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Summary

For any probability model M = {p(x|0,w),0 € O,w € Q} assumed to describe the proba-
bilistic behaviour of data = € X, it is argued that testing whether or not the available data are
compatible with the hypothesis H, = {6 = 6,} is best considered as a formal decision prob-
lem on whether to use (ag), or not to use (a;), the simpler probability model (or null model)
My = {p(x| 0y, w),w € Q}, where the loss difference L(ag,0,w) — L(a1,0,w) is proportional to the
amount of information §(8,, 6, w) which would be lost if the simplified model M, were used as
a proxy for the assumed model M. For any prior distribution 7(0,w), the appropriate norma-
tive solution is obtained by rejecting the null model M, whenever the corresponding posterior
expectation [ [6(6y,0,w) (0, w | xz)dO dw is sufficiently large.

Specification of a subjective prior is always difficult, and often polemical, in scientific com-
munication. Information theory may be used to specify a prior, the reference prior, which only
depends on the assumed model M, and mathematically describes a situation where no prior
information is available about the quantity of interest. The reference posterior expectation,
d(@y,z) = [dn(d|x)ds, of the amount of information §(6, 8, w) which could be lost if the null
model were used, provides an attractive non-negative test function, the intrinsic statistic, which is
invariant under reparametrization.

The intrinsic statistic d(6, ) is measured in units of information, and it is easily calibrated
(for any sample size and any dimensionality) in terms of some average log-likelihood ratios. The
corresponding Bayes decision rule, the Bayesian reference criterion (BRC), indicates that the null
model M, should only be rejected if the posterior expected loss of information from using the
simplified model M, is too large or, equivalently, if the associated expected average log-likelihood
ratio is large enough.

The BRC criterion provides a general reference Bayesian solution to hypothesis testing
which does not assume a probability mass concentrated on M, and, hence, it is immune to
Lindley’s paradox. The theory is illustrated within the context of multivariate normal data, where
it is shown to avoid Rao’s paradox on the inconsistency between univariate and multivariate
frequentist hypothesis testing.

Keywords. Amount of Information; Decision Theory; Lindley’s Paradox; L ossfunction; Model
Criticism; Model Choice; Precise Hypothesis Testing; Rao’s Paradox; Reference Analysis,
Reference Prior.
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1. Introduction
1.1. Model Choice and Hypothesis Testing

Hypothesi stesting has been subject to polemic sinceits early formulation by Neyman and Pear-
son in the 1930s. Thisis mainly due to the fact that its standard formulation often constitutes
a serious oversimplification of the problem intended to solve. Indeed, many of the problems
which traditionally have been formulated in terms of hypothesis testing are really complex de-
cision problems on model choice, whose appropriate solution naturally depends on the structure
of the problem. Some of these important structural elements are the motivation to choose a
particular model (e.g., smplification or prediction), the class of models considered (say afinite
set of alternatives or a class of nested models), and the available prior information (say a sharp
prior concentrated on a particular model or arelatively diffuse prior).

In the vast literature of model choice, reference is often made to the “true” probability
model. Assuming the existence of a“true” model would be appropriate whenever one knew for
surethat the real world mechanism which has generated the avail abl e datawas one of a specified
class. This would indeed be the case if data had been generated by computer simulation, but
beyond such controlled situations it is difficult to accept the existence of a “true” model in a
literal sense. There are many situations however where oneis prepared to proceed “asif” such a
true model existed, and furthermore bel onged to some specified class of models. Naturally, any
further conclusions will then be conditional on this (often strong) assumption being reasonable
in the situation considered.

The natural mathematical framework for a systematic treatment of model choiceisdecision
theory. One has to specify the range of models which one is willing to consider, to decide
whether or not it may be assumed that this range includes the true model, to specify probability
distributionsdescribing prior information on all unknown elementsin the problem, and to specify
aloss function measuring the eventual consequences of each model choice. The best aternative
within the range of models considered is then that model which minimizes the corresponding
expected posterior loss. Bernardo and Smith (1994, Ch. 6) provide a detailed description of
many of these options. In this paper attention focuses on one of the simplest problems of model
choice, namely hypothesistesting, wherea(typically large) model M istentatively accepted, and
itisdesired to test whether or not available data are compatible with a particular submodel M.
Note that this formulation includes most of the problems traditionally considered under the
heading of hypothesistesting in the frequentist statistical literature.

1.2. Notation

It is assumed that probability distributions may be described through their probability mass or
probability density functions, and no distinction is generally made between a random quantity
andtheparticular valuesthat it may take. Roman fontsare used for observablerandom quantities
(typically data) and for known constants, while Greek fonts are used for unobservable random
quantities (typically parameters). Bold faceis used to denote row vectors, and =’ to denote the
transpose of thevector x. Lower caseisused for variablesand upper casefor their domains. The
standard mathematical convention of referring to functions, say f and g of & € X, respectively,
by f(x) and g(x), will often be used. In particular, p(x | C) and p(y | C) will respectively
represent general probability densities of the observable random vectorsx € X andy € Y
under conditions C, without any suggestion that the random vectors = and y have the same
distribution. Similarly, 7(6|C) and w(w | C) will respectively represent general probability
densities of the unobservable parameter vectors @ € © and w € Q2 under conditions C'. Thus,
p(z]|C) >0, [yp(x|C)dx =1, and 7(0|C) > 0, [,7(0|C)de = 1. If the random
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vectors are discrete, these functions are probability mass functions, and integrals over their
values become sums. E[z | C] and E[@ | C] are respectively used to denote the expected values
of  and € under conditions C. Finaly, Pr(@ € A|x,C) = [, p(0]|x,C)dé denotes the
probability that the parameter 8 belongsto A, given data x and conditions C'.

Specific density functions are denoted by appropriate names. Thus, if = is a univariate
random quantity having a Normal distribution with mean . and variance o2, its probability
density function will be denoted N(z | i1, o%); if § has a Beta distribution with parameters a
and b, its density function will be denoted Be(@ | a, b).

A probability model for somedatax € X isdefined asafamily of probability distributions
for « indexed by some parameter. Whenever a model has to be fully specified, the notation
{p(x| @), p € &, x € X} isused, and it is assumed that p(x | ¢) is a probability density
function (or a probability mass function) so that p(x |¢) > 0, and [, p(z|¢)dx = 1 for
al ¢ € . The parameter ¢ will generaly be assumed to be a vector ¢ = (¢1,...,¢) Of
finite dimension k& > 1, so that ® C R*. Often, the parameter vector ¢ will be written in
the form ¢ = {6,w}, where 6 is considered to be the vector of interest and w a vector of
nuisance parameters. The sets X and ® will be referred to, respectively, as the sample space
and the parameter space. Occasionally, if there is no danger of confusion, reference is made
to ‘model’ {p(x|¢®), ¢ € P}, or even to ‘model’ p(x | ¢), without recalling the sample and
the parameter spaces. In non-regular problems the sample space X depends on the parameter
value ¢; this will explicitly be indicated by writing X = X (¢). Considered as a function of
the parameter ¢, the probability density (or probability mass) p(x | ¢) will bereferred to asthe
likelihood function of ¢ given x. Whenever this exists, a maximum of the likelihood function
(maximum likelihood estimate or mie) will be denoted by ¢ = &)(:p).

The complete set of available data is represented by x. In many examples this will be a
random sample x = {x, ..., x,} fromamode of theform {p(x| @),z € R, p € ¢} sothat
thelikelihood function will be of theformp(z | ¢) = [[;_; p(z; | ¢) and the sample space will
be X C R", but it will not be assumed that this has to be the case. The notation t = t(x),
t € T, isused to refer to ageneral function of the data; often, but not necessarily, thiswill be a
sufficient statistic.

