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Classification problems in education 

J. D. BERMUDEZ, J. M. BERNARDO & M. SENDRA 

Departamento de Estadistica, Facultad de Matimaticas, Universidad de Valencia, 
46071 Valencia, Spain 

Abstract. The paper suggests that Bayesian probabilistic classification provides an interesting frame- 
work to analyse the data banks typically encountered in Education research. Particular procedures are 
suggested to analyse the relationship between interesting partitions of a student population and the 
student profiles. A case study is described as an example. 

1 Introduction 

Education research is often based in the analysis of data banks which consist of the 
measurements of a miscellaneous collection of attributes on certain class of students. 
The attributes, or items, which constitute the profile of each student may provide 
information about his or her physical characteristics (age, sex,...) sociological data 
(parents' education, number of brothers and sisters, family habitat,..) social attitudes 
towards key issues (sex or race discrimination, politics,..) test results (abstract reason- 
ing, IQ tests, reading comprehension, spelling,..) and academic grades in different 
subjects (mathematics, english, history,..). With this type of information the researcher 
tries to answer different types of questions such as (i) may a certain sample of the 
students in the data bank (say those taken as controls in a given study) be considered 
exchangeable with the rest? (ii) is there any (statistical) relationship between a group of 
items (say sociological profile) and the result of a test (say on mathematical ability)?. 

We argue that a useful solution to these and many other interesting questions may 
be provided within the framework of (Bayesian) probabilistic classification, where the 
data bank is categorised into a finite number of interesting classes t(31, 2,...., 3k} using 
one or more of the items measured and then the predictive probability distribution 
{p(51 I x,D),..., p(5kl x,D)} of a student with profile x belonging to each of the possible 
classes given the data bank D is computed in order to assess the dependence of the 
classification considered on the students' profiles. 

Thus, in an experimental setting students may be categorised into either controls (3D 
or experimentals (32); derivation of the predictive probability distribution {p(1 I xD), 
P(321 x,D)} then provides the relevant information on whether or not controls and 
experimentals students are similar. Indeed, if for some x this distribution is far from 
(1/2, 1/2), students of the type described by that x are not evenly distributed among 
the two categories. Similarly, if the data bank is categorised into, say, those who excel 
(31) pass (32) or fail (33) a mathematics test, the predictive distribution tp(1 I xD), 
P(321 x,D), P(331 x,D)} may be used to identify, say, those students who may be expected 
to do well in mathematics: those whose profile x makes p(31 I x,D) large. 

2 The classification model 

An important advantage of a classification approach over more standard statistical 
analyses of these problems lies in the fact that it may be carried out with the large 
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number of highly interdependent attributes of any type (continuous, binary, ordinal,..) 
which typically form the student profile; the model which follows was proposed in 
Bernardo (1987). 

Consider the linear discriminant function 

)IX=(XI,.. .,.k)t SX 1 X, 1= 1,..., k- 1 
where xi. is the mean of the profiles in class 35i and S their pooled covariance matrix. It 
is well known that ;itx is the linear function which best separates 35i from &k (Fisher, 
1936; Goel, 1983). Suppose, without loss of generality, that the x's represent standar- 
dised quantities. We shall assume: 

Al (Approximate sufficiency) 

P(5kl x,D) p(3kI t,D) t= tx) = ('{,, A'k-1X} 

The assumption of the approximate sufficiency for classification purposes of the 
linear discriminant functions is empirically founded in large field studies (see, e.g. 
Titterington et al., 1981) and may often be regarded as a good first order approxima- 
tion. This assumption dramatically reduces the dimensionality of the problem. 

A2 (Approximate normality) 

p(tl3i)_Nk_ Il(tlpi, 2i), i= 1,2,...,k 

The assumption of approximate joint normality of the sampling distribution of the 
linear functions t is founded on central limit type arguments (see, e.g. Diaconis & 
Freedman, 1984) for, each t is the sum of a large number of standardised random 
quantities neither of which is expected to dominate the others. Note that this 
assumption will not be sensible on the sampling distribution of the profile x. 

A3 (Reference prior) 

P(ii Y1i) XC I YJ-ko 2 

The prior information about the values of the discriminant function is typically very 
vague: thus, it may well be approximated by the appropriate reference non-informative 
prior (Bernardo, 1979b). It follows from Al to A3 (see, e.g. Geisser, 1964) that the 
predictive distribution is of the form 

p((5iJx,D) oc St(t|Jmi,(ni+ 1)1(ni-k+ l )Vi, ni-k+ l)p((5iJ D) 
where mi and Vi are respectively the mean vector and covariance matrix of the t vector 
with class 35i, ni is the number of students in class 35i, St(tlm, V, a) is a (k- 1) variate 
Student density with mean m, dispersion matrix V and a degrees of freedom and 
p((5iJD) is either the prior probability p(3i) of category 35i (with retrospective sampling) 
or its (unconditional) posterior probability (ni+ 1/2)/(n + k/2), n = I ni, (with prospec- 
tive sampling). 

