more generally, the Bayesian analysis will remain precisely the same.

Table 4. 1000 samples of size 100 from LogN(x | 10,1); Iy = exp(5/2) and l; = exp(13/2).

Cu(D) PxeA|D) Cy(D)

Mean 0.58544 0.99754 0.95543
StDev. 0.04673 0.00149 0.06792

Table 4 reproduces the results which correspond to the 1000 simulated samples of size
100. The average C), is 61% smaller than the average Cj; this illustrates the fact that if the
conventional analysis is routinely applied to skewed distributions without a previous normalizing
transformation, one may conclude that the process is far worse than it really is. We now show
that the reverse may also happen.

5.4. Log-Normal data, one-sided tolerance region

We now assume the engineering specifications to be /) = 0 and I; = exp(13/2) = 665.14, i.e.,
we chose as tolerance region the image by z = f(z) = exp(x/2) of the one-sided tolerance
region A = {z;x < 13}. The conditional value of the conventional index is now

665.14 — 168.17
3 * 89.62

Cpi(p,0) = { } = 1.84843,

while conditional probability of an item being conforming will be

13
P(z € f(A)|pu,0) :/ N(z|10,1) dz = 0.99865,

o0

numerically equal to (15).

Table 5. 1000 samples of size 100 from LogN(x | 10,1); Iy = 0 and l; = exp(13/2).

Cue(D)  P(z € f(A)|D) Cy(D)

Mean 1.81185 0.99754 0.95543
StDev. 0.21506 0.00149 0.06792

Table 5 reproduces the results which correspond to the 1000 simulated samples of size 100.
The average C); is now 89% larger than the average (. This further illustrates the fact that
conventional analysis routinely applied to non-transformed skewed distributions may be grossly
misleading.
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Figure 1. Histogram of 1,000 actual sensitivity measures.

5.5. A real data example

A supplier of safety parts for a motor company had a contract which specified that the C'pk
of a certain sensitivity measure should be computed for samples of size n = 1,000, taken
periodically from the production process, and that the capability index should be larger than
1.33.

Figure 1 is a histogram of one of those samples. The mean is 20.65 and the standard
deviation is 1.72. The upper specification limit was established at 28 and there was no lower
limit. The corresponding estimated Cpk was found to be 1.42, well above 1.33. However,
the distribution is moderately skewed. We verified that the sample could better be treated
as a random sample from a lognormal distribution; specifically, y = 10 x log(x) + 100 is
approximately normal N(y | 130.27,0.82). Using (14) with the transformed tolerance region,
the corresponding Bayesian capability index is easily found to be 1.24, below the required 1.33
level.

Thus, if the motor company really requires the tiny probability of non-conforming items
which corresponds to a Cy;, value of 1.33 for normal samples, then they should not accept that
batch. Alternatively, they could directly specify the proportion of non-conforming items they
require, possibly by assessing the relevant utility functions, and leave a competent statistician
verify whether or not this is achieved by their suppliers.

Table 6. 100 bootstrap resamples form the original sample. ly = —oc and l; = 28.

Cuw(D) P(zeA|D) CyD)

Mean 1.42298 0.99989 1.23540
StDev. 0.03573 0.00004 0.02948

To verify the robustness of those numbers, we obtained 100 bootstrap resamples from the
original sample. The results, contained in Table 6, establish that, indeed, when the distributional
form is taken into account, the 1.33 capability level is not attained.
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6. DISCUSSION

We have proposed a new capability index, C}, that (i) has solid decision-theoretical foundations,
(i1) is defined for any type of, possibly multivariate, output process, (iii) may accommodate
appropriately modelled observation errors and (iv) is invariant under monotone transformations
of the quantities of interest.

We have established that the new index, Cy(n,Z, s), contains the traditional C'pk (z, s)
estimated index as a limiting case when (i) data are univariate normal, (i) there are no observation
errors, (ii1) the production process is non-centered and potentially capable, and (iv) the sample
sizeis large. However, we claim that these conditions are often not met in practice and hence, that
the use of ). as an indicator of the performance of the process with respect to the engineering
specifications may be misleading. When, as itis often the case, data are indeed univariate normal
and observation errors are negligible compared with the standard deviation of the process, then
equation (14) provides a useful replacement for the conventional C,,(Z, s), and may safely be
used with small samples.

We have used numerical examples to illustrate the limitations of the conventional approach.
In particular, we have illustrated the fact that the tail behaviour of the production process is
very important in this problem. In a sense, Examples 5.3 to 5.5 may be regarded as unfair to
Cyy, in that they compare the Bayesian index with the untransformed conventional index; if one

calculates the C’pk’s for the transformed data, or uses one of the ad hoc “modified” forms of the
conventional index, one reproduces the situation discussed in Examples 5.1 and 5.2. However,
itis a fact that, with histograms such as that of Figure 1, many practitioners would be tempted to
go ahead and quote the conventional, untransformed, Cy;; Examples 5.3 to 5.5 are intended to
warn against such temptation. Indeed, by the form it is defined, directly in terms of the sample
mean and the sample standard deviation, Cpk(:‘c, s) invites routine, often misleading use. By
comparison, the definition of the Bayesian index forces the analysis of the tail behaviour —
numerically or analytically— and is, therefore, less likely to be misused. In fact, one should
ideally perform some model sensitivity analysis to check the robustness of the results to changes
in the tail behaviour. However, this will require the derivation of the exact expression of Cj,(D)
for the set of models entertained, which is not a trivial task.

The analytic results (12), (13) and (14) have been obtained using the conventional “non-
informative” prior m(p, %) oc |2|~*+1/2 which reduces to w(u,0) o o' in the one-
dimensional case. This prior is not necessarily the more appropriate ‘default’ prior if the
parameter of interest is of the form

e (t50) - (07)

asin the present case. Preliminary results show that the corresponding reference prior (Bernardo,
1979; Berger and Bernardo, 1992), 7y (u, o), which should be used obtain the reference posterior
distribution of # and, presumably, the reference posterior predictive distribution of any function
of the data whose sampling distribution only depends on the parameters through 6, is not the
conventional 7(u, o) o< 1/0. The consequences of such modification of the prior, which will
only be appreciable for small samples, are presently being analyzed.

A number of other important problems remain to be studied. In particular, (i) exact ex-
pressions for the Bayesian index Cj,(D) could be obtained for non-normal standard models,
incorporating —when appropriate— relevant assumptions about the measurement errors; (ii)
density estimation techniques specially oriented towards tail behaviour analysis could be used
to provide numerical approximations to the Bayesian index; and (iii) using dynamic modelling,
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it should be possible to generalize the ideas presented to non stable processes. All this is left
for the near future.
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