1.3. Smple Model Choice

The simplest example of a model choice problem (and one which centers most discussions on
model choice and model comparison) isone where (i) the range of models considered isafinite
class M = {Mjy, ..., M,,}, of m fully specified models

Mi={p(x|¢;), xc X}, i=1,....m (1)

(i) it is assumed that that the ‘true’ model is a member M; = {p(x | ¢p;),x € X} from that
class, and (iii) the loss function is the simple step function

lay, =0,
{gZ’;,é’Zﬁ:wo, i £t (2)

where a; denotes the decision to act asif the true model was M;. In this simplistic situation,
it isimmediate to verify that the optimal model choice is that which maximizes the posterior
probability, 7(¢; | ) x p(x | ¢;)w(¢;). Moreover, an intuitive measure of paired comparison
of plausibility between any two of the models M; and M is provided by theratio of the posterior
probabilities (¢, | x)/m(¢p; | x). If, in particular, all m models are judged to be equally likely
apriori, so that m(¢;) = 1/m, for al ¢, then the optimal model is that which maximizes the
likelihood, p(x | ¢,), and theratio of posterior probabilities reducesto the corresponding Bayes
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factor B;; = p(x | ¢;)/p(x | ¢;) which, in this simple case (with no nuisance parameters), it is
also the corresponding likelihood ratio.

The natural extension of this scenario to a continuous setting considers a non-countable
class of models M = {M,, ¢ € ® C R*},

My =pla|o) with p|d)>0. [ pal@)de=1 3)

an absolutely continuous and strictly positive prior, represented by its density p(¢) > 0, and a
simple step loss function £(a, ¢) such that

{g(agba ¢t> = 07 ¢ € BE(¢1€) (4)
g(aqﬁu ¢t) =c >0, ¢ ¢ BE(¢L‘)’

where a,, denotes the decision to act as if the true model was My, and B.(¢,) is aradius ¢
neighbourhood of ¢,. In this case, it is easily shown that, as ¢ decreases, the optimal model
choice converges to the model labelled by the mode of the corresponding posterior distribu-
tion 7(¢ | x) x p(x|@)n(¢). Note that with this formulation, which strictly parallels the
conventional formulation for model choice in the finite case, the problem of model choice is
mathematically equivalent to the problem of point estimation with a zero-one loss function.

1.4. Hypothesis Testing

Within the context of an accepted, possibly very wide class of models, M = {My, ¢ € ¢}, a
subset My = {My, ¢ € &9 C @} of the class M, where ®, may possibly consist of asingle
value ¢, issometimes suggested inthe course of theinvestigation asdeserving special attention.
This may either be because restricting ¢ to @, would greatly simplify the model, or because
there are additional (context specific) arguments suggesting that ¢ € ®,. The conventional
formulation of a hypothesis testing problem is stated within this framework. Thus, given data
x € X which are assumed to have been generated by p(x | ¢), for some ¢ € @, a procedure
isrequired to advise on whether or not if may safely be assumed that ¢ € ®,. In conventional
language, a procedure is desired to test the null hypothesis Hy = {¢ € ®y}. The particular
case where & containsasinglevaue ¢, sothat &, = {¢,}, isfurther referred to asaproblem
of precise hypothesis testing.

The standard frequentist approach to precise hypothesis testing requires to propose some
one-dimensional test statistict = ¢(x) € T' C R, wherelarge values of ¢ cast doubt on H. The
p-value (or observed significance level) associated to some observed data xy € X isthen the
probability, conditional on the null hypothesis being true, of observing data as or more extreme
than the data actually observed, that is,

p=Prit = t(a) | = 6] = | p(| o) de (5)
{x; t(T)>t(T))}
Small values of the p-value are considered to be evidence against Hy, with the values 0.05
and 0.01 typically used as conventional cut-off points.

There are many well-known criticismsto thiscommon procedure, some of which are briefly
reviewed below. For further discussion see Jeffreys (1961), Edwards, Lindman and Savage
(1963), Rao (1966), Lindley (1972), Good (1983), Berger and Delampady (1987), Berger and
Sellke (1987), Matthews (2001), and references therein.

e Arbitrary choice of thetest statistic. Thereisno generally accepted theory on the selection
of the appropriate test statistic, and different choices may well lead to incompatible results.
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¢ Not ameasure of evidence. Observed significancelevelsare not direct measures of evidence.
Although most users would like it to be true, in precise hypothesis testing there is no
mathematical relation between the p-value and Pr[H | ], the probability that the null is
true given the evidence.

e Arbitrary cut-off points. Conventional cut-off points for p-values (as the ubiquitous 0.05)
are arbitrary, and ignore power. Moreover, despite frequent warnings in the literature, they
are typically chosen with no regard for either the dimensionality of the problem or the
sample size (possibly due to the fact that there is no accepted methodology to perform that
adjustment).

e Exaggerate significance. Different arguments have been used to suggest that the conven-
tional use of p-values exaggerate significance. Indeed, with common sample sizes, a 0.05
p-value is typically better seen as an indication that more data are needed than as firm
evidence against the null.

e Improper conditioning. Observed significancelevelsarenot based onthe observed evidence,
namely ¢(x) = t(xg), but on the (less than obviously relevant) event {¢(x) > t(xo)} SO
that, to quote Jeffreys (1980, p. 453), the null hypothesis may be rejected by not predicting
something that has not happened.

e Contradictions. Using fixed cut-off points for p-values easily leads to contradiction. For
instance, in a multivariate setting, one may simultaneously reject all components ¢; = ¢;o
and yet accept ¢ = ¢ (Rao’s paradox).

e No general procedure. The procedure is not directly applicable to general hypothesis
testing problems. Indeed, the p-value is a function of the sampling distribution of the test
statistic under the null, and thisisonly well defined in the case of precise hypothesistesting.
Extensions to the general case, My = {My, ¢ € O}, where & contains more than one
point, are less than obvious.

Hypothesis testing has been formulated as a decision problem. No wonder therefore that
Bayesian approaches to hypothesis testing are best described within the unifying framework of
decision theory. Those are reviewed below.

2. Hypothesis Testing as a Decision Problem
2.1. General Structure

Consider the probability model M = {p(x|0,w),0 € O,w € Q} which is currently
assumed to provide an appropriate description of the probabilistic behaviour of observable data
x € X interms of some vector of interest 8 € © and some nuisance parameter vector w € (2.
From a Bayesian viewpoint, the complete final outcome of a problem of inference about any
unknown quantity isthe appropriate posterior distribution. Thus, given datax and a (joint) prior
distribution 7(6, w), all that can be said about 0 is encapsulated in the corresponding posterior
distribution

(0| x) = /Q’]T(O, wl|x)dw, T(O,w|x) x p(x|0,w)r(0,w). (6)

In particular, the (marginal) posterior distribution of & immediately conveys information on
those values of the vector of interest which (given the assumed model) may be taken to be
compatible with the observed data x, namely, those with arelatively high probability density.
In some occasions, a particular value 8 = 6, € © of the quantity of interest is suggested in the
course of the investigation as deserving special consideration, either because assuming 6 = 6,
would greatly simplify the model, or because there are additional (context specific) arguments
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suggesting that 8 = 6. Intuitively, the (null) hypothesis Hy = {6 = 6} should be judged to
be compatible with the observed data x if 6y has arelatively high posterior density; however,
amore precise conclusion is often required, and this may be derived from a decision-oriented
approach.

