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SUMMARY

The general concept of exchangeability allows the more flexible modelling of most experimental setups.
The representation theorems for exchangeable sequences of random variables establish that any coherent
analysis of the information thus modelled requires the specification of a joint probability distribution on
all the parameters involved, hence forcing a Bayesian approach. The concept of partial exchangeability
provides a further refinement, by permitting appropriate modelling of related experimental setups, leading
to coherent information integration by means of so-called hierarchical models. Recent applications of
hierarchical models for combining information from similar experiments in education, medicine and
psychology have been produced under the name of meta-analysis.
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1. INTRODUCTION

It is generally agreed that the uncertainty relative to the possible values of the observable outcome
x={x1, . . . , xn} of an experiment of size n is appropriately described by its joint probability
distribution with, say, density p(x) = p(x1, . . . , xn), so that the probability that x belongs to a
region A is

P (x ∈ A) =

∫
A
p(x) dx

and, hence, by standard arguments of probability theory, the (predictive) probability that a future
‘similar’ observation xn+1 belongs to an interval I given the information provided by x is

P (xn+1 ∈ I |x) =

∫
I
p(xn+1 |x1, . . . , xn) dxn+1,

p(xn+1 |x) =
p(x1, . . . , xn+1)

p(x1, . . . , xn)
.
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It follows that, in order to predict a future observable quantity given a sequence of ‘similar’ ob-
servations —which is one of the basic problems in the analysis of scientific data— it is necessary
and sufficient to assess, for any n, the form of the joint probability density p(x1, . . . , xn).

In Section 2, we describe the concept of exchangeability, which makes precise the sense in
which the observations must be ‘similar’. In Section 3 we discuss the radical consequences of
the exchangeability assumptions which are implied by the so-called representation theorems. In
Section 4, we describe a further elaboration, introducing hierarchical models as an appropriate
tool for information integration. Finally, Section 5 contains additional remarks, and some
references to recent applied work on the combination of information, which makes use of the
concepts reviewed here.

2. EXCHANGEABILITY

The joint density p(x1, . . . , xn), which we have to specify, must encapsulate the type of depen-
dence assumed among the individual random quantities xi. In general, there is a vast number
of possible assumptions about the form such dependencies might take, but there are some
particularly simple forms which accurately describe a large class of experimental setups.

Suppose that in considering p(x1, . . . , xn) the scientist makes the judgement that the sub-
scripts, the ‘labels’ identifying the individual random quantities are ‘uninformative’, in the sense
the information that the xi’s provide is independent of the order in which they are collected.
This judgement of ‘similarity’ or ‘symmetry’ is captured by requiring that

p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)),

for all permutations π defined on the set {1, . . . , n}. A sequence of random quantities is said
to be exchangeable if this property holds for every finite subset of them.

Example. (Physiological responses). Suppose (x1, . . . , xn) are real-valued measurements of a specific phys-

iological response in human subjects when a particular drug is administered. If the drug is administered at more

than one dose level, and if they are male and female subjects from different ethnic groups, one would be reluctant

to make a judgement of exchangeability for the entire sequence of results. However, within each combination of

dose-level, sex, and ethnic group, an assumption of exchangeability would often be reasonable.

We shall now review the important consequences of an exchangeability assumption implied
by the general representation theorem.

3. THE GENERAL REPRESENTATION THEOREM

The ‘similarity’ assumption of exchangeability has strong mathematical implications. For-
mally, the general representation theorem provides an integral representation of the joint den-
sity p(x1, . . . , xn) of any subset of exchangeable random quantities. More specifically, if
{x1, x2, . . .} is an exchangeable sequence of real-valued random quantities, then there exists a
parametric model, p(x |θ), labeled by some parameter θ ∈ Θ which is the limit (as n → ∞)
of some function of the xi’s, and there exists a probability distribution for θ, with density p(θ),
such that

p(x1, . . . , xn) =

∫
Θ

n∏
i=1

p(xi |θ)p(θ) d(θ).

In more conventional terminology, this means that, if a sequence of observations is judged to be
exchangeable, then, any finite subset of them is a random sample of some model p(xi |θ), and
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there exists a prior distribution p(θ) which has to describe the initially available information
about the parameter which labels the model.

It then follows from standard probability arguments involving Bayes’ theorem —hence the
adjective ‘Bayesian’— that the available information about the value of θ after the outcome
x = {x1, . . . , xn} of the experiment has been observed is described by its posterior density

p(θ |x1, . . . , xn) =

∏n
i=1 p(xi |θ)p(θ)

p(x1, . . . , xn)
;

Similarly, the available information about the value of a future observation x after x has been
observed is described by

p(x |x1, . . . , xn) =

∫
Θ
p(x |θ)p(θ |x1, . . . , xn) dθ.

