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Tel. +34.96.364.3560 (direct), +34.96.386.4362 (office).
Fax +34.96.364.3560 (direct), +34.96.386.4735 (office).
Internet: jose.m.bernardo@uv.es, Web: http://www.uv.es/˜bernardo/

Typesetted on May 14, 2001
To appear at the Proceedings of Teias Matematicas, Coimbra 2000

Interpretation of Electoral Results:
A Bayesian Analysis
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SUMMARY

In the days which follow a political election, both the media and the politicians center their discussions on
the reallocation of the votes which has taken place from the last election: who has won votes from whom,
who has lost votes to whom. Typically, the arguments are only more or less informed guesses based
on a simple comparison the global final results in both elections, with no attempt at a formal statistical
analysis. In this paper, we formalize the problem, we review the basic elements of the Bayesian paradigm
which make it possible to solve it, and we summarize a Bayesian estimation method for the transition
probabilities which describe the reallocation of the votes, based on a hierarchical analysis of the results
obtained in both elections in a selected set of constituencies. The procedure is illustrated with results
obtained at some recent Spanish elections.
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1. THE PROBLEM

Whenever the results of a political election are announced, both the media and the politicians
are very interested in analyzing the specific modifications in political preferences which have
taken place since the last elections of the same type. More specifically, if m is the number of
political parties or coalitions which took part in the more recent elections, and k is the number of
political parties or coalitions which took part in the elections which preceded those (including
in both cases abstention as another ‘political party’), the modifications of political preferences
may be accurately described by the set or proportions

{
pij, j = 1, . . . ,m,

∑m

j=1
pij = 1

}
, i = 1, . . . , k,

where pij is the proportion of citizens who voted for party j in the last election among those
who voted for party i in those held before, that is the proportion of voters which party i has lost
in favour of party j. In particular, pii (the proportion of original voters of iwhich voted i again)
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measures the degree of fidelity to party i of their original electorate. The problem is to estimate
the values of the pij’s from available information.

If one only had the global results of both elections, that is the number of total votes,
a = {a1, . . . , ak} and b = {b1, . . . , bm}, obtained by each party in the two elections, the
problem would obviously be insolvable. However, electoral results are typically known for each
of the electoral units in which the geographical area under study is divided (polling stations,
electoral districts, or municipalities, depending on the chosen aggregation level). Thus, available
dataD typically consist on the numbers of votes {ai, bi}, l = 1, . . . , N , obtained by each party
in each election, in each of N electoral units. Each of these partial results is probabilistically
related to the unknown proportions pij and, hence, the available data D provides a sample of
size N of an appropriate model, parametrized by the pij’s, from which the required pij’s may
be estimated. The relevant model has a complex multinomial hierarchical structure and, as a
consequence, the proposed estimation problem is certainly not trivial. Conventional (frequentist)
statistical methods fail to provide a solution to inference in hierarchical models, but the problem
may be solved within the Bayesian statistical paradigm.

2. BAYESIAN STATISTICS

Experimental or observational results generally consist of (possibly many) sets of data of the
general formD = {x1, . . . ,xn}, where thexi’s are somewhat “homogeneous” (possibly multi-
dimensional) observations xi. Statistical methods are then typically used to derive conclusions
on both the nature of the process which has produced those observations, and on the expected
behaviour of future instances of the same process. A central element of any statistical analysis
is the specification of a probability model which is assumed to describe the mechanism which
has generated the observed data D as a function of a (possibly multidimensional) parameter
ω ∈ Ω, sometimes named the state of nature, about whose value only limited information (if
any) is available. All derived statistical conclusions are obviously conditional on the assumed
probability model.

Unlike most other branches of mathematics, conventional methods of statistical inference
suffer from the lack of an axiomatic basis; as a consequence, their proposed desiderata are often
mutually incompatible, and the analysis of the same data may well lead to incompatible results
when different, apparently intuitive procedures are tried. In marked contrast, the Bayesian
approach to statistical inference is firmly based on axiomatic foundations which provide a
unifying logical structure, and guarantee the mutual consistency of the methods proposed.
Bayesian methods constitute a complete paradigm to statistical inference, a scientific revolution
in Kuhn’s sense.