Formally, testing the hypothesis Hy = {8 = 6y} is defined as a decision problem where
the action space has only two elements, namely to accept (ag) or to reject (a;) the use of the
restricted model My = {p(x |6y, w), w € 2} asaconvenient proxy for the assumed model
M= {p(x|0,w), 6 € ©, w € Q}. Tosolvethisdecision problem, itisnecessary to specify an
appropriate loss function, {¢[a;, (0,w)], i = 0,1}, measuring the consequences of accepting
or rejecting Hy as a function of the actual values (8, w) of the parameters. Notice that this
requires the statement of an alternative action a; to accepting Hy; thisis only to be expected,
for an action is taken not because it is good, but because it is better than anything else that has
been imagined.

Given data x, the optimal action will beto rgect H if (and only if) the expected posterior
lossof accepting, [ [, £lao, (0, w)] 7(0,w | x) dBdw, islarger than the expected posterior loss
of rgecting, [ [ a1, (0,w)] 7(8,w | x) dOdw, i.e., iff

/ /{e[ao, (0, w)] — Clar, (6, w)]} (6, w | ) dBdw > 0. (1)
eJo
Therefore, only the loss difference

Al(Ho,0,w) = tlag, (0,w)] — a1, (6, w)], (8)

which measures the advantage of rejecting Hy as a function of {6, w}, has to be specified.
Notice that no constraint has been imposed in the preceding formulation. It follows that any
(generalized) Bayes solution to the decision problem posed (and hence any admissible solution,
see e.g., Berger, 1985, Ch. 8) must be of the form

Reject Hy  iff / / AU(Hy, 0,w) 7(0,w | @) dBdw > 0, ()
0 JQ

for some loss difference function A¢(Hy, 6, w), and some (possibly improper) prior 7(6, w).
Thus, as common sense dictates, the hypothesis H, should be rejected whenever the expected
advantage of rejecting H is positive. In some examples, the loss difference function does not
depend on the nuisance parameter vector w; if thisisthe case, the decision criterion obviously
simplifiesto rejecting Hy iff [ Al(Hy,8) (0 |x)d6 > 0.

A crucial element in the specification of thelossfunctionisadescription of what isprecisely
meant by rejecting Hy. By assumption, ap means to act as if model M, were true, i.e, as if
6 = 0, but there are at least two options for the alternative action a;. This might mean the
negation of Hy, that isto act asif @ # 6, or it might rather mean to reject the simplification
to My implied by 8 = 6, and to keep the unrestricted model M (with 8 € ©), which is
acceptable by assumption. Both of these options have been analyzed in the literature, athough
it may be argued that the problems of scientific data analysis where precise hypothesis testing
procedures are typically used are better described by the second alternative. Indeed, thisisthe
situation in two frequent scenarios. (i) an established model, identified by M, is embedded
into a more general model M (so that My C M), constructed to include possibly promising
departuresfrom M, and it isrequired to verify whether or not the extended model M provides
a significant improvement in the description of the behaviour of the available data; or, (ii) a
large model M is accepted, and it is required to verify whether or not the smpler model M|
may be used as a sufficiently accurate approximation.
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2.2. Bayes Factors

The Bayes factor approach to hypothesis testing is a particular case of the decision structure
outlined above; it is obtained when the alternative action a; is taken to be to act asif 8 # 6,
and the difference loss function is taken to be a ssimplistic zero-one function. Indeed, if the
advantage A¢(Hy, 8, w) of rejecting Hy is of the form

AU(Ho,0,w) = A(Hy, 0) = { 1 110 28
then the corresponding decision criterion is

Reject Hy iff Pr(@ =60¢|x) < Pr(6 # 0y | x). (11)
If the prior distributionissuchthat Pr(@ = 6y) = Pr(6 # 6y) = 1/2,and {7(w | Oy), m(w | )}

respectively denote the conditional prior distributions of w, when 8 = 6, and when 8 # 6,
then the criterion becomes

(10)

. . Jop(@ |00, w) 7(w|6) dw
Reject Hy iff Bm{w, 7T(w ’ 00),7r(w | 0)} f@ pr(:l: | 07‘0) 7T(w ’ 0) d0dw <1 (12)
where By {x, m(w | 0), 7(w | 8)} isthe Bayes factor (or integrated likelihood ratio) in favour
of Hy. Notice that the Bayes factor By; crucialy depends on the conditional priors 7(w | 6y)
and w(w | @), which must typically be proper for the Bayes factor to be well-defined.

It is important to realize that this formulation requires that Pr(6 = 6y) > 0, so that the
hypothesis Hy must have astrictly positive prior probability. If 8 isacontinuous parameter, this
forcesthe use of anon-regular (not absolutely continuous) ‘ sharp’ prior concentrating apositive
probability masson 6. One unappealing consequence of this non-regular prior structure, noted
by Lindley (1957) and generally known as Lindley’s paradox, is that for any fixed value of the
pertinent test statistic, the Bayes factor typically increases as /n with the sample size; hence,
with large samples, “evidence’ in favor of Hy, may be overwhelming with data sets which are
both extremely implausible under H, and quite likely under alternative 8 values, such as (say)
the mle 6. For further discussion of this polemical issue see Bernardo (1980), Shafer (1982),
Berger and Delampady (1987), Casella and Berger (1987), Robert (1993), Bernardo (1999),
and discussions therein.

The Bayes factor approach to hypothesis testing in a continuous parameter setting deals
with situations of concentrated prior probability; it assumes important prior knowledge about
the value of the vector of interest @ (described by aprior sharply spiked on 8,) and analyzes how
such very strong prior beliefs about the value of 6 should be modified by the data. Hence, Bayes
factors should not be used unless this strong prior formulation is an appropriate assumption. In
particular, Bayes factors should not be used to test the compatibility of the data with Hy, for
they inextricably combine what data have to say with (typically subjective) strong beliefs about
the value of 6.

2.3. Continuous Loss Functions

It is often natural to assume that the loss difference A¢(H, 8, w), aconditional measure of the
loss suffered if p(x | By, w) were used as a proxy for p(x | 8, w), has to be some continuous
function of the*discrepancy’ between 6 and 6. Moreover, one would expect A¢(Hy, 8y, w) to
be negative, for there must be some positive advantage, say ¢* > 0, in accepting the null when
itistrue. A ssmple exampleisthe quadratic loss

Al(Hy,0,w) = AL(By,0) = (6 — 0p)> — 1, * >0, (13)
Noticethat continuous difference loss functions do not require the use of non-regular priors. As
aconsequence, their use does not force the assumption of strong prior beliefs and, in particular,
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they may be used with improper priors. However, (i) there are many possible choices for
continuous difference loss functions; (ii) the resulting criteria are typically not invariant under
one-to-one reparametrization of the quantity of interest; and (iii) their use requires some form
of calibration, that is, an appropriate choice of the utility constant ¢*, which is often context
dependent.

In the next section we justify the choice of a particular continuous invariant difference loss
function, the intrinsic discrepancy. This is combined with reference analysis to propose an
attractive Bayesian solution to the problem of hypothesis testing, defined as the problem of
deciding whether or not available data are statistically compatible with the hypothesis that the
parameters of the model belong to some subset of the parameter space. The proposed solution
sharpensaprocedure suggested by Bernardo (1999) to makeit applicableto non-regular models,
and extends previous results to multivariate probability models. For earlier, related references,
see Bernardo (1982, 1985), Bernardo and Bayarri (1985), Ferrandiz (1985), Gutiérrez-Pefia
(1992), and Rueda (1992). The argument lies entirely within a Bayesian decision-theoretical
framework (in that the proposed solution is obtained by minimizing a posterior expected 0ss),
and it is objective (in the precise sense that it only uses an “objective” prior, a prior uniquely
defined in terms of the assumed model and the quantity of interest).