It is important to realise that if the observations are conditionally independent, —as it is
implicitly assumed when they are considered to be a random sample from some model—, then
they are necessarily exchangeable. The representation theorem, —a pure probability theory
result— proves that if observations are judged to be exchangeable, then they must indeed be a
random sample from some model and there must exist a prior probability distribution over the
parameter of the model, hence requiring a Bayesian approach.

Note however that the representation theorem is an existence theorem: it generally does
not specify the model, and it never specifies the required prior distribution. The additional
assumptions which are usually necessary to specify a particular model are described in particular
representation theorems. An additional effort is necessary to assess a prior distribution for the
parameter of the model.

Example. (Continued). If the measurements {x1, x2, . . .} of the response to the administration of a certain
dose-level of some drug to a group of females of the same ethnic group are judged to be exchangeable and it is
considered that

xn =
1

n

n∑
i=1

xi. s2
n =

1

n

n∑
i=1

(xi − x)2,

the sample mean and variance, are sufficient statistics, in the sense that they are assumed to capture all the relevant
information about the structure of the xi’s contained in {x1, . . . , xn}, then the xi’s must necessarily be regarded
as a random sample from a normal distribution N(x |µ, σ) where

µ = lim
n→∞

xn, σ = lim
n→∞

sn,

and there must exist a prior distribution p(µ, σ) describing the available initial information about µ and σ. If,
furthermore, it is assumed that no relevant information about either µ or σ is initially available, then the reference
prior (Bernardo, 1979) π(µ, σ) ∝ σ−1 may be used , and one finds that the available information about the
population mean µ, and about a future observation x, after the outcome x = {x1, . . . , xn} of the experiment has
been collected is respectively described by the Student t distributions

π(µ |x1, . . . , xn) = St(µ |x, s√
n− 1

, n− 1),

π(x |x1, . . . , xn) = St(x |x, s
√

n + 1

n− 1
, n− 1).

In the next Section we extend the concept of exchangeability to be able to integrate the
information available from different, related sources.
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4. HIERARCHICAL MODELS

One often has several related sequences of exchangeable random quantities, the distribution of
which depends on separately sufficient statistics in the sense that, if one hasm of such sequences,

p(x1, . . . ,xm) =
m∏
i=1

p(xi | ti),

where ti is a sufficient statistic for xi. The corresponding integral representation is then of the
form

p(x1, . . . ,xm) =

∫
Θ

m∏
i=1

ni∏
j=1

pi(xij |θi)p(θ1, . . . ,θm) dθ1, . . . , dθm.

Most often, the fact that the m sequences are being considered together means that all random
sequences relate to the same measurement procedure, so that one typically has pi(x |θi) =
p(x |θi).

Example. (Continued). If xij , j = 1, . . . , ni, i = 1, . . . ,m denote the responses to a drug from females from
m ethnic groups in the conditions described above, then one would typically have a representation of the form

p(x1, . . . ,xm) =

∫
Θ

m∏
i=1

ni∏
j=1

N(xij |µi, σ)p(µ1, . . . , µm, σ) dµ1, . . . , dµmdσ.

Thus, {xi1, . . . , xini
} must be considered as a random sample from a normal distribution N(x |µi, σ) and there

must exist a prior distribution p(µ1 . . . , µm, σ) which has to describe our assumptions on the relationship among

the means of the m groups.

In this context, judgements of exchangeability are not only appropriate within each of the
m separate sequences of observations, but also between the m corresponding parameters, so
that its joint distribution has an integral representation of the form

p(θ1, . . . ,θm) =

∫
Φ

m∏
i=1

p(θi |φ)p(φ) dφ,

and, hence, the parameter values which correspond to each sequence may be seen as a random
sample from some parameter population with density p(θ |φ), and there must exist a prior
distribution p(φ) describing the initial information about the hyperparameter φ which labels
p(θ |φ).

Example. (Continued). If the mean responses {µ1, . . . , µm} within each of the m ethnic groups considered
are judged to be exchangeable, then

p(µ1, . . . , µm, σ) =

m∏
i=1

p(µi |σ)p(σ).