Bayesian statistics only require the mathematics of probability theory and the interpretation
of probability which most closely corresponds to the standard use of this word in everyday lan-
guage: it is no accident that some of the more important seminal books on Bayesian statistics,
such as the works of de Laplace, de Finetti or Jeffreys, are actually entitled “Probability The-
ory”. The practical consequences of adopting the Bayesian paradigm are far reaching. Indeed,
Bayesian methods (i) reduce statistical inference to problems in probability theory, thereby min-
imizing the need for completely new concepts, and (ii) serve to discriminate among conventional
statistical techniques, by either providing a logical justification to some (and making explicit
the conditions under which they are valid), or proving the logical inconsistency of others.

The main consequence of these foundations is the mathematical need to describe by means
of probability distributions all uncertainties present in the problem. In particular, unknown
parameters in probability models must have a joint probability distribution which describes the
available information about their values; this is often regarded as the more characteristic element



J. M. Bernardo. Interpretation of Electoral Results 3

of a Bayesian approach. Notice that (in sharp contrast to conventional statistics) parameters
are treated as random variables within the Bayesian paradigm. This is not a description of
their variability (parameters are typically fixed unknown quantities) but a description of the
uncertainty about their true values.

An important particular case arises when either no relevant prior information is readily
available, or that information is subjective and an “objective” analysis is desired, one exclusively
based on accepted model assumptions and well-documented data. This is addressed by reference
analysis which uses information-theoretical concepts to derive appropriate reference posterior
distributions, defined to encapsulate inferential conclusions on the quantities of interest solely
based on the assumed model and the observed data.

2.1. Probability as a Measure of Conditional Uncertainty

Bayesian statistics uses the word probability in precisely the same sense in which this word
is used in everyday language, as a conditional measure of uncertainty associated with the oc-
currence of a particular event, given the available information and the accepted assumptions.
Thus, Pr(E |C) is a measure of (presumably rational) belief in the occurrence of the event E
under conditions C. Sometimes, but certainly not always, the probability of an event under
given conditions may be associated with the relative frequency of “similar” events in “similar”
conditions. It is important to stress that probability is always a function of two arguments, the
event E whose uncertainty is being measured, and the conditions C under which the measure-
ment takes place; “absolute” probabilities do not exist. In typical applications, one is interested
in the probability of some event E given the available data D, the set of assumptions A which
one is prepared to make about the mechanism which has generated the data, and the relevant
contextual knowledge K which might be available. Thus, Pr(E |D,A,K) is to be interpreted
as a measure of (presumably rational) belief in the occurrence of the event E, given data D,
assumptions A and any other available knowledge K, as a measure of how “likely” is the
occurrence ofE in these conditions. For an illustration, consider the following simple example.

Estimation of a proportion. A survey is conducted to estimate the proportion θ of individuals in a
population who share a given property. A random sample of n elements is analyzed, r of which
are found to possess that property. One is then typically interested in using the results from the
sample to establish regions of [0, 1] where the unknown value of θ may plausibly be expected
to lie; this information is provided by probabilities of the form Pr(a < θ < b | r, n,A,K),
a conditional measure of the uncertainty about the event that θ belongs to (a, b) given the
information provided by the data (r, n), the assumptions A made on the behaviour of the
mechanism which has generated the data (a random sample of n Bernoulli trials), and any
relevant knowledgeK on the values of θwhich might be available. For example, after a political
survey in which 720 citizens out of a random sample of 1500 have declared to be in favour of
a particular political measure, one may conclude that Pr(θ < 0.5 | 720, 1500, A,K) = 0.933,
indicating a probability of about 93% that a referendum of that issue would be lost. Similarly,
after a screening test for an infection where 100 people have been tested, none of which has
turned out to be infected, one may conclude that Pr(θ < 0.01 | 0, 100, A,K) = 0.844, or a
probability of about 84% that the proportion of infected people is smaller than 1%. �

