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SUMMARY

This paper offers an introduction to Bayesian reference analysis, often regarded as the more successful
method to produce non-subjective, model-based, posterior distributions. The ideas are illustrated with
an interesting problem, the ratio of multinomial parameters, for which no model-based Bayesian analysis
has been proposed. Signposts are provided to the huge related literature.
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1. INTRODUCTION

From a Bayesian perspective, the outcomarmyfinference problem is thposterior dis-
tribution of the quantity of interestvhich combines the information provided by the data with
available prior information; it has been often recognised that there is a pragmatically important
need for a form of prior to posterior analysis which captures Vvire:defined senséhe notion
that the prior should have a minimal effect, relative to the data, on the posterior inference. We
will generally denote byr(¢ | ) a model-based, non-subjective posterior density of a quantity
of interesty conditional on datac, for which a probability modeb(x | ¢, A) is assumed which
may also depend on a vecthr= {\, ..., A\,,} of nuisance parameters.

In the long, fascinating history of the quest for these “baseline” posterior distributions, a
number of requirements have emerged which may reasonably be regarded as necessary properties
of an algorithm designed to produce such non-subjective posteriors:

() Invariance with respect to one-to-one transformationgeffreys, 1946; Jaynes, 1968;
Kass, 1989; Dawid, 1983; Yang, 1995; Datta and Ghosh, 1996). The postétioir)
with respect to model(x | ¢) mustbe consistent with the posterio(f | ) with respect to
p(x | 0), wheref = 0(¢) is a one-to-one function af, so that, for alke,

do

d¢
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(i) No marginalization paradoxegStone and Dawid, 1972; Dawid, Stone and Zidek, 1973).
If the posteriorm (¢ | ) for the quantity of interesp conditional to datacr from model
p(x| o, A) is of the formm (¢ |x) = mi(¢|t), and if the sampling distribution of,
p(t]| o, N) = p(t| ) only depends om, then the posterior ob, w2 (¢ |t), obtained from
the simplified modep(¢ | ¢) mustbe the same as the posteriar¢ | t) obtained from the
full modelp(x | ¢, ).

(iif) Consistent sampling propertie@Neyman and Scott, 1948, Stein, 1959, 1962, 1985; Welch
and Peers, 1963; Peers, 1965; Stone, 1976; Fraser, Monette and Ng, 1985; Tibshirani,
1989; Datta and Ghosh, 1995a). The properties under repeated sampling of the posterior
distribution, should be consistent with the model. In particular, forlarge sample size
and for any0 < p < 1, the coverage probability of a credible interval with non-subjective
posterior probability should be close tp for most parameter values.

Besides those technical requirements, methods proposed to derive non-subjective posterior
distributions should bgeneral i.e., applicable to any properly defined inference problem, and
“admissiblé in the sense that, for each known example, no other model-based posterior could
be argued to be “better” in a generally accepted, well-defined sense.

The reference analysjsintroduced by Bernardo (1979, 1981) and further developed by
Berger and Bernardo (1989, 1992a, 1992b, 1992c) is, to the best of our knowledge, the only
available method to derive non-subjective posterior distributions which satisfy all those desi-
derata. However, reference posterior distributions have a reputation of being difficult to obtain,
and the professional literature often contains formal Bayesian analysis using unjustified and
often misleading, (but easily derived!), naive “noninformative” priors. This may be partially
due to the lack of an easily accessible introduction to reference analysis; in this paper, we try to
offer such an introduction.

Section 2 contains an overview of reference analysis, where the definition is motivated,
heuristic derivations of explicit expressions for the one parameter, two parameters, and multi-
parameter cases are sequentially presented, and the behaviour of the reference posteriors under
repeated sampling is discussed. In Section 3, the theory is applied to an inference problem,
the ratio of multinomial parameters, for which no model-based Bayesian analysis has been
previously proposed, and which has been chosen because it combines intrinsic importance and
pedagogic value. Section 4 includes further discussion and provides directions for complemen-
tary reading. A number of definite integral results required in Section 3 are collected together
in a final appendix.

2. AN OVERVIEW OF REFERENCE ANALYSIS
2.1. Motivation

The declared objective of reference Bayesian analysis is to specify a prior distribution such that,
even for moderate sample sizes, ithfermation provided by the data should dominate the prior
informationbecause of the “vague” nature of the prior knowledge. Reference analysis uses the
concept of statistical information, in the technical sense of Shannon (1948) and Lindley (1956),
to make this notion precise; see Soofi (1994) for a recent discussion of these ideas.

The amount of information to be expected from an experiment about some quantity of in-
terest naturally depends on the available prior knowledge: the more prior information available,
the less information may be expected to be learned from the data. An infinitely large experiment
would eventually provide all missing information; thus, it is possible to obtain a measure of the
amount of missing information as a limiting form of a functional of the prior distribution. It
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is natural to define “vague” prior knowledge as that with the largest missing information: the
reference priorshould then be that whiamaximizes the missing information

Actually, due to the fact that the missing information is defined as a limit which is not
necessarily finite, the reference prior is defined as some special limit of a sequence of prior
distributions which maximize the information to be expected from an increasingly large experi-
ment; we now make this formulation precise.

2.2. One Parameter

Given an experiment which consists of one observatianfrom p(x | ¢), » € ® C R, the
amount of information/{e, p(¢)} which may be expected abowutwhen prior knowledge is
described by(¢) is defined by

p(¢|x)

I{e,p(9)} = /Xp<w> [DW #1087, )

hence, the amount of information which may be expected frandependent replications ef
ZL = {wl,...,:ck} is

z
He®).p(o} = [ ) [ pt0120)108 X2 diu.
xk <1> p(¢)
Ask — oo, e(k) would provide anynissing informatiombouty which could be obtained within
this framework, and hence, &s— oo, I{e(k), p(¢)} will approach the missing information
abouty when prior knowledge is described pyp).