If, furthermore, their mean and standard deviations are judged sufficient to capture all relevant information
about the µi’s, then

p(µ1, . . . , µm, σ) = p(σ)

∫ m∏
i=1

N(µi |µ0, σ0)p(µ0, σ0) dµ0, dσ0,

and, hence, the µi’s, the means of the responses within each ethnic group, may be regarded as a random sample
from a normal population of female mean responses with overall mean µ0 and standard deviation σ0.
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If no prior information is assumed on µ0, σ0 and σ, one may use the corresponding reference prior and derive
the appropriate posterior distributions for each of the µi’s, π(µi |x1, . . .xm). It is easily verified that, contidional
on σ and σ0, the posterior means of the µi’s are given by

E[µi |x1, . . .xm, σ, σ0] = ωixi + (1 − ωi)x,

with

x =

∑m
i=1 ωixi∑m
i=1 ωi

, ωi =
niσ

2
0

niσ2
0 + σ2

.

This shows that there is a shrinkage from the sample mean within the i-th group, xi, towards the overall weighted

mean, x, which reflects the fact that the exchangeability assumption about the µi’s makes all data relevant to draw

conclusions about each of them, thus providing a very simple example of information integration. For details, see

Berger and Bernardo (1992b).

Hierarchical modelling provides a powerful and flexible approach to the representation of
assumptions about observables in complex data structures. This section merely provides a
brief sketch to the basic ideas. A comprehensive discussion of hierarchical models requires a
dedicated monograph.

5. DISCUSSION

The representation theorems are mainly due to de Finetti (1930, 1970/1974), Hewitt and Savage
(1955) and Diaconis and Freedman (1984, 1987); for a recent review at a textbook level see
Bernardo and Smith (1994, Ch. 4). The detailed mathematics of the representation theorems
are involved, but their main message is very clear: if a sequence of observations is judged to be
exchangeable, then any subset of them must be regarded as a random sample from some model,
and there exist a prior distribution on the parameter of such model, hence requiring a Bayesian
approach.

A simple hierarchical model is of the form

p(x1, . . . ,xm |θ1, . . . ,θm) =
m∏
i=1

p(xi |θi),

p(θ1, . . . ,θm |φ) =
m∏
i=1

p(θi |φ),

p(φ),

which is to be interpreted as follows. Sequences of observablesx1, . . . ,xm are available fromm
different, but related sources: for examplem clinical trial centres involved in the same study. The
first stage of the hierarchy specifies the parametric model of each of the m sequences. Since the
sequences are ‘similar’, the parameters θ1, . . . ,θm are themselves judged to be exchangeable;
the second and third stages of the hierarchy thus provides a prior of the form

p(θ1, . . . ,θm) =

∫
Φ

m∏
i=1

p(θi |φ)p(φ) dφ,

where the hyperparameter φ has typically an interpretation in terms of the characteristics —
for example mean and variance— of the population (for example trial centers) from which
the m data sequences are drawn. Very often, no reliable prior information is available on the
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hypermarameter φ, in which case, a reference prior π(φ) may be used; for details, see Bernardo
(1979), Berger and Bernardo (1992a) or Bernardo and Smith (1994, Sec. 5.4).

The information about both the unit characteristics, θi and the population characteristics φ
after the data x1, . . . ,xm have been collected is described by their corresponding posterior den-
sities, which may be obtained, from standard probability arguments involving Bayes’ theorem,
as

p(θi |x1, . . . ,xm) =

∫
Φ
p(θi |φ,x1, . . . ,xm)p(φ |x1, . . . ,xm) dφ,

p(φ |x1, . . . ,xm) ∝ p(x1, . . . ,xm |φ)p(φ),

where
p(θi |φ,x1, . . . ,xm) ∝ p(x1, . . . ,xm |θi)p(θi |φ),

p(x1, . . . ,xm |φ) =

∫
Θ
p(x1, . . . ,xm |θ1, . . . ,θm)p(θ1, . . . ,θm |φ) dθ1, . . . , dθm.

Naturally, actual implementation requires the evaluation of the appropriate integrals, and this is
not necessarily trivial.

Some key references on hierarchical models are Good (1965, 1980), Lindley (1971), Lindley
and Smith (1972), Smith (1973), Mouchart and Simar (1980), Goel and DeGroot (1981), Berger
and Bernardo (1992), George et al. (1994) and Morris and Christiansen (1996).

The term ‘meta-analysis’ is often used in the education, medicine and psychology literature
to describe the practice of combining results from similar independent experiments. Hierarchical
models provide the appropriate tool for understanding and generalizing those analysis. Some key
references within this specialized topic are Cochran (1954), Edwards et al. (1963), Hodges and
Olkin (1985), DerSimonian and Laird (1986), Berlin et al. (1989), Goodman (1989), DuMouchel
(1990), Wachter and Straf (1990), Cook et al. (1992), Morris and Normand (1992), Wolpert and
Warren-Hicks (1992), Cooper and Hedges (1994) and Petitti (1994).
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