3. The Bayesian Reference Criterion

Let model M = {p(x|0,w), 0 € O, w € Q} be a currently accepted description of the
probabilistic behaviour of data x € X, let ay be the decision to work under the restricted
model My = {p(x |0y, w),w € N}, andlet a; be the decision to keep the general, unrestricted
model M. In this situation, the loss advantage A¢(Hy, 8, w) of rejecting Hy as a function
of (8, w) may safely be assumed to have the form

ALl(Hy, 0,w) =6(0p,0,w) — d*, d* >0, (14)
where

(i) the function (8, 0, w) is some non-negative measure of the discrepancy between the
assumed model p(x |0, w) and its closest approximation within {p(x | 6y, w),w € Q},
such that (8o, 8y, w) = 0, and

(ii) the constant d* > 0 is a context dependent utility value which measures the (necessarily
positive) advantage of being able to work with the simpler model when it istrue.

Choices of both §(8y, 6, w) and d* which might be appropriate for general use will now be
discussed.

3.1. Thelntrinsic Discrepancy

Conventional loss functions typically focus on the “distance” between the true and the null
values of the quantity of interest, rather than on the “distance” between the models they label
and, typically, they are not invariant under reparametrization. Intrinsic losses however (seeeg.,
Robert, 1996) directly focus on how different the true model is from the null model, and they
typically produce invariant solutions. We now introduce a new, particularly attractive, intrinsic
loss function, the intrinsic discrepancy loss.

The basic idea is to define the discrepancy between two probability densities p; () and
p2(x) asmin{k(p1 [ p2), k(p2 | p1)}, where

o) = [ pa(e)10s 245 o (15)
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is the directed logarithmic divergence (Kullback and Leibler, 1951; Kullback, 1959) of py(x)
from p;(x). The discrepancy from a point to a set is further defined as the discrepancy from
the point to its closest element in the set. The introduction of the minimum makesit possible to
define asymmetric discrepancy between probability densitieswhichisfinite with strictly nested
supports, a crucial property if ageneral theory (applicable to non-regular models) is required.

Definition 1. Intrinsic Discrepancies. Theintrinsic discrepancy 6(p1, p2) between two prob-
ability densities p; (x) and p2(x) for the random quantity « € X is

5{p1 (), pa()} = min { /X (@) bgydw, /X () log 22(%) =)

2() pi(x)

The intrinsic discrepancy between two families of probability densities for the random quan-
tityx € X, My = {pi(z|d), ¢ € P} and My = {pa2(x | ),y € ¥}, isgiven by

6(My, Mz) = ¢E£1711rpleql o{p1(x| @), p2(x | )}

It immediately follows for Definition 1 that 6{p; (), p2(x)} provides the minimum ex-
pected log-density ratio log[p;(x)/p;(x)] in favour of the true density that one would obtain if
data x € X were sampled from either p;(x) or pa(x). In particular, if p;(x) and pa(x) are
fully specified alternative probability modelsfor datax € X, and it isassumed that one of them
istrue, then §{p;(x), p2(x)} isthe minimum expected log-likelihood ratio for the true model.

<

Intrinsic discrepancies have a number of attractive properties. Some are directly inherited

from the directed logarithmic divergence. Indeed,

(i) Theintrinsic discrepancy d{pi(x),p2(x)} between p;(x) and p2(x) is non-negative and
vanishes iff p; () = pa(x) amost everywhere.

(i) The intrinsic discrepancy 6{pi(x), p2(x)} isinvariant under one-to-one transformations
y = y(x) of the random quantity .

(iti) The intrinsic discrepancy is additive in the sense that if the available data « consist of a
random sample x = {z1,...,z,} from ether p;(x) or pa(x), then 6{pi(x), p2(x)} =
né{pi(z),p2(z)}.

(iv) If thedensitiesp;(x) = p(x| ¢;) and p2(x) = p(x | ¢,) are two members of aparametric
family p(x | @), then 5{p(x | ¢;),p(x | Ps)} = d{py, @y} isinvariant under one-to-one
transformations for the parameter, so that for any such transformation v, = ¥ (¢;), one

has é{p(x 1), p(x | ¥2)} = {1p(d1), Y (d2)} = {1, P2}

(v) The intrinsic discrepancy between p;(x) and p2(x) measures the minimum amount of
information (in natural information units, nits) that oneobservation z € X may be expected
to provide in order to discriminate between p; (x) and pa(x) (Kullback, 1959).

Moreover, theintrinsic discrepancy hastwo further important properties which the directed
logarithmic divergence does not have:

(vi) Theintrinsic discrepancy is symmetric so that §{pi(x), p2(x)} = §{p2(x),p1(x)}.

(vii) If the two densities have strictly nested supports, so that p; () > 0iff x € X1, p2(x) > 0
iff £ € Xy, and either X; C X, or Xy C Xy, then the intrinsic discrepancy is still
typically finite. More specificaly, the intrinsic discrepancy then reduces to one of the
directed logarithmic divergences while the other diverges, so that 6{p1, p2} = k(p1|p2)
when X, C X4, and (5{p1,p2} = k(pz |p1) when X; C Xo.
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Example 1. Discrepancy between a Binomial distribution and its Poisson approximation.
Let pi(«) be abinomia distribution Bi(x | n, ), and let po(x) be its Poisson approximation
Pn(x | nd). Since X1 C Xa, d(p1,p2) = k(p2 | p1); thus,

Bl(x|n 9)

d(n,0) = 6{Bi(z|n,0),Pn(xz|nb)} n=1

0.015 | n=2
n=>5
n = 1000

0.01

0.005 |

0
0.05 0.1 0.15 0.2

Figurel. Intrinsicdiscrepancy betweenaBinomial distribution Bi(x | , ) and a Poisson distribution
Pn(z | n@) asafunction of ¢, for n = 1, 2,5 and 1000.

The resulting discrepancy, d(n, 6) is plotted in Figure 1 as a function of 6 for several values
of n. Asone might expect, the discrepancy convergesto zero as f decreases and asn increases,
but it is apparent from the graph that the important condition for the approximation to work is

that 8 has to be small. 4

The definition of the intrinsic divergence suggests an interesting new form of convergence
for probability distributions:

Definition 2. Intrinsic Convergence. A sequence of probability distributions represented by
their density functions {p;(x)}5°, is said to converge intrinsically to a probability distribution
with density p(x) whenever lim;_,, 6(p;, p) = 0, that is, whenever the intrinsic discrepancy
between p; (=) and p(z) converges to zero. 4
Example 2. Intrinsic convergence of Sudent densities to a Normal density. The intrinsic
discrepancy between a standard Normal and a standard Student with o degrees of freedom is
d(a) = 6{St(x]0,1,),N(z]0,1)},i.e

St(z 0,1, ) /°° N(z|0,1)
St 1,a)log 2212 Y g N 1)log —————=dx;
min / (x]0,1, @) log N(z[0.1) x, . (x]0, )OgSt(x|0,1,a) x},

The second integral may be shown to be always smaller than thefirst, and to yield an analytical
result (in terms of the Hypergeometric and Beta functions) which, for large o values, may be
approximated by Stirling to obtain

5(a) :/_ZN(x|o,1)1og%dx: (1ja)2 +o(a™?)
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afunction which rapidly convergesto zero. Thus, asequence of standard Student densitieswith

increasing degrees of freedom intrinsically converges to a standard normal density. 4

In this paper, intrinsic discrepancies are basically used to measure the “ distance” between
aternative model assumptionsabout datax € X. Thus, 6{p1(x | @), p2(x | 1)} isasymmetric
measure (in natural information units, nits) of how different the probability densities p; (x| ¢)
and po(x | ) are from each other as afunction of ¢ and . Since, for any givendatax € X,
p1(x| @) and pa(x | 1) arethe respective likelihood functions, it follows from Definition 1 that
MHpi(x| @), p2(x| )} = d(p,v) may immediately be interpreted as the minimum expected
log-likelihood ratio in favour of the true model, assuming that one of the two modelsis true.
Indeed, if pi(x|¢py) = p2(x|1py) dmost everywhere (and hence the models p; (x| ¢,) and
p2(x | 1) are indistinguishable), then é{¢q,v¥y)} = 0. In generd, if either p;(x | ¢,) or
pa(x | 1) is correct, then an intrinsic discrepancy 6(¢g,v,) = d implies an average log-
likelihood ratio for the true model of at least d, i.e.,, minimum likelihood ratios for the true
model of about e?. If §{¢py,1P,)} = 5, > ~ 150, so that datax € X should then be expected
to provide strong evidence to discriminate between p; (x| ¢y) and pa(x | o). Similarly, if
§{ g, o)} = 2.5, 2® ~ 12, sothat datax € X should then only be expected to provide mild
evidence to discriminate between p; (x | ¢g) and p2(x | ).