It would be natural for a non-subjective prior intended to describe “lack of knowledge”
about a quantityp to maximize the missing information about its valube reference prior
would then be a special type of limit, &s— oo, of a sequence of priors,(¢) which maximize
I{e(k),p(¢)} within the class of strictly positive priors of. The amount of information
I{e(k), p(¢)} may usefully be reexpressed as

T{e(k), p(é)} = [D p() log

dpdz;

fr(®)
p(9)

fi(8) = exp { [ vzl 6)10gp(0120) dzk}

and, using a calculus of variations argument, it is easily verified that this is maximized if, and
only if, the priorp(¢) is such thaip(¢) « fr(¢). However, for eaclk, this only provides
animplicit solution for the prior which maximizeE{e(k), p(¢)}, sincefi(¢) depends on the
prior through the posterior distributign(¢ | z;); moreover, the maximizing prior is typically
discrete, even for continuous parameters (Berger, Bernardo and Mendoza, 1989).

To overcome both difficulties, consider, for largean asymptotic approximation to the
posterior distribution, say(¢ | zx.), which may certainly be chosen to be independent(¢f.
Then, under suitable regularity conditions, the sequenpesitivefunctions

do,

mo) =enf [ pelologaolmdn ), oew k=12 @)

derived from such an asymptotic posterior may be expected to induce, by formal use of Bayes
theorem, a sequence of posterior distributions

(6| @) = p(x | )i () S k=12

~ Jop(x] O)mi()do
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with the desired reference posterior distributiai | ) as its limit, so that
m(¢]z) = lim m(o|x), ¢€® =zeX, (2)

where the limit is to be understood in thidormation sensd.e., such that, for almost ait,

lim [ (6| 2) log ZE21Z) 4 o,

k—oo Jo (¢ |x)

For a discussion of the necessity of this type of limit, see the analysis obtifelence paradox
of Monette, Fraser and Ng (1985), in Berger and Bernardo (1992c).

The limiting distribution (2) isdefinedto be thereference posterior distributioof ¢. A
reference prioris a function which, for any data, makes it possible to obtain the reference
posteriorr(¢ | ) by formal use of Bayes theoreiie., a positive functionr(¢) such that, for

allxz € X,
p(x|P)m(9)
m(p|x) = .
1) = T @ 001
Thus the reference priar(¢) is the limit of the sequencgr(¢), k = 1,2, ...} defined by (1)
in the precise sense that the information-type limit of the corresponding sequence of posterior
distributions{m;(¢ | x), k = 1,2,...} is the posterior obtained from(¢) by formal use of
Bayes theorem.
Very often, the asymptotic posterior distributigfy | z;.) only depends on the data through

some asymptotically sufficient, consistent estimatotn such case, the sequence (1) may be
reexpressed as

m0) = op{ [ planl 9)loga(o] 20 dz
—ep{ [ 010)10ga(013)d3

which, ask — oo, converges to

exp { log q(¢| ¢) ’&:qﬁ} - q<¢|;ﬁ))¢3:¢.

In particular, ifq(gz5|g§5) = N(¢|<}S, d(éﬁ)) so that the posterior distribution efis asymptotically
normal with meary and standard deviatiaf(¢), then

q(¢lo)|.  ocd™(9).

¢=0

Summarizing, we may state:

Proposition 1. Letp(x | ¢), x € X, be a probability model with one real-valued parameter
¢ € ® C R such that there is a consistent and asymptotically sufficient estimatand

let (¢ | ¢) be an asymptotic approximation to the posterior distributiorpafhich only
depends on the model. Then, any function of the form

~

w(6) < a(o14)],
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is a reference prior. In particular, if the asymptotic posterior is normal with standard
deviationd(¢), thenm(¢) « d(¢)~!. The reference posterior distribution @f given

{x1,..., 2} IS

m(o|xy, ..., xy) = (o) [ 121 p(x1 | $)
o o 7(@) [1-, p(a | 6) dé

It is well known that under regularity conditions, the posterior distribution is asymptotically
normal with standard deviatiof{¢)~'/2, where

2
1) =~ [ pla|o) s ogpia|¢) do

is Fisher’s function. In this case, the reference prior is

m(¢) o< d(¢) ™t = f(o)?,

i.e, Jeffreys (1946, 1961) prior; Polson (1992) discusses in detail the necessary regularity
conditions; Ghosal (1996) analyses the non-regular case. It follows that the reference prior
algorithm contains Jeffreys’ prior as the particular case which obtains nod®aalasymptotics

in one-parametecontinuous models.

Proposition 1 may be used to derive reference posteriors associated to models which only
depend on the quantity of interest. As one should require, if the model is otherwise parametrized
in terms of some one-to-one functi@n= 6(¢) of the quantity of interest, the reference posterior
of ¢ may consistently be obtained from thattofindeed,

w(6) = a(¢|9)|,_ = a6(¢)|)

ol =5

We now consider models which contain nuisance parameters; it turns out that those may be
handled by recursively using the one-parameter solution.

2.3. One Nuisance Parameter

Suppose that we are interested in the value,ajiven a random sampler,, ..., z,} from a
model
px|d,A), ¢€PCR, Ae€A(P) CHR,

which contains a nuisance parameteiNote that we allow for the possibility that the nuisance
parameter spack(¢) maydepend orp.

Working conditionally onp, this is a one-parameter problem and, hence, the one-parameter
solution described above may be used to obtaioraditionalreference priotr(\ | ¢). If this
is proper, then it may be used to integrate out the nuisance paramatet obtain a model
p(x | ¢) which only depends oa, thereby reducing the problem to one already solved.