2.2. The Bayesian Paradigm

The statistical analysis of some observed dataD typically begins with some informal descriptive
evaluation, which is used to suggest a tentative, formal probability model {p(D |ω), ω ∈ Ω}
assumed to represent, for some (unknown) value of ω, the probabilistic mechanism which has
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generated the observed data D. Axiomatic arguments (see, e.g., Bernardo and Smith, 194,
Ch. 2) may be used establish the logical need to assess a prior probability distribution p(ω |K)
over the parameter space Ω, describing the available knowledgeK about the value ofω prior to
the data being observed. It then follows from standard probability theory that, if the probability
model is correct, all available information about the value of ω after the data D have been
observed is contained in the corresponding posterior distribution whose probability density,
p(ω |D,A,K), is immediately obtained from Bayes’ theorem as

p(ω |D,A,K) ∝ p(D |ω,A) p(ω |K),

where A stands for the assumptions made on the probability model. It is this systematic use of
Bayes’ theorem to incorporate the information provided by the data that justifies the adjective
Bayesian by which the paradigm is usually known. It is obvious from Bayes’ theorem that any
value ofω with zero prior density will have zero posterior density. Thus, it is typically assumed
(by appropriate restriction, if necessary, of the parameter space Ω) that prior distributions
are strictly positive (as Savage put it, keep the mind open, or at least ajar). To simplify the
presentation, A and K are often omitted from the notation, but the fact that all statements
about ω given the data are also conditional to the accepted assumptions and the available
knowledge should always be kept in mind.

From a Bayesian viewpoint, the final outcome of a problem of inference about any unknown
quantity is precisely the corresponding posterior distribution. Thus, given some data D and
conditions C, all that can be said about any function ω of the parameters which govern the
model is contained in the posterior distribution p(ω |D,C).

To make it easier for the user to assimilate the appropriate conclusions, it is often convenient
to summarize the information contained in the posterior distribution by quoting intervals for of
the quantity of interest which, in the light of the data, are likely to contain its true value. The
idea is related to that of a frequentist confidence interval, but it is conceptually very different:
a confidence interval only allows to assert that if the procedure were repeated indefinitely, then
the corresponding intervals would contain the true value of the parameter in a given proportion
of the cases. However, from a frequentist viewpoint nothing can be said about the required
probability that the true value of the parameter belongs to the interval given the information
actually available, a probability which within the Bayesian paradigm is immediately deduced
from the posterior distribution of the parameter. This is illustrated in the example below.

Estimation of a proportion (continued). Let the data D consist of n Bernoulli observations
with parameter θ which contain r positive trials, so that p(D | θ, n) = θr(1 − θ)n−r, and
suppose that prior knowledge about θ is described by a Beta distribution Be(θ |α, β), so that
p(θ |α, β) ∝ θα−1(1− θ)β−1. Using Bayes’ theorem, the posterior density of θ is

p(θ | r, n, α, β) ∝ θr(1− θ)n−r θα−1(1− θ)β−1 ∝ θr+α−1(1− θ)n−r+β−1,

the Beta distribution Be(θ | r + α, n− r + β).
Suppose, for example, that in the light of precedent surveys, available information on the

proportion θ of citizens who would vote for a particular political measure in a referendum is
described by a Beta distribution Be(θ | 50, 50), so that it is judged to be equally likely that the
referendum would be won or lost, and it is judged that the probability that either side wins
less than 60% of the vote is 0.95. A random survey of size 1500 is then conducted, where
only 720 citizens declare to be in favour of the proposed measure. Using the results above, the
corresponding posterior distribution is then Be(θ | 730, 790). These prior and posterior densities
are plotted in Figure 1; it may be appreciated that, as one would expect, the effect of the data
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Figure 1. Prior and posterior densities of the proportion θ of citizens that would vote in favour of a
referendum.

p(θ | r, n, α, β) = Be(θ | 730, 790)

p(θ |α, β) = Be(θ | 50, 50)

θ

is to drastically reduce the initial uncertainty on the value of θ and, hence, on the referendum
outcome. More precisely, Pr(θ < 0.5 | 720, 1500, H) = 0.933 (shaded region in Figure 2) so
that, after the information from the survey has been included, the probability that the referendum
will be lost should be judged to be about 93%.