Definition 3. Intrinsic Discrepancy Loss. The intrinsic discrepancy loss 6(6y, 6, w) from
replacing the probability model M = {p(x|0,w), 6 € O, w € Q, x € X} by itsrestriction
with @ = 0y, My = {p(x|0y,w), w € Q, x € X} istheintrinsic discrepancy between the
probability density p(x | 8, w) and the family of probability densities {p(x | 6y, w), w € Q},
that is
6(60,0,w) = min {p(x|6,w), p(x|0y,wo)}
(.UOEQ 4
The intrinsic discrepancy 6(6y, 8, w) between p(x | 8, w) and M, is theintrinsic discrep-
ancy between the assumed probability density p(x | 8, w) and its closest approximation with
6 = 0. Noticethat (0, 0, w) isinvariant under reparametrization of either 8 or w. Moreover,
if t = t(x) isasufficient statistic for model M, then
p(x|6i,w) p(t|0;i,w)

p(x|0;,w)log dm:/pt 0;,w)log
/X (]85,) p(z|0;,w;) 2186 ) p(t]6;,w;)

thus, if convenient, §(6, 8, w) may be computed in terms of the sampling distribution of the
sufficient statistic p(¢ | 0, w), rather than in terms of the compl ete probability model p(x | 0, w).
Moreover, although not explicitly shown in the notation, the intrinsic discrepancy function
typically depends on the sample size. Indeed, if datax € X C R", consist of arandom sample

x = {x1,...,2,} of sizen from p(z | 0;,w), then
p(x|0;,w) p(z|6;,w)

p(x|0;,w)log d:c:n/p.r 0;,w)log
/X (@]8:) p(x |0, w;) R (@18:) p(z |05, wj)

so that the intrinsic discrepancy associated with the full model p(x | 8, w) is sSimply n times
the intrinsic discrepancy associated to the model p(z |0, w) which corresponds to a single
observation. Definition 3 may be used however in problems (say time series) where  does not
consist of arandom sample.

Itimmediately followsfrom (9) and (14) that, with anintrinsic discrepancy lossfunction, the
hypothesis H should berejectedif (and only if) the posterior expected advantage of rejecting 6,
given model M and data x, is sufficiently large, so that the decision criterion becomes

Reject Hy  iff d(eo,az)://5(00,0,w)7r(0,w]w)d9dw>d*7 (18)
e JO

dt; (16)

dx, (17)
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for some d* > 0. Since 6(6y, 8, w) is non-negative, d(6y,x) is nonnegative. Moreover, if
¢ = ¢(0) is a one-to-one transformation of 8, then d(¢(6y),x) = d(6y,x), so that the
expected intrinsic loss of rejecting Hy isinvariant under reparametrization.

The function d(6y, «) is acontinuous, non-negative measure of how inappropriate (in loss
of information units) may be expected to be to simplify the model by accepting Hy. Indeed,
d(6y, x) is a precise measure of the (posterior) expected amount information (in nits) which
would be necessary to recover the assumed probability density p(x |6, w) from its closest
approximationwithin My = {p(x | 6y, w), w € Q}; itisameasureof the " strength of evidence’
against My given M = {p(x | 0,w), 6 € ©, w € Q} (cf. Good, 1950). Intraditional language,
d(6y, x) is a(monotone) test statistic for Hy, and the null hypothesis should be rejected if the
value of d(6, x) exceeds some critical value d*. Notice however that, in sharp contrast to
conventiona hypothesis testing, the critical value d* is found to be a positive utility constant,
which may precisely be described as the number of information units which the decision maker
is prepared to lose in order to be able to work with the ssmpler model Hy, and which does
not depend on the sampling properties of the test statistic. The procedure may be used with
standard, continuous (possibly improper) regular priors when @ is a continuous parameter (and
hence My = {6 = 6} is azero measure set).

Naturally, to implement the decision criterion, both the prior 7(8,w) and the utility con-
stant d* must be chosen. These two important issues are now successively addressed, leading
to ageneral decision criterion for hypothesis testing, the Bayesian reference criterion.

3.2. The Bayesian Reference Criterion (BRC)

Prior specification. An objective Bayesian procedure (objective in the sense that it depends
exclusively on the the assumed model and the observed data), requires an objective “non-
informative” prior which mathematically describeslack on relevant information about the quan-
tity of interest, and which only depends on the assumed statistical model and on the quantity of
interest. Recent literature contains a number of requirements which may be regarded as neces-
sary properties of any algorithm proposed to derive these ‘ baseline’ priors; those requirements
include general applicability, invariance under reparametrization, consistent marginalization,
and appropriate coverage properties. Thereference analysisa gorithm, introduced by Bernardo
(1979) and further developed by Berger and Bernardo (1989, 1992) is, to the best of our knowl-
edge, the only available method to derive objective priors which satisfy all these desiderata.
For an introduction to reference analysis, see Bernardo and Ramoén (1998); for atextbook level
description see Bernardo and Smith (1994, Ch. 5); for a critical overview of the topic, see
Bernardo (1997), references therein and ensuing discussion.

Within a given probability model p(x |6, w), the joint prior (6, w) required to obtain
the (marginal) reference posterior 7(¢ | «) of some function of interest ¢ = ¢(6,w) generally
depends on the function of interest, and its derivation is not necessarily trivial. However,
under regularity conditions (often met in practice) the required reference prior may easily be
found. For instance, if the marginal posterior distribution of the function of interest = (¢ | x)
has an asymptotic approximation 7 (¢ | ) = # (¢ | ¢) which only depends on the data through
aconsistent estimator ¢ = {b(m) of ¢, then the ¢-reference prior is simply obtained as

w(9) x (0]9)],_. (19)

In particular, if the posterior distribution of ¢ is asymptotically normal N(¢ | ¢, s(¢)/v/7n),
then 7(¢) o s(¢) 1, so that the reference prior reduces to Jeffreys’ prior in one-dimensional,
asymptotically normal conditions. If, moreover, the sampling distribution of ¢ only depends
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on ¢, so that p(¢ |0, w) = p(¢| ), then, by Bayes theorem, the corresponding reference
posterior is

m(p|z) = 7(d| ) x p(¢| @) m(e), (20)

~

and the approximationisexactif, giventhe ¢-referenceprior 7, (0, w), ¢ ismarginally sufficient
for ¢ (rather than just asymptotically marginally sufficient).

In our formulation of hypothesis testing, the function of interest (i.e., the function of the
parameters which drivesthe utility function) istheintrinsic discrepancy § = §(6y, 0, w). Thus,
we propose to use the joint reference prior m5(6,w) which corresponds to the function of
interest § = §(0o, 8, w). Thisimplies rejecting the null if (and only if) the reference posterior
expectation of the intrinsic discrepancy, which will be referred to as the intrinsic statistic
d(0y, x), issufficiently large. The proposed test statistic is thus

d(eo,x):/Am(mm)da:/@/Q(S(eo,e,wm(e,w|x)d9dw, (21)

where 75(0,w | ) x p(x|0,w)m5(0,w) isthe posterior distribution which corresponds to
the ¢-reference prior 75(0, w).