If the conditional reference priar(\ | ¢) is not proper, then the procedure is performed
within an increasing sequence of bounded approximatidnsi = 1,2, ...} to the nuisance
parameter spack, chosen such that(\ | ¢) is integrable within each of them. The reference
posteriorr(¢ | ) is then obtained as the limit of the resulting sequengép | x),: = 1,2,...}
of restricted reference posteriors.
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We shall only consider here the regular case, where joint posterior asymptotic normality
may be established. Lét(, \) be the corresponding x 2 Fisher’s matrix in terms o and
A, and letS(¢,\) = F~1(¢,)\), so that the posterior distribution ¢&, \) is asymptotically
normal with mear(qB, 5\), the corresponding mle’s, and covariance maﬁr{z%, 5\). It follows
that:
() the marginal posterior distribution ofp is asymptotically normal with standard deviation
do(¢, ) = s11(6, M)V
(ii) the condltlonalposterlor distribution of\ given ¢ is asymptotically normal with standard
deviationd; (¢, ) = faa (¢, A\)~1/2.

Working conditionally onp, so that\ is the only relevant parameter, and using Proposition 1,
we find7(\ | ¢) oc di(¢, )~ and, therefore

—1
(cb, )
A v A€ A(o),
"9 = e (@)
provided the integral exists. If it does not, an approximating sequence is
d‘l(cb A)
mi(A @) = 1 : A € Ai(9),
Jas0) A)d\

where{A;(¢),7 = 1,2,...} is an increasing sequence of compact approximations 4.
The sequence of priors (1) may then be computed as

m6) xop { [ plen] 0)loga(o] 20 dz
o { [ a0 A0 oa016. N dbdh . k=12,

m(\| ¢) is proper, we have
p(6.016) = [ (6,416, 7(x] 6) A
A(9)

and therefore, substituting and changing the order of integration,

= ex A b A P, A) 1 b, \) dpd)\)d\ p .
m(6) ep{/ww( o) [,p(6.A16.0)10g0(6]6.3) ) }
But the inner double integral converges to

loga(616,3)| | =lo |dy ' (6.1)]

sinceq(¢ | ¢, \) is normal with mear) and standard deviatiofy, ! (¢, \) and, therefore,

w0 e { [ 70 losldy (6] A}

w(\| @) is not proper, one would similarly obtain the approximating sequence

m(@) xesp{ [ 70 9)losldy (0. M)A}

1

Thus, we have:
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Proposition 2. Letp(x|d,\), ¢ € & C R, A € A(p) C R, be a probability model with
two real-valued parameters and )\, whereg is the quantity of interest, and suppose that
the joint posterior distribution of¢, \) is asymptotically normal with covariance matrix

S(¢,N\). Then, ifH (¢, A) = S~1(e, \),
(i) the conditional reference prior of is

T(A[9) o di (6, A) = hyla (6, ), A € A(0)

(i) if w(\|¢) is proper, the reference posterior distribution@fiven{x,,...,x,} is

w@ler e cn(@) [ AT plail o) }r(n]0)ax

A(¢)

where the marginal reference prior ¢fis
-1 1/2
w@) e { [ 70)losld ! (0N A, do(6.3) = 510,

(iii) if w(\|¢) is not proper, a compact approximatidn\;(¢),i = 1,2,...} to A(¢) is
required, and the reference posterior distributionfofs obtained as

7T(¢’CC1,...,.’Bn> :ili)r&ﬂ-l‘((ﬁ’wl?'“awn)v

wherer;(¢ | @1, ..., x,) is derived using\;(¢) instead ofA(¢).

It is often found in applications that the nuisance parameter spate= A is independent
of ¢, and that the functiond, andd; nicely factorize in the formi;* (¢, \) = ao(¢)bo()),
d; (¢, ) = a1(¢)b1(N); if this is the case, then, for some positive constantve have

Calmy
= T emar —

i (6) ocexp{/A.

3

cibi (M) log[a0(¢)bl()\)]d)\} x ag(),
and hencer;(¢) = m(¢) x ap(¢). Thus, we have,

Corollary. Ifthe nuisance parameter spatéy) = Aisindependent af, and the functions
dy andd; factorize in the form

ot (6, A) = ao(@)bo(N),  di (¢, A) = a1(p)bi(N),
then
m(¢) < ap(p), w(A|@) o bi(N),

and there is no need for compact approximation, even if the conditional reference priors
are not proper.
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2.4. The Multiparameter Case

Proposition 2 and its corollary may easily be extended to any number of nuisance parame-
ters. Indeed, if the model ig(x | ¢, A1, . . ., A, the quantity of interest i, the appropriate
regularity conditions hold, an@’ (¢, A1, ..., \,;,) is the correspondingm + 1) x (m + 1)

Fisher's matrix, then the posterior distribution(@f Ay, ..., A\;,) is asymptotlcally normal with
mean(¢, A, . . . )\m) the corresponding mle’s, and covariance maﬁ‘r(&, M, A ), where
S=F"1

It follows that, if S; is the j x j upper matrix ofS, j = 1,...,m + 1, H; = S;" and
hj (@, A1, ..., Ap)isthe(y, j) element off;, so thatH,,, 11 = F andh,, 11 m+1 = fi+1,m+1,
then

(i) the marginalposterior distribution of is asymptotically normal with standard deviation

~ ~ ~ ~ ~

dO(d)y )\17 ey )\m) - 81,1(¢7 >\17 s 7)\;71)1/2 - hLl(QEa Xl; e 7)\;71)_1/2;

(i) the conditionalposterior distribution of\; given¢, A1, ..., \;_1 , is asymptotically normal
with standard deviation

~

VA CID VTN VIRTD VIRNUND W Iy FERRTRT (-0 S FUNIND VIR T VSUEND W ko)

and one may sequentially use the algorithm described in 2.3 to ddilvg| ¢, A1, ..., Adm—1),
T(Am—1] 6, A5, Am—2), .-, (A1 | @), andr(¢), and produce the desired reference posterior.