3 The choice of variables 

The selection of an appropriate subset of attributes x is important not just because it 
reduces computing but mainly because it serves to identify those attributes within the 
student profiles which are essential in each classification problem; the procedure which 
follows was proposed in Bernardo and Bermudez (1985). 

Consider the selection of attributes as the decision problem described in Fig. 1, so 
that the statistician selects a subset of attributes, observes its values on a randomly 
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Classification problems in education 109 

chosen student and gets a reward utp(31jxf,D)} which depends on the (predictive) 
probability produced for the category 35 which actually obtains. 

f Xf6 
Selec u pblxf,D) 
attributes ctorueUy6~fD labelled f Observed 

values Xf 

Fig. 1. Diagram showing the decision tree. 

It is well known (Savage, 1971; Bernardo, 1979a; Lindley, 1982) that u should be 
required to be a proper scoring rule and that the only proper scoring rules which only 
depends on the predictive distribution through the probability associated to the true 
category is a logarithmic scoring rule of the form 

utp(31 x,D)} =A log p(351 x,D) + B(6), A > 0 
It follows that the best subset of attributes is that which maximises 

k 

u*tf = fp(xf I D) Zp(3i I xf,D) log p(35iI xf,D) dxf 

i.e. that which minimises the expected value of the entropy of the resulting predictive 
distribution. Using Monte Carlo methods, this integral may be approximated by 

in 

-Zp(i I x.,D) log p(35i I xf,,D) 

with prospective sampling or 
k 1 ni k 

E p(31)-E EZp(3il xf,,D) log p(3il xf,,D) 
1=I nlj=l i=l 

with retrospective sampling. Thus the optimal solution approximately consists in 
choosing that subset of attributes which minimises the average entropy of the predic- 
tive distribution. 

A complete search among all possible subsets of attributes is computationally 
unfeasible. Thus, we propose a sequential algorithm which, given an initial subset 
(possibly empty) (i) sequentially eliminates attributes while the associated expected 
utility does not decrease more than some constant c in each step, thus eliminating 
possible redundancies within the initial subset and (ii) sequentially incorporates new 
attributes while the associated expected utility increases at least c in each step. 

4 The predictive distribution of the classification probabilities 

The use of a classification approach to the problems discussed provides a very rich 
answer in that it gives a solution {p(5ij x,D) i= 1,2,.. .,k} as a function of the student 
profile x. It is however important to be able to summarise the results obtained with a 
description of the classification probabilities {p($il x,D) i= 1,2,...,kl which obtain as x 
ranges over the class of possible profiles. 

The natural answer is to produce the (predictive) probability distribution of the 
classification probabilities p($il x,D) =p(3$11 t,D), i= 1,2,...,k. Since those are well-defined 
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mathematical functions of the random vector t, the problem reduces to compute the 
probability distribution of the function yi(t) =p((5il t,D) where, as described in Section 2, 

p(tl 3i)=St(tl mi,(ni+? )I(ni-k+ 1) Vi, ni-k+ 1)_Nk- l(tl mi, Vi) 
We do not have a general expression for the probability function of y(t), although it 

is always possible to obtain particular solutions. As an example, we present here the 
solution for the very important case k= 2, V1I V2 (without loss of generality it is 
always possible to assume V1< V2) and P(31)=P(32)= 1/2. 

For that particular case, the function yl(t) =p(35 1 t,D) reduces to: 

y=y1(t) 1 +exptA +B(t-M)21 

where 

A= 'ogV2 (MI -m2 )2 = V2- VIM V2MI- VI M2 
A=-2Logv-- _F,B=2V ,M= V- 2 

VI 2(V2-VI)' 2 VIV2) V I 
and the predictive distribution of t is given by: 

p(t) = 1/2tN(tI mi1, V1) + N(t I M2, V2)}. 
Then, some tedious, but straightforward, algebra permit to prove the following 

Proposition I 

With the above notation, the (predictive) density function of y is given by: 