Loss calibration. As described in Section 3.1, the intrinsic discrepancy between two fully
specified probability models is simply the minimum expected log-likelihood ratio for the true
model from datasampled from either of them. It followsthat 6(6, €, w) measures, asafunction
of 8 and w, the minimum expected log-likelihood ratio for p(x | 6, w), against a model of the
form p(x | 6y, wy), for some w, € Q.

Consequently, given some data x, the intrinsic statistic d(60, ), which issimply the refer-
ence posterior expectationof (6, 8, w), isan estimate (given the avail abl e data) of the expected
log-likelihood ratio against the null model. Thisis a continuous measure of the evidence pro-
vided by the data against the (null) hypothesis that a model of the form p(x | 8y, wy), for some
wy € €2, may safely be used as a proxy for the assumed model p(x | 8, w). In particular, values
of d(8y, «) of about about 2.5 or 5.0 should respectively beregarded asmild and strong evidence
against the (null) hypothesis 8 = 6.

Example 3. Testing the value of a Normal mean, o known. Let datax = {z1,...,z,} bea
random sample from anormal distribution N(z | 1, %), where o is assumed to be known, and
consider the canonical problem of testing whether these data are (or are not) compatible with
some precise hypothesis Hy = {1 = o} on the value of the mean. Given o, the logarithmic
divergence of p(x | uo, o) from p(x | 1, o) isthe symmetric function

N(z|p,0?) n(p—po\’
k = N Nlog ———"Lde=— [ —2) . 22
(ILLO|/J/) TL/&% <$|H7J ) OgN(.CC‘,LLO,O'Q) L 92 P ( )
Thus, the intrinsic discrepancy in this problem is simply
2 2
no (= o L [ — o
5 = — = — 2
(kos 10) 2( o ) 2(0/\/5), (23)

half the square of the standardized distance between . and pg. For known o, the intrinsic
discrepancy d(uo, i) is a piecewise invertible transformation of 1 and, hence, the §-reference
prior issimply 75(u) = 7, () = 1. The corresponding reference posterior distribution of 1
is (| ) = N(u|Z,0°/n) and, therefore, the intrinsic statistic (the reference posterior
expectation of the intrinsic discrepancy) is

d(po, @) = E/m (”_“O>2 N(u‘f, UQ)duz L1+ 22), (24)

2 o n
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where z = (T — ug)/(c/+/n). Thus, d(ug, ) isasimple transformation of z, the number of
standard deviations which p lies avay from the data mean . The sampling distribution of
2% isnoncentral Chi squared with one degree of freedom and noncentrality parameter 25, and
its expected value is 1 + 25, where § = §(uo, i) 1S the intrinsic discrepancy given by (23).
It follows that, in this canonical problem, the expected value under repeated sampling of the
reference statistic d( g, ) isequal to oneif u = pg, and increases linearly with n if p # py.

Scientists have often expressed the view (see e.g., Jaynes, 1980, or Jeffreys, 1980) that, in
this canonical situation, |z| ~ 2 should be considered as a mild indication of evidence against
w = po, wWhile |z| > 3 should be regarded as strong evidence against i = pg. Interms of the
intrinsic statistic d(uo, ) = (1 + 2%)/2 this precisely corresponds to issuing warning signals
whenever d(ug, ) is about 2.5 nits, and to reject the null whenever d(uo, ) is larger than 5
nits, in perfect agreement with the log-likelihood ratio calibration mentioned above. 4

Notice, however, that the information scale suggested is an absolute scale which is inde-
pendent of the problem considered, so that rejecting the null whenever its (reference posterior)
expected intrinsic discrepancy from the true model is larger than (say) d* = 5 natural units
of information is a general rule (and one which corresponds to the conventional ‘3¢’ rule in
the canonical normal case). Notice too that the use of the ubiquitous 5% confidence level in
this problem would correspond to z = 1.96, or d* = 2.42 nits, which only indicates mild evi-
dence against the null; thisis consistent with other arguments (see e.g., Berger and Delampady,
1987) suggesting that a p-value of about 0.05 does not generally provide sufficient evidence to
definitely regject the null hypothesis.

The preceding discussion justifiesthefollowing formal definition of an (objective) Bayesian
reference criterion for hypothesis testing:

Definition 3. Bayesian Reference Criterion (BRC). Let {p(x|0,w), 0 € ©, w € Q}, bea
statistical model which is assumed to have been generated some data x € X, and consider a
precise value 8 = 6, among those which remain possible after « has ben observed. To decide
whether or not the precise value 6 may be used as a proxy for the unknown value of 9,

(i) compute the intrinsic discrepancy §(0, 0, w);
(ii) derivethe corresponding reference posterior expectation d(6y, x) = E[6(0y, 0, w) | ], and
state this number as a measure of evidence against the (null) hypothesis Hy = {6 = 0 }.
(iii) If aformal decisionisrequired, rejectthenullif, andonly if, d(6g, x) > d*, for somecontext
dependent d*. Thevaluesd* ~ 1.0 (no evidence against the null), d* ~ 2.5 (mild evidence

against the null) and d* > 5 (significant evidence against the null) may conveniently be

used for scientific communication. q

The results derived in Example 3 may be used to analyze the large sample behaviour of
the proposed criterion in one-parameter problems. Indeed, if x = {zi,...,x,} isalarge
random sample from a one-parameter regular model {p(z |0),6 € O}, the relevant reference
prior will be Jeffreys prior 7 () o i(#)'/2, wherei(0) is Fisher'sinformation function, Hence,
the reference prior of ¢(0) = f9 i(#)/2 6 will be uniform, and the reference posterior of ¢
approximately normal N(¢ | ¢, 1/y/n). Thus, using Example 3 and the fact that the intrinsic
statistic is invariant under one-to-one parameter transformations, one gets the approximation
d(0, ) = d(¢o, z) ~ 1(1+22), wherez = V(¢ — do). Moreover, the sampling distribution
of z will approximately be a non-central x? with one degree of freedom and non centrality
parameter n(¢ — ¢p)2. Hence, the expected value of d(¢g, ) under repeated sampling from
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p(z | 0) will approximately beoneif & = 6, and will linearly increasewith n(6 —6,)? otherwise.
More formally, we may state

Proposition 1. One-Dimensional Asymptotic Behaviour. If x = {z1,...,z,} isarandom
sample from aregular model {p(z|6),0 € © C R, x € X C R} with one continuous pa-
rameter, and ¢(0) = [”i(6)"/2 df, wherei(0) = —E,[0% log p(x | 0)/06%], then the intrinsic
statistic d(0y, x) totest {6 = 6y} is

d(0o,2) = 5[1+2(60,0)] + o(n™"),  =(60,0) = Vn[6(8) — #(6))-

where 0 = () = argmax p(x | §). Moreover, the expected value of d(f, ) under repeated
sampling is
E, 9[d(0o, )] = 1+ n[p(0) — ¢(60)]* + o(n "),

sothat d(6, ) will concentrate around the value oneif 6 = 6y, and will linearly increasewith n

otherwise. 4

The arguments leading to Proposition 1 may be extended to multivariate situations, with or
without nuisance parameters.

Inthefinal section of thispaper weillustratethe behaviour of the Bayesianreferencecriterion
with three examples: (i) hypothesis testing on the value of abinomial parameter, which is used
to illustrate the shape of an intrinsic discrepancy, (ii) a problem of precise hypothesis testing
within a non-regular probability model, which is used to illustrate the exact behaviour of the
BRC criterion under repeated sampling, and (iii) amultivariate normal problemwhichillustrates
how the proposed procedure avoids Rao’s paradox on incoherent multivariate frequentist testing.