Proposition 3. Letp(x | ¢, A), A = (A1, ..., \y) be a probability model withn + 1 real-
valued parameters, letbe the quantity of interest, and suppose that the joint distribution of
(¢, A1, - - -, Am) IS @asymptotically normal with covariance mat$Xo, A1, ..., Ay,). Then,

if S is thej X j upper matrix ofS, H; = S andh; (¢, A1,..., Ap) isthe(s, j) element

of H s

(i) the conditional reference priors are

(m‘gbv)\lv"' A *) 71(¢7)\17---7)\m)7
7| A A1) o

em{ﬁﬂ / log d; ! m&mﬁw{ﬁwwmmhuwlgﬁm}

j=i+1
whered\; = d\; x --- x d\y,, and
NS AL Am) = higrinn (B A A2, i=1,m,

provided7(A; | A\1,...,Ai—1), ¢ = 1,...,m are all proper. If any of those condi-
tional reference priors is not proper, then a compact approximation is required for the
corresponding integrals.

(i) The marginal reference prior a is

ﬂ@&@@{A-nA»MM?@Jh”WMHIhQﬂQMYHAFQ%M&
1 m j=1
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where

dgY (B, A,y Am) = 1/2(gb,)\1,...,/\ )_31}/2(¢,A1,...,Am).

After data{x,...,x,} have been observed, the reference posterior distribution of the
parameter of interesp, is
w(p|x1,...,x,)
W(gb)/ / {Hp(ml|q5,)\17...7 }H{ Aj |)\1,...7)\j_1)}d)\1}.
A Am =1 j=1
Corollary If the nuisance parameter spackg ¢, A1,...,\;i—1) = A; are independent of
both ¢ and the);’s, and the functiond, ..., d,,, factorize in the form

dy (@, M-, Am) = BP0, A0, o Am) = a0(@)bo(Ad, -+, Am)

_ 1/2
dz’ l(gvalw"?/\T) 7_0/-17+1(¢7/\17"~7)\Tr1,)
_al( ) ((b?Al?'"))\Z‘*17)\7;+1,...,)\7n), izl...,m,

then

m(p) x ap(@), T(Ai| P, A1,  im1) xai(N), i=1,....,m
and there is no need for compact approximations, even ifithe | ¢, A1, ..., \;—1)’s are
not proper.

2.5. Behaviour under repeated sampling

The frequentist coverage probabilities of credible intervals derived from reference posterior
distributions are sometimes identical, and usually very close, to their posterior probabilities;
this means that even for moderate samples, an interval with reference posterior probataility
may often be interpreted as an approximate confidence interval with significance.level

More formally, ift, = t.(x1,...,x,) denotes thd — « quantile which corresponds to
the reference posteriaf(¢ | 1, ..., x,), SO that

P[gbgtaml,...,azn]:/ m(p|xy,...,xn)dp =1— q,
¢<ta(Tq,...,Ln)
then the coverage probability of thié — o) reference posterior credible interyal oo, ¢, ],

P[tazqﬁ\qﬁ]:/ p(x1,...,xy | @) dxy - - dxy,

often satisfies
Plta>6l6| =1-a+0@™),

while, for most priors, this asymptotic approximation is oﬂW*l/Q). Intuitively, this says
that the reference prior is ofterpaobability matchingprior, i.e., a prior for which the coverage
probabilities ofone-sidedoosterior credible intervals are asymptotically as close as possible
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to their posterior probabilities. Hartigan (1966) showed that the coverage probabilities-of
sidedBayesian posterior credible intervals satisfy this type of approximatién(to ') for all
priors.

In a pioneering paper, Welch and Peers (1963) established that in the case of the one-
parameter regular continuous models Jeffreys’ prior, —which in this case (Proposition 1) is
also the reference prior—, is the only probability matching prior. Hartigan (1983, p. 79)
showed that this result may be extended to one-parameter discrete models by using continuity
corrections. Datta and Ghosh (1995a) derived a differential equation which provides a necessary
and sufficient condition for a prior to be probability matching in the multiparameter continuous
regular case; this has been used to verify that reference priors are typically probability matching
priors. Recent work by Rousseau (1996) using continuity corrections, suggests that these results
may also be extended to multiparameter discrete models. In Section 4, we summarize some
additional related work.

Although the results described above only justifyaaymptoticapproximate frequentist
interpretation of reference posterior probabilities, there is empirical evidence to suggest that
the coverage probabilities of reference posterior credible intervals derived from relatively small
samples are also typically close to their posterior probabilities; this will be illustrated in the
example discussed below.

3. THE RATIO OF MULTINOMIAL PARAMETERS
3.1. The Problem

Considerm multinomial observations which belong to one of, say 1 categories, so that

m—+1 m

!
n! r
p(ri,- oy mm [n, 01, On) = — 'HGZ-’, 0<r <n, ann
[z mt 5 i=1

with 0 < 9@' < 1, 6m+1 =1- 221 92', andrmH =n— z:nzl 7.

Suppose that we are interested in the ratio of the, say, first two parameteés/60,. For
instance, in an insurance application one may be interested in assessing how many times more
likely is risk 1 than risk 2 or, in a political application, one may be interested in assessing the
ratio of the percentages of votes that candidates 1 and 2 may be expected to obtain.

We note that, in the absence of other information, one would expect the result to depend on
r1 andry, butnotonn or the other;’s, which intuition suggest should be irrelevant; indeed,
in the absence of information on the relationship amongéfs we cannot expect to obtain
information about); /0, from then — 1 — ro observations which do not belong to either of the
first two categories.

3.2. The Two Parameters Case

Let us first consider the two parameter case, so that there are three categories, with probabilities
01, 09 andl — 61 — 09, and

n!

p(ri,r2|n,01,6) = 101716272(1 — 0, — 62)" 172, i+ <im,

rilrel(n —ry — ro)!
or, in terms ofp = 601 /6>, and\ = 65,

n!

plr, 2|, 6,3) = s (1-x1+0)"

Corrl(n —rp —ro)!
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The corresponding Fisher’'s matrix is easily found to be

. /\(1¢—)\) 1
F<¢’A>=m( | b )

so that

B 1 [/ ¢(+9) —¢

hence, the joint posterior dip, ) is asymptotically normal with covariance matlﬂ(g%, ;\)
and, therefore,

(i) the marginalasymptotic posterior ap is normal with standard deviatiaim(&), 5\),

1/2
do(¢, A) = % (qb(l;gb)) ;

(i) theconditionalasymptotic posterior of given¢ is normal with standard deviatiah (¢, 5\),

dl(gb,A):L( 1+ ¢ )})—1/2.