The reference prior for this problem, describing a situation with no available initial informa-
tion is π(θ) ∝ θ−1/2(1−θ)−1/2, that is a Beta distribution Be(θ | 1/2, 1/2). The corresponding
reference posterior is Be(θ | r + 1/2, n − r + 1/2) where, again, r is the number of positive
trials.
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Figure 2. Posterior distribution of the proportion of infected people in the population, given the results
of n = 100 tests, none of which were positive.

p(θ | r, n, α, β) = Be(θ | 0.5, 100.5)

θ

Suppose now, that n = 100 randomly selected people have been tested for an infection and
that all tested negative, so that r = 0. The reference posterior distribution of the proportion θ of
people infected is then the Beta distribution Be(θ | 0.5, 100.5), represented in Figure 2. Thus,
just on the basis of the observed experimental results, one may claim that the proportion of
infected people is surely smaller than 5% (for the reference posterior probability of the event
θ > 0.05 is 0.001), that θ is smaller than 0.01 with probability 0.844 (area of the shaded region
in Figure 4), that it is equally likely to be over or below 0.23% (for the median, represented
by a vertical line, is 0.0023), and that the probability that a person randomly chosen from the
population is infected is 0.005 (the posterior mean, represented in the figure by a black circle),
since Pr(x = 1 | r, n) = E[θ | r, n] = 0.005. If a particular point estimate of θ is required (say
a number to be quoted in the summary headline) the median 0.0023, or 0.23% could be quoted.
Notice that the traditional solution to this problem, based on the asymptotic behaviour of the
MLE, here θ̂ = r/n = 0 for any n, makes absolutely no sense in this scenario. �
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The last years have seen the publication of many textbooks on Bayesian statistics, which me
be recommended for the interested reader. These include, in chronological order of publication,
Berger (1985), Lee (1989), Bernardo and Smith (1994), O’Hagan (1994) and Gelman et al.
(1995). For a simple introduction to Bayesian statistics, see the encyclopedia article Bernardo
(2001).

Bayesian statistics makes it possible to analyze complex probability models, such as those
with a hierarchical structure, which is not possible to address with conventional methods. The
probabilistic model appropriate to analyze the structure of the vote transfer among elections is
precisely a hierarchical model.

3. A SOLUTION TO THE PROPOSED PROBLEM

The probability model considered to estimate the redistribution of the voting pattern between
two consecutive elections is based on the partial exchangeability of citizens voting similarly in
the earlier election. This yields (Bernardo and Smith, 1994, Ch. 4) a product of k multinomial
distributions, where k is the number of political parties in the earlier election, which requires
as parameters both the desired (unknown) proportions pij of citizens who voted j in the last
election among those who voted i in the earlier election, and the matrix of latent variables niku
which describe the (unknown) number of citizens who changed their vote from i to j in each
of the electoral units u, all subject to the (known) restrictions imposed by the (known) total
number of votes obtained by each party in each of the electoral units u.

Table 1. City of Valencia. Results by district at the 1995 State elections.

District PP PSOE EU UV Bloc Other Abs

1 11474 2732 1628 1491 223 166 4257
2 21025 4584 2835 2547 298 227 6823
3 21591 5840 3425 3282 377 258 8277
4 8267 4579 2942 1704 212 210 682
5 13911 7549 4303 2927 310 313 11242
6 14223 2748 1649 1341 232 156 5284
7 13148 9067 4604 3126 227 279 11675
8 14127 7411 5195 3294 281 323 15404
9 12088 8593 4862 3347 236 304 12981

10 18010 9941 5985 4907 414 382 18128
11 11227 11500 5239 4635 334 304 16643
12 11317 8906 4559 2756 280 242 14328
13 11000 6387 3944 2061 339 222 10453
14 7628 4346 2800 1581 232 162 7849
15 9174 8404 4330 2432 221 238 11736
16 7432 7056 3590 2013 179 251 12498
17 1568 1019 373 877 70 16 1306
18 2337 2693 1021 654 44 78 3496
19 3754 2793 1287 2593 113 70 5624

Linear programming is used to estimate the latent variables. This yields to a profile likeli-
hood which only depends on the pij’s, the parameters of interest. Using the appropriate reference
prior distribution (Bernardo, 1979; Berger and Bernardo, 1992; Bernardo and Ramón, 1998),
it is possible to obtain the joint posterior distribution of the pij and, in particular, their poste-
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rior means (which are the required estimates), and their posterior standard deviations, (which
describe the probable error of such estimates).