4. Examples
4.1. Testing the Value of the Parameter of a Binomial Bistribution
Letdataxz = {x1,...,x,} consist of n conditionally independent Bernoulli observations with

parameter 6, so that p(z|6) = #°(1 — 0)'=%,0 < § < 1, z € {0,1}, and consider testing
whether or not the observed data « are compatible with the null hypothesis {6 = 6y}. The
directed logarithmic divergence of p(x | §;) from p(z | 6;) is
_n. 91 ) (1 — 91)
k(6;]6;) = 6;log i, + (1 —6;)log )"
and it is easily verified that k(0;|6;) < k(0;|6;) iff 6; < 6; < 1 — 6;; thus, the intrinsic
discrepancy between p(x | 6y) and p(x | 0), represented in Figure 2, is

5(0.0) Z”{k§0|90§ 0 € (6,1 — ), (26)

(25)

k(6p|0) otherwise

Sinced (6, 0) isapiecewiseinvertible function of 6, the 5-reference prior isjust the 6-reference
prior and, since Bernoulli isaregular model, thisis Jeffreys’ prior, 7(6) = Be(6|1/2,1/2). The
reference posterior isthe Betadistribution 7 (0 | ) = 7(0 | r,n) = Be( |r+1/2,n—r+1/2),
withr = > z;, and the intrinsic statistic d(fy, «) is the concave function

1
d(0y, ) = d(0y,7,n) = /0 5(60,0) (0| r,n)do = 1[1+ 2(60,0)*] + o(n" ) (27)

where z (6, 8) = /n[¢(0) — (6p)], and $(#) = 2ArcSin(v/6). Theexact valueof theintrinsic
statistic may easily be found by one-dimensional numerical integration, or may be expressed in
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Figure2. Intrinsic discrepancy between two Bernoulli probability models.

terms of Digamma and incomplete Beta functions, but the approximation given above, directly
obtained from Proposition 1, is quite good, even for moderate samples.

The canonical particular case where 6y = 1/2 deserves specia attention. The exact value
of theintrinsic statistic is then

d(1/2,r,n) = Y(n+1)+0¢(r+1/2) + (1 —0)h(n —r+1/2) — log 2 (28)
whered = (r + 1/2)/(n + 1) isthe reference posterior mean. As one would certainly expect,
d(1/2,0,n) = d(1/2,n,n) increases with n; moreover, it is found that d(1/2,0,6) = 2.92
and that d(1/2,0,10) = 5.41. Thus, whenr = 0 (al failures) or » = n (all successes) the null

value 0y = 1/2 should be questioned (d > 2.5) for al n > 5 and definitely rejected (d > 5)
foradln > 9.

4.2. Testing the Value of the Upper Limit of a Uniform Distribution

Let x = {z1,...,2,}, x; € X(0) = [0,0] be arandom sample of n uniform observations
in [0, 6], so that p(z; |#) = 6~1, and consider testing the compatibility of data = with the
precise value § = 6. The logarithmic divergence of p(x | §;) fromp(x | ;) is

0.
g — ' Voo PEL0D) 0 log(0,/6;) if 6; < 0
k(05 16:) = n /0 p(o] ) log [ o du = {1 log(0;/0) 1t i < 6; (29)
and, therefore, the intrinsic discrepancy between p(z | 6) and p(x | 6y) is
. log(60/6) if 6y > 6
5(60,0) = min{k (80 | 0), k(0] 60)} = { s itz (30)
Let z(,,) = max{ri,...,,} bethelargest observation in the sample. The likelihood function

isp(xz|0) = 67", if & > x(,), and zero otherwise; hence, z,,) is a sufficient statistic, and a
simple asymptotic approximation 7 (¢ | «) to the posterior distribution of ¢ is given by

0" B
[ 0-ndo

“(n)

#(0|@) = 70| 2y) = (n—1)a 0", 0>, (31)
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It immediately follows from (31) that z,,) is a consistent estimator of ¢; hence, using (19), the
f-reference prior is given by

mg(0) < 7(0 | () x 671, (32)

Moreover, for any 6y, § = §(6p, ) is a piecewise invertible function of 6 and, hence, the
S-reference prior is also m5(6) = 6~!'. Using Bayes theorem, the corresponding reference
posterior is

m5(0 | @) = w5(0] 2() = nalyy 07,0 > wp; (33)

n)

thus, the intrinsic statistic to test the compatibility of the data with any possible value 6y, i.e.,
suchthat 6y > x,,), isgiven by

d(fo, ) = d(t) = / 6(60,0) m5(0 | () dO = 2t —logt — 1, ¢t = (z(,,)/00)", (34)

*(n)

which only dependson t = (0o, z(,,), n) = (z(,)/00)" € [0, 1]. Theintrinsic statistic d(¢) is
the concave function represented in Figure 3, which has aunique minimumat ¢ = 1/2. Hence,
the value of d(6, x) is minimized iff (z,)/00)" = 1/2,i.e,iff Oy = 21/7%(”), which is the
Bayes estimator for this loss function (and the median of the reference posterior distribution).

g | d)

t
0.2 0.4 0.6 0.8 1

Figure3. Theintrinsic statistic d(6y, ) = d(t) = 2t — logt — 1 totest § = 6, which correspondsto
arandomsample {z; ..., z,} fromuniformdistribution Un(z | 0, #), asa function of ¢t = () /60)".

It may easily be shown that the distribution of ¢ under repeated sampling is uniform in
[0, (6/60)"] and, hence, the expected value of d(y, x) = d(t) under repeated sampling is

(6/80)"
E[d(t)] 6] = /O (2t —logt — 1) dt = (8/0)" — nlog(6/6,), (35)

which is precisely equal to one if § = 6y, and increases linearly with n otherwise. Thus,
once again, one would expect d(t) values to be about one under the null, and one would
expect to always reject afalse null for alarge enough sample. It could have been argued that
t = (z(,)/00)" isindeed a‘natura’” intuitive measure of the evidence provided by the data
against the precisevalue ), but thisisnot needed; the procedure outlined automatically provides
an appropriate test function for any hypothesis testing problem.

The relationship between BRC and both frequentist testing and Bayesian tail areatesting
proceduresis easily established in this example. Indeed,
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(i) The sampling distribution of ¢ under the null is uniformin [0, 1], so that ¢ is precisely the
p-value which corresponds to afrequentist test based on any one-to-one function of ¢.

(i) The posterior tail area, that is, the reference posterior probability that 6 islarger than 6y, is
fa O]z, = (z(n)/00)" = t, so that t is also the reference posterior tail area.

It |S|mmed|ately verified that d(0.035) = 2.42, and that d(0.0025) = 5. It followsthat, in this
problem, the bounds d* = 2.42 and d* = 5, respectively correspond to the p-values 0.035 and
0.0025. Notice that these numbers are not equal to the the values 0.05 and 0.0027 obtained
whentesting avalue i = p for aunivariate normal mean. Thisillustrates an important general
point: for comparable strength of evidence in terms of information loss, the significance level
should depend on the assumed statistical model (even in simple, one-dimensional problems).

4.3. Testing the Value of a Multivariate Normal Mean

Let x = {x1,...,x,} be arandom sample from N (z | i, 02%), a multivariate normal dis-
tribution of dimension k, where 3 is a known symmetric positive-definite matrix. In thisfinal
example, tests on the value of p are presented for the case where o isknown. Testsfor the case
where o isunknown, tests on the value of some of the components of u, and tests on the values
of regression coefficients 3 in normal regression models of the form N (y | X3, 0%%), may
be obtained from appropriate extensions of the results described below, and will be presented
elsawhere.

Intrinsic discrepancy. Without loss of generality, it may be assumed that o = 1, for otherwise o
may beincluded in thematrix X; since X isknown, the vector of meansz isasufficient statistic.
The sampling distribution of Z isp(x | 1) = Ni.(Z | , n~1%); thus, using (16), the logarithmic
divergence of p(x | p;) from p(x | p;) isthe symmetric function

_ p@lp) . _n /-1
) o (@] ) B 0@ 1) 5 (Ki = 1) 7 (i — 1) (36)
It followsthat theintrinsic discrepancy between the null model p(x | p) and the assumed model
p(x | ) hasthe quadratic form

51— 1) S (1 — o). (37)

Therequiredtest statistic, theintrinsic statistic, isthereference posterior expectation of § (e, 1),
d(po, @) = [k O (ks 1) T5 (1| ) dpe.

O(po, ) =

Marginal reference prior. We first make use of standard normal distribution theory to obtain the
marginal referenceprior distributionof A = (1 —py)' S~ (u— ), and hencethat of 6 = n A /2.
Reference priors only depend on the asymptotic behaviour of the model and, for any regular
prior, the posterior distribution of p is asymptotically multivariate normal Ny, (u |z, n~'%).
Consider n = A(p — p), where A’A = Y71, so that A\ = n'n; the posterior distribution
of n is asymptotically normal Ny (n | A(Z — o), n '1;,). Hence (see e.g., Rao, 1973, Ch. 3),
the posterior distribution of n XA = nn'n = n(uw — pe)'S " (w — pe) is asymptotically a
non-central Chi squared with % degrees of freedom and non-centrality parameter n A, with
A = (% — po)'S Y& — pp), and thisdistribution has mean k + n A and variance 2(k + 2n \).

It follows that the marginal posterior distribution of X is asymptotically normal; specifically,

pA | x) = N (k+nX)/n, 2(k +2nX)/n?) = N(X| A, 4)/n). (38)
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Hence, the posterior distribution of A has an asymptotic approximation 7 (\ | 5\) which only
depends on the data through )\, a consistent estimator of \. Therefore, using (19), the A-
reference prior is

(A x #(A| ) X A2, (39)
But the parameter of interest, § = n\/2, is alinear transformation of A and, therefore, the
o-reference prior is

75(8) ox wA(N)|ON/DS| ox 67/2. (40)

Reference posterior and intrinsic statistic. Normal distribution theory may be used to derivethe
exact sampling distribution of theasymptotically sufficient estimator A = (@—po)" S T —pa).
Indeed, letting y = A(Z — py), with A’A = $~1, the sampling distribution of y is normal
Nj.(y | A(p — o), n11;,); thus, the sampling distribution of n y'y = n A isanon-central Chi
squared with & degrees of freedom and non-centrality parameter n (g — peo)' X1 (i — pa), Which
by equation (37) is precisely equal to 26. Thus, the asymptotic marginal posterior distribution
of § only depends on the data through the statistic,

2Z=nl=n (T — uo)/Z_l(i — W), (41)
whose sampling distribution only depends on 6. Therefore, using (20), the reference posterior
distribution of § given 22 is

7(0]2%) o< 7(8) p(22 | 6) = 6722 (2? | k, 20). (42)
Transforming to polar coordinatesit may be shown (Berger, Philippe, and Robert, 1998) that (42)
isactually thereference posterior distribution of § which correspondsto the ordered parametriza-
tion {0, w}, where w isthe vector of the angles, so that, using such aprior, 7(6 | ) = 7(8 | 22),
and 22 encapsulates all available information about the value of 4.

20
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Figure4.  Approximate behaviour of the intrinsic statistic d(uo, ) ~ E[§ | k, 2] as a function of
22 =n (T — py)S T — py), for k =1,5,10,50 and 100.

After some tedious algebra, both the missing proportionality constant, and the expected
value of 7(6 | z?) may be obtained in terms of the 1F} confluent hypergeometric function,
leading to

1 1F1(3/2;k/2,22/2)

d(ll,o7 ZQ) = E[5 | k7 2;2] = 5 1F1(1/2’ k/z’ 22/2) . (43)
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Moreover, the exact value for E[0 | k, 22| given by (43) has a simple linear approximation for
large values of 22, namely,

El5 |k, 22] ~ %(2—k+z2). (44)

Notice that, in general, (44) is only appropriate for values of 2> which are large relative to k
(showing strong evidence against thenull), butitisactually exact for k = 1, sothat (43) provides
amultivariate generalization of (24). Figure 4 shows the form of E[6 | &, %] asafunction of 22
for different values of the dimension k.

Numerical Example: Rao's paradox. As an illustrative numerical example, consider one ob-
servation z = (2.06,2.06) from a bivariate normal density with variances 02 = 03 = 1 and
correlation coefficient p = 0.5; the problem is to test whether or not the data « are compatible
with the null hypothesis 4 = (0,0). These data were used by Rao (1966) (and reassessed by
Healy, 1969), to illustrate the often neglected fact that using standard significance tests, it can
happen that atest for ; = 0 can lead to rejection at the same time as one for 9 = 0, whereas
the test for . = (0,0) can result in acceptance, a clear example of frequentist incoherence,
often known as Rao’s paradox. Indeed, with those data, both ;1; = 0 and uo = 0 are rejected
at the 5% level (since #? = x3 = 2.06% = 4.244, larger than 3.841, the 0.95 quantile of ax?),
while the same (Hottelling’s 7?2) test leads to acceptance of . = (0,0) at the same level (since
2? = /Y7 1x = 5.658, smaller than 5.991, the 0.95 quantile of a x3). However, using (43),
we find,

{ E[6]1,2.06%] = (1 + 2.06%) = 2.622,

_ 11F1(3/2:1,5.658/2) _ (45)
B[5]2,5.658) = J iR 2008 — .77,

Thus, the BRC criterion suggests tentative rejection in both cases (since both numbers are larger
than 2.5, the ‘20’ rulein the canonical normal case), with some extra evidence in the bivariate
case, asintuition clearly suggests.
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Résumé

Pour un modele probabiliste M = {p(z |0,w),0 € O,w € Q} censé décrire e comportement probabiliste de
donnéesx € X, noussoutenonsquetester si lesdonnéessont compatiblesavec unehypothése Hy = {0 = 6, } doit
étre considéré comme un probléme décisionnel concernant I’ usage du modéle M, = {p(x | Oy, w),w € Q}, avec
une fonction de colit qui mesure laquantité d’information qui peut étre perdue si le modéle simplifié M est utilisé
comme approximation du véritable modé&le M. Le colt moyen, calculé par rapport aune loi apriori de référence
idoinefournit une statistique de test pertinente, la statistiqueintrinseque d(60y, «), invariante par reparamétri sation.
La statistique intrinseque d(6,, «) est mesurée en unités d'information, et sa calibrage, qui est independante de
lataille de I’ échantillon et de la dimension du paramétre, ne dépend pas de sa distribution a I’ échantillonage. La
regle de Bayes correspondante, |e critere de Bayes de référence (BRC), indique que H,, doit seulement étre rejeté
si le colit a posteriori moyen de la perte d'information a utiliser le modele simplifié M, est trop grande. Lecritére
BRC fournit une solution bayésienne générale et objective pour lestests d' hypothéses précises qui ne réclame pas
une masse de Dirac concentrée sur M. Par conséguent, €lle échappe au paradoxe de Lindley. Cette théorie est
illustrée dans le contexte de variables normales multivariées, et on montre qu’ elle évite le paradoxe de Rao sur
I"inconsistence existant entre tests univariés et multivariés.