VR AMLI=A(1+¢
From Proposition 2 (iyr(\ | ¢) o d; (¢, \); hence,
1 —1/259 _ —1/2
7'('()\’(?) — dl <¢’ )‘) - A {1 /\(1+¢)}

Jaioy @ (@, Ndx fo<1+¢>*1 A-12{1 = \(1 + ¢)}-1/2d\

1/2 cancels out and

since the factof1 + ¢)
0<bi+6<1 = 0<pr+A<l = 0<A<(l+¢)}
thus, using Proposition Al, with = b = 1/2, andc = 1 + ¢, the conditional reference prior
of the nuisance paramet&miven the parameter of interaestis
1 1/2
D R Y A A PP P C P S C)

which is a proper, Beta-like, distribution on the interval

Al®) = [O’ﬁ} - [O’ 91?:92] '

From Proposition 2 (ii),

w() xexpd [ w(h]6)logdy! (6, dA
A(o)

X exp {/A(qb) (M| ¢)log ((b(l)—\f— 925))_1/2 d)\}
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= ¢ 21+ ¢) V2 exp %/ m(\| @) log XdX
A(¢)
and, using Proposition A2 with = b = 1/2 andc = 1 + ¢, one has

m(9) o ¢~ (1 +¢) P exp {—Flog[4(1 + ¢)]} o ¢~V (149)
finally , using Proposition A4 witlh = b = 1/2,

/OO o1+ 9) o=
0

and, hence, the marginal reference prior of the parameter of interesgtich ispropereven
though it is defined on the unbounded spéce |0, oo, is given by

w@)= 6721 +9)7, 0<o<on @

Combining (3) and (4), thpint reference prior needed to obtain a reference posterior for
the parameter of interestis theproperprior

R(O)m(A]6) = 2567201+ 8) VAL - A1+ ) (5)

therefore, using (5) in Bayes theorem to derive the corresponding joint posterior and integrating
out the nuisance parametgrthe reference posterior for the parameter of interest is

7T(¢\7“1,7“2,n)0<”(¢)/ p(ri,ra|n, ¢, \)m(A| @) dA

A(

)
1
e ¢71/2(1 +¢)—1/01+¢ (1 +¢)1/2¢7’1>\7‘1+T‘2*1/2{1 o )\(1 +¢)}7177‘17T271/2d)\
1
- (1 +¢>1/2¢r1—1/2/1+¢ )\r1+7“2—1/2{1 o )\(1 + ¢)}n—r1—r2—1/2d>\
. .

Using Proposition Al wittu = r; + 73 +1/2,b=n—1r —ra + 1/2andc = 1 + ¢ to solve
the last integral, we have

¢T'171/2
(1+¢)T1+7‘2+1 !

(| r1,re,m) oc (1+ ¢) V2= 12(1 4 ¢)~r1tra+l/2) o

and, using Proposition A4 with = r; + 1/2 andb = r2 + 1/2 to obtain the proportionality
constant, we finally obtain the desired reference posterior distribution of the quantity of interest
¢, as the Beta distribution of the second kind (se Johnsoret al., 1995, p. 248)

D(ri+ro+1) Pp11/2
D(ri +1/2)0(ra + 1/2) (1 4 ¢)1 77271

(6)

ﬂ-(gb | 7“1,?“2,’/1) = 7T<¢ | 7“1,7’2) =

Since (6) has been derived from a proper prior, it is obviously proper for any data. Moreover,
as expected, it doemtdepend om, but only onr; andrs: then — r; — ro observations which
belong to the third category do not directly provide any information on the valge-0f); /0.
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Figurel. Marginal reference prior ofp, and reference posterior for any data with= r, = 0.

21
7T(<Z5|T‘177“2)
1.5¢
1t
0.5
b0 ®
1 2 3 4 5

Figure2. Examples of reference posterior distributions from three random samples
of sizesn = 5, n = 20 andn = 100, simulated with§; = 0.4 andf, = 0.5, so thatp = ¢y = 4/5.

In the particular case wherg = ro = 0, so that alln observations belong to the third
category, we do not have any information about 6, /6, and hence, the reference posterior
distribution reduces to the marginal reference prior (4), shown in Figure 1, which has no expected
value, but a median equal to 1, thus making equally likgly- 6> thanfy > 6.

It is easily checked that, when > 1, w(¢|ri, ) has a mode &ty — 1/2)/(re + 3/2).
Moreover, if one further defines

1+¢ 01+06

w

and hence& = w/(1 — w), one has

m(w|r,re) = w(P|71,72)

d
£‘ x wr1—1/2(1 N w)r2—1/2

and, therefore,
m(w|ry,ry) =Be(w|ry +1/2,79 +1/2).
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Thus the reference posterior foris equivalent tav, the proportion of observed elements in
category 1 among those in either category 1 or category 2, having the conventional Jeffreys-like
reference posterior Be |1 + 1/2, 79 + 1/2). This may be used to obtain credible regions for

¢ using the typically preprogrammed incomplete Beta routines.

Figure 2 shows the reference posterior distributiong abtained from three simulated
samples of sizes = 5, n = 20 andn = 100 from a multinomial model withl¢; = 0.4 and
6 = 0.5, so that the true value of the quantity of interegtjigd, = 4/5.