N(M+R(y)I mi1, VI)+N(M-R(y)I mi1, VI)+N(M+?R(y) IM2, V2)+N(M-R(y)I m2, V2) 
4 R(t) B y (1-y) 

if y belongs to the interval (0,{ 1 +exp(A)}l 1), p(y) = 0 otherwise. Where 

| log ((1 -y)/y)-A 
B 

5 A case study 

The Spanish socialist government is currently preparing a large reform of the structure 
of secondary education. To gather information which could be used to improve the 
education system and to test the consequences of some proposed reforms before being 
generally implemented, 23 196 students were selected in 262 schools and subjected to 
a large number of tests. The profile of each of those 23 196 students finally contained 
over 150 items, including their sociological description, social attitudes, results to 
different types of tests and academic grades in former education. We were requested 
to analyse those data. 

Example I 

The education authorities showed interest in analysing the factors which motivated in 
Spain the choice of a private rather than a public (state-owned) school. Thus, we 
categorised the data bank into students attending a private (dl) or a public (d2) school, 
and used the methodology just described (i) to determine the relevant classificatory 
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variables and (ii) to obtain the predictive distribution of the classification probabili- 
ties. 

The variables sequentially selected and their corresponding A-coefficients were: 

Variables Ai 

Education level of father 0.594 
Nursery school attended 0 313 
Proximity house-school 0.301 
Positive opinion on politics -0-267 
Number of brothers/sisters -0-241 
Abstract reasoning 0*229 
Math. computation ability 0 132 
Reading comprehension -0 127 
Mother works fulltime -0*121 
Critical power 0*095 
Lost academic years -0-046 

For each individual we computed the values of the linear discriminant function 
t=Z'x. The Table below summarises the corresponding results within each category 
group: 

Number Obs. Mean Std. Dev. Min. Max. 

Public School 9587 -0-238 0-932 -3-523 3 748 
Private School 7725 0 292 1-078 -34188 4.077 

The predictive distribution of the probability p(3i Ix,D) that a random student 
belongs to a public school was found to be 

Total Number Obs. 17 312 1 
Mean 0 500 
Std. Dev. 0*134 
Minimum 0.000 
Maximum 0-651 
50% H.P.D. (0*422 , 0*605) 
90% H.P.D. (0*221, 0*651) 
95% H.P.D. (0*161, 0*651) l l l 
99% H.P.D. (0*073 , 0*651) 0.25 0.50 0.75 

Thus, whatever the value of x, the model never associates to p(35, I x,D) a value larger 
than 0*651, but for specific profiles (high father education, nursery school attended, 
etc.), this probability may be close to zero. It follows that one may find any profiles 
among students of private schools, but some profiles are virtually never found in 
public schools. The relative importance of the factors which influence the type of 
schools chosen the parents of the students may approximately be read off from their A- 
coefficients. 

Example 2 

A subset of the schools was selected to be used as experimentals while the rest would 
be used as controls in testing a particular education programme. It was necessary to 
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verify that controls and experimentals were well balanced with respect to the attributes 
considered. Thus, we categorised the data bank into experimentals (dl) and controls 
(d2) and used the methodology described to determine (i) the more relevant classifica- 
tory variables (those where bias may be suspected) and (ii) the predictive distribution 
of the classification probabilities. 

The variables sequentially obtained and the corresponding A-coefficients were: 

Variables Ai 

Math. computation ability 1 162 
Math. applications ability -0 535 
Orthography ability 0.366 
Reading comprehension -0-357 

For each individual we computed the values of the linear discriminant function 
t=Z'x. The Table below summarises the corresponding results within each category 
group: 

Number Obs. Mean Std. Dev. Min. Max. 

Experimental 2173 -0 173 1[014 -3-351 2.614 
Control 17993 0.021 0998 -11*023 3.446 

The predictive distribution of the probability p((5ijx,D) that a random student 
belongs to an experimental school was found to be 

Total Number Obs. 20 166 
Mean 0 500 
Std. Dev. 0.048 
Minimum 0-354 
Maximum 1[000 
50% H.P.D. (0*462 , 0*527) 
90% H.P.D. (0*425 , 0.538) 
95% H.P.D. (0.414 , 0.602) I l 
99% H.P.D. (0-396 , 0.641) 0.25 0.50 0.75 

Thus, this probability is practically always within the interval (0-4, 0.6) and is neatly 
centered in 0 5. Consequently, there is no reason to doubt that experimentals and 
controls were well balanced with respect to the attributes considered. It is interesting 
to note, however, that although not very significantly, mathematical computational 
ability is the poorest balanced among the variables considered, suggesting that, in 
calculus, controls are marginally better than experimentals. 
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