Table 2. City of Valencia. Results by district at the 1999 State elections.

District PP PSOE EU UV Bloc Other Abs

1 9778 2319 786 599 643 154 7692
2 18261 4087 1165 991 993 302 12540
3 19329 5340 1469 1260 1241 317 14094
4 7816 4775 1168 687 701 196 9391
5 13839 7300 1970 1281 998 301 14866
6 12416 2709 657 611 654 188 8398
7 13000 8365 1811 1257 825 338 16530
8 15107 8302 2209 1505 1180 362 17370
9 12595 8659 1947 1468 931 294 16517

10 18570 9445 2496 1933 1184 734 23405
11 12617 10251 2460 2167 1050 443 20894
12 12182 8482 2054 1280 935 291 17164
13 10919 6477 1696 1070 1011 274 12959
14 7750 4699 1225 693 698 190 9343
15 9717 7862 1708 1012 735 317 15184
16 8409 7126 1509 1036 689 256 13994
17 1839 872 178 461 215 22 1642
18 2597 2599 389 391 194 63 4090
19 4911 2663 591 740 325 984 6020

It is important to stress that the methodology outlined exclusively depends on public electoral
results; in particular it does not require any additional knowledge obtained from, say, sample
surveys. As an example, consider the modifications of the voting pattern observed in the city
of Valencia, Spain, between the State elections held in 1995 and 1999, exclusively based on the
results observed in those two elections for each of the 19 electoral districts in which the city is
divided (Tables 1 and 2). The parties considered were: PP (conservative), PSOE (socialists),
EU (communists), UV (right-nationalists), Bloc (left-nationalists), Other (small parties) and
Abstention (citizens who did not vote).

Table 3. Transition structure. Percentage distribution of the 1995 vote in 1999.

% Votes 95→99 PP PSOE EU UV Bloc Other Abs

PP 95.8 0.0 0.0 0.0 0.7 0.0 3.5
PSOE 0.0 95.3 0.0 0.0 4.0 0.3 0.4

EU 0.2 0.0 43.0 0.0 6.7 0.2 49.9
UV 15.9 3.5 0.0 43.3 0.0 3.0 34.3

Bloc 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Otr 0.0 0.0 0.0 0.0 0.0 98.5 1.5

Abs 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Using the methodology summarized above, a joint posterior distribution of the 7×7 matrix
of the transition probabilities was obtained. Their expected value, expressed in percentages,
(i.e., 100p̂ij) produces the transition matrix of Table 3, which provides a detailed analysis of
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the vote transferences. For example, the two larger parties (PP and PSOE) kept in 1999 most of
their vote of 1995 (about 95.8% and 95.3% respectively), but the communists (EU) only kept
43%, with about 50% of their voters in 1995 deciding to abstain from voting in 1999.

Since the total results are known, the estimates in Table 3 may obviously be expressed
in absolute numbers, providing an immediate estimate of the actual importance of the vote
transfers. Thus (see Table 4), about 4800 citizens among the 116146 who voted PSOE in 1995
are estimated to have voted Bloc in 1999, and about 7500 among the 47569 who voted UV in
1995 are estimated to have voted PP in 1999.

Table 4. Transition structure. Absolute distribution of the 1995 vote in 1999.

Party Votes 95 PP PSOE EU UV Bloc Other Abs

PP 213 299 204 202 0 0 0 1 542 0 7 555
PSOE 116 146 0 110 592 0 0 4 759 359 436

EU 64 570 151 0 27 711 0 4 314 133 32 261
UV 47 569 7 547 1 654 0 20 516 0 1 391 16 461

Bloc 4 619 0 0 0 0 4 619 0 0
Otr 4 199 0 0 0 0 0 4 136 63

Abs 184 820 0 0 0 0 0 0 184 820

Votes 99 211 900 112 246 27 711 20 516 15 234 6 019 241 596
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