3.3. The General Case
Let us now consider the general case, so that therenate1 categories with probabilities
01,...,0,, andl — Z;”:l 9;, and

m+1

m
p(riy .. rm|n, 61, .., 00) = Hm+1 H s E jzlrjﬁna

with 7,11 =n — Z;n:l r; andf,, 1 =1 — 27:1 9]'.
In this parametrization, the corresponding Fisher’s matrix is easily found to be
82
F(917 ctt 97Tl) = E(’I‘l,...,’/'m ‘ 711,017...,9m) {_89189] logp(r]J ctt Tm ’ n? 91’ Tt 70m)}

1+ m+1 1 1

1 1+ m“ 1

1 1 1+ m+1
Since we are interested in= 6, /6>, we make the one-to-one transformation
¢ =01/02, A= 6o, 0, =06;,, i=3,....,m

The Jacobian of the inverse transformation= ¢\, 0o = A\, 6, = 6;,7 =3,...,mis then

Ao 0 ... 0
0O 1 0 ... 0
J= 10 0 1 0
0O 0 0 ... 1
and, therefore, the posterlor distribution (@f, A 93, ..., 0,) is asymptotically normal with
covariance matrlm‘15(¢,)\ Os,....0m ) where¢ = r1/T2, A\ = ro/n, andd;, = ri/n,
i = 3,...,m are the corresponding mle’s, and

S(¢7>\1937"-39m) :H_1(¢7)‘793a-'-70m)7

with
H(p, N\ 03,...,00) =T F(p,\03,...,00)J;
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(see Mendoza, 1994, or Bernardo and Smith, 1994, p. 295). After some algebra, one finds

B n A B
H(¢ X85, .0n) = 7535~ (Bt c )
with
A(1=A—0%)) s
. S 1 Hm* B A . A
1oy, (L6 L+¢ -~ 149
14+603—A\(149)—05,
3 b 1 ... 1

1 o 1

C = : (7)
1 1 . 1+9m—)\9(nll+¢)_0;<n

whered =63+ ---+ 6,,, and

S(p, N\, 03, ...,0,) =H 1(p,\03,....00)

¢(¢/\+1) — 0 . 0
e ey e ®)
== 0 —A03  O3(1—1063) - 030,
n
0 — A0 =030, o Op(1—On)

With the notation of Proposition 3, and using the recursive structure of (7) and (8), we find

that o
hii(01,..,0 )1/2:(1+9i—A(1+¢)—9Z‘)/
7,2 y o9 Um Hl{l—A(l‘l—qs)—g:}

_( L-M1+¢) -4, )1/2 .
el 1+o) —0-63) "

whered} = 03 + -+ 0; andd; = 35 0; = 07 — 0.
Using Proposition 3 (i),

=3,...,m,

T(Om | DN, 05, - .., Om_1) o< B2 (0N, 05, ..., Or_1)

B 1= M1+ ¢) —6m 1/2 =,
~ (oo e sasay) o b

for thosed,,, values such that < 61 + 65 + ... + 6,, < 1 and, therefore, such that

0<AX14+@)+0n+0n<1l = 0<b0,<1-=XX1+09)—0pn.
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Hence,
9;’1/2(6 B 9m>_1/2

7O | 60,03, ., O 1) = ooy s
0 m

wherec = 1—-A(1+¢)—9,,. Using Proposition A3witlh = b = 1/2,andc = 1—-A(1+¢)—0p,

1 _
7T(em ‘ ¢> )‘7 937 sy 9m,1) - ;‘9m71/2(1 - )\(1 + ¢) - - em) 1/27

for0 <6, <1— A1+ ¢)— on.

Using again Proposition 3 (i}5(6; | ¢, A, . .., 0,—1) is proportional to

exp{/ / 10gh1/2 9 ){ H 7T(0j|¢7)\,,9j—1>}d01+1dem}
Oit1 Om j=it1
where
2B ) = (0N, 0)
. Y 1/2 i—1
:( L-M1+¢)—4 ) C =Y
01— A(L+0)— 0 — 0} P
which doeshotdepend o, 1, . .., 6,,. Therefore,
(9 ‘(ba y . Z 1) ocexp{loghlf(d), )} - 1/2< )‘7792)
and, hence,
7(0; | 6, A ) = %eil/m “A1+¢) =6 —0) V2 0<b;<1-A1+¢)—

Moreover,Ss, the upper x 2 submatrix ofS(¢, A, s, . . ., 0,,), equals the matris (¢, A)
obtained in two parameter case and, hence, the same results obtain, namely,

1/2
w1 = T2 Ao <A< o)

w(@)= 6 (1+6), 0<o<oo

Thus, thgoint reference prior required to obtain the reference posterior of the quantity of

interesto is

m(0) = w(@)r (A @) [[7(0i16i1,....,03,1,¢)
1=3
‘ ~1/2

— 1214 ) A1 — A1+ 6)) WH@_”Q{ M+9) =3 0) O

j=3
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Using Bayes theorem with this joint prior and integrating out the nuisance parameters
0s,...,0,, the desired reference posterior may be derived as

W(¢|T1,T2,...,T‘m,n)

“WW{Aw5¢””””“M¢XAB"Lémll{%%hl‘A”+¢)_@Ymﬂ
x {ﬁﬂ'(@j’qb,)\,...,Qj_l)}d)\deg...dem
j=3

x ¢T171/2(1+¢)—1/2 /A((ﬁ)

x/l%mbﬁbwu+@—%—wymrmwm
0

€3
ATTET2=1/200 N1 4 ¢)}—1/2/ 057312 405 x ...
0

wherer, 41 =n — > 1 rj, ande; = 1 = A(1 + ¢) — 4;.

Using Proposition A3 withw = 1/2, b = r,,, 41 + 1/2 andc = ¢, the last integral is
proportional to(1 — A\(1 + ¢) — d,,,)"™+1 and, therefore,

w(p| 1,72, T, N)

oc ¢M112(1 4 gy 12 /A(@

‘m—1
/ Op1 =17V = N1+ @) — Gt — Ot Y12 AN dO5 ... dOp_1;
0

)\7’1—0—7”2—1/2{1 . /\(1 + ¢)}71/2 /03 637“3—1/2 o
0

thus, using Proposition A3 repeatedly,

(P |71, 72,y T, M)

o 121+ g)? /A(¢>) NIF27200 N1 g) Y mtt T 2dn

Finally, using Proposition Al witly = ry +r2 +1/2,b = ripy1 +1/2, ande = 1 + ¢, we
have
(P71, oy Ty n) X ¢7”1*1/2(1 + ¢>—1/2(1 4 ¢)—(r1+r2+1/2)

x ¢7‘171/2(1 +¢>—(7’1+7‘2+1)’
as in the two parameter case, so that

L(ri+ry+1) @112
L(r1+1/2)T(ry + 1/2) (1 4 ¢)"1772+! '

T(@|re, .., rm,n) =w(P|ry,r2) = (10)

Thus, as we anticipated on intuitive grounds, reference inferences@béubnly depend
onr; andrsy; the number and distribution among the other categories of the remairing —
ro9 observations —and, more importantly, the essentiatlyitrary numberm of considered
categories—, are allrelevantfor inferences solely based on the multinomial model. Itis easily
verified that this is1ottrue if conventional “noninformative” priors, such as a uniform prior, or
Jeffreys’ multivariate prior, are used instead of (9) in deriving a model-based posterior for
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3.4. Coverage Probabilities

The joint reference prior (9) satisfies Datta and Ghosh (1995a) conditions for probability match-
ing in continuous multiparameter models; indeed, after some algebra, it is found that

0
> a5 m(0)m(6) =0 (10)
— 00;
7=1
where@ = {¢, \,03,...,0,},
S(p, N\, 03,...,0p
0(8) = i@f) 3 )V
\/V S((b? A? 037 cee 797ﬂ)v

v ={1,0,...,0}, S(¢, A, 03,...,0,)is given by (8), andr(0) is given by (9).

Extending Hartigan (1983) results with the techniques developed by Rousseau (1996),

this suggests that, asymptotically, the continuity corrected coverage probabilities of one-sided
credible intervals for of posterior probability are equal tg to ordern—!.

Table1l. Observed coverages of one-sided reference intervals faith posterior probabilityp.
Mean and standard deviations of five runs of 10000 simulations, for several sample sizes.

p=1/3

n =10

n =25

n = 100

0.05
0.25
0.50
0.75
0.95

0.05120.0016
0.2536:0.0020
0.5028-0.0036
0.7465:0.0054
0.94720.0014

0.0494:0.0024
0.25280.0033
0.505&0.0032
0.75040.0026
0.95140.0016

0.0542:0.0010
0.25510.0019
0.503%0.0046
0.7516:0.0050
0.94820.0017

n =10

n = 100

0.05
0.25
0.50
0.75
0.95

0.0514-0.0008
0.2576:0.0017
0.50730.0030
0.7494-0.0024
0.9508:0.0017

0.05430.0015
0.25940.0034
0.509%0.0025
0.7506:0.0027
0.94910.0016

0.05330.0018
0.25510.0040
0.506£:0.0024
0.74970.0026
0.95120.0016

To analyze the coverage probabilities obtained for finite samples, we simulated 10000
samples[r;1, ri2} of sizesn = 10, n = 25 andn = 100 from a multinomial distribution with
01 = 0.1, f2 = 0.3 (and therefore>) = 1/3), and other 10000 samples of the same sizes from
a multinomial distribution withg; = 0.6, 2 = 0.2 (and therefore¢ = 3). In both cases, the
quantiIeSq;',, forp = 0.05,0.1,...,0.95,andi = 1, ..., 10000 were computed for each sample,
so that

%
/ (¢ |ri1,rie) =p, i=1,...,10000,
0

and, for each sample, we verified whether or nogtieedible intervalo, q;] contained the true
value of¢, and thus computed tlabservegroportion of coverages. The whole procedure was
replicatedfivetimes.
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p=1/3 ¢=3
1 1
0.8 0.8
0.6 0.6
n =10
0.4 0.4
0.2 0.2
(0]54 (0]54
0O 0.2 0.4 0.6 0.8 1 0O 0.2 0.4 0.6 0.8 1
1 1
0.8 0.8
0.6 0.6
n =25
0.4 0.4
0.2 0.2
0]54 (054
0O 0.2 0.4 0.6 0.8 1 0O 0.2 0.4 0.6 0.8 1
1 1
0.8 0.8
0.6 0.6
n = 100
0.4 0.4
0.2 0.2
(0]54 (0]54
0O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure3. Observed coverage probabilities versus reference posterior probabilities,
with ¢ = 1/3 and¢ = 3, for sample sizes = 10, n = 25 andn = 100.

In Table 1 we reproduce, for selected quantiles, the mean and standard deviation of the
five observed coverages. In Figure 3 we offer a graphical presentation of the results, where
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the mean of the five observed coverages, and the bands obtained plus and minus two standard
deviations, have been plotted against the corresponding reference posterior probabilities. It may
be observed that even with rather moderate sample sizes, the reference posterior probabilities are
not appreciably different from their observed coverages; as a matter of fact, the average coverage
pattern is very much the same for the three sample sizes considered. This suggests that, even
for moderate sample sizes, posterior reference intervajsawéwell calibrated in the sense

that if many samples of were to be taken from a given multinomial model, the corresponding
reference intervals fap with posterior probabilityp would contain the true value af with a

relative frequency very close o

3.6. Numerical Example

In an expensive experiment designed to study possible improvements on the design of a new
airbag, a random sample 9200 airbags were destructively tested a&tdof them were found
to be defective. The engineers found five different failure causes, which respectively accounted
for 15, 12, 6, 3 and2 of these failures, and judged them to be independent from each other.
Moreover, it was decided that the optimal allocation of the resources available to improve the
design crucially depended on the ratio of the probabilities of failure associated to the two most
frequent causes of failure. Thus, with the notation above, onerhad5, n = 1200, r; = 15,
ro = 12,73 = 6, r4 = 3, 5 = 2, and¢ = 6, /05 is the quantity of interest.
Using (10), the reference posterior distribution of such quantity of interest is
I'(28) p!4o 1)
T(15.5)T(12.5) (1 + ¢)2 (

shown in Figure 4, which doeasot depend on the total sample siz200 or on the number,
m = 5 of categories considered, or on the number or distribution of the failures which are not
either of type 1 or type 2.

7(¢] datd = 7(¢|r = 15,75 = 12) =

0. 8' 7T((Z)|7“1 = 15,7’2 = 12)
0.6¢
0.4;

0.2¢

1 2 3 4 5
Figure4. Reference posterior density of the quantity of interest.
The reference posterior has a modéAt/13.5 = 1.074; transforming tow = ¢/(1 + ¢)

and using the incomplete Beta function, one easily finds that the median is 1.247 and that, for
instance,

P[¢ > 1|datd = 0.718, P[¢ > 2|datd = 0.112, P[¢ > 3|datg = 0.013.
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Thus, given the results of the experiment, one may for instance report that type 1 is quite likely
the more frequent cause of failure, and that it is probably about 1.25 times more likely than type
2, but surely less than 3 times more likely.

More formally, if a decision problem is contemplated with a utility structure of the form
u(d;, ¢), then the optimal action may be found by maximizing

Buld; | datd = / " uldi, 8) m(6| datd do,
0
wherer (¢ | datg is given by (11).

4. DISCUSSION AND FURTHER REFERENCES

In this paper, we have summarized the motivation, definition, and derivation of reference pos-
terior distributions, we have illustrated the theory with an important example, and we have
mentioned, —without proof—, some of the properties which may be used to substantiate the
claim that they constitute the more promising available method to deaxesubjectiverior
distributions. However, the definition and possible uses of non-subjective priors, which under
this and many other labels, —such as “conventional, “default”, “formal”, “neutral”, “flat” or
“noninformative” —, are intended to provide Bayesian solutions which do not require to assess
a subjective prior, have always been a rather polemic issue among statisticians. In this final
section, we summarize some of the elements of the discussion, and provide signposts for those
interested in pursuing the subject at a deeper level.

4.1. Interpretation of Non-subjective Priors

A major criticism to the use of non-subjective priors comes from subjectivist Bayesians, who
argue that the prior should be an honest expression of the analyst’s prior knowledge and not a
function of the model, specially if this involves integration over the sample space and hence
may violate the likelihood principle. However, fronf@indationalviewpoint, the derivation of

a reference posterior should be seen as part of a hesdtigitivity analysisvhere it is desired

to analyze the changes in the posterior of interest induced by changes in the prior: a reference
posterior is just an answer todnat if question, namely what could be said about the quantity of
interest given the data, if one’s prior knowledge were dominated by the data. If the experiment
is changed the reference prior may be expected to change correspondingly; if subjective prior
information is specified, the corresponding posterior could be compared with the reference
posterior in order to assess the relative importance on the initial opinions in the final inference.
Moreover, from goragmaticpoint of view, it must be stressed that in the Bayesian analysis of
the complex multiparameter models which are now systematically used as a consequence of
the availability of numerical MCMC methods, —models typically intractable from a frequentist
perspective—, there is little hope for a detailed assessment of a huge personal multivariate prior;
the naive use of some tractable “noninformative” prior may then hide important unwarranted
assumptions which may easily dominate the analysis éspeCasella, 1996, and references
therein). Careful, responsible choice of a non-subjective prior is then possibly the best available
alternative.

It should also be mentioned here that some Bayesian statisticians would follow Jeffreys
(1961) or Jaynes (1996) in a radical non-subjective view: they would claim that subjective
priors are useless for scientific inference and so, non-subjective priors are necessary because
there is nothing else to do.
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4.2. Improper Priors
The reference priors that we have obtained in this paper have alway$iwgwm probability

distributions; thus,
/ ¢) dg = / 621+ ¢) N do =1,

even thoughP =|0, oo[ is not bounded. However, non-subjective priors associated to models
with unbounded parameter spaces, —certainly including reference priors—, are typically
properin that, in most cases, # is not compact, therf, 7(¢) d¢ = co. This has often been
criticized on the grounds that (i) foundational arguments require the use of a proper prior, and
(if) the use of improper priors may lead to unsatisfactory posteriors.

With respect to the foundational issue, we should point out that the natural axionwt do
imply that the prior must be proper: they only lead to finite additivity, which is compatible
with improper measures. However, the further natural assumpticorajlomerabilityleads
to o-additivity and, hence, to proper measures; some signposts to this interesting debate are
Heath and Sudderth (1978, 1989), Hartigan (1983), Cifarelli and Regazzini (1987), Seidenfeld
(1987), Consonni and Veronese (1989) and Lindley (1996). It must be stressed however that,
by definition, non-subjective priors am®tintended to describe personal beliefs: theyarky
positive functions to be formally used in Bayes theorem to obtain non-subjguxisteriors
—which indeedshould always be propagiven a minimum sample size—. Uncritical use of a
“noninformative” prior may lead to an improper posterior (seg, Berger, 1985, p. 187, for a
well known example); the precise conditions for an improper prior to lead to a proper posterior
are not known, but we are not aware of any example where the reference algorithm has lead to
an improper posterior given a sample of minimum size. Moreover, non-subjective posteriors
should be expressible aimit of some sequence of posteriors derived from proper priors (Stein,
1965); this is precisely the procedure usedédinereference distributions.

Finally, it is very important to emphasize that the use of a proper prior does certainly
not guarantee a sensible behaviour of the resulting posterior. Indeed, if an improper prior
leads to a posterior with undesirable properties, the posterior which would result from a proper
approximation to that prior, —say that obtained by truncation of the parameter space—, will
still have the same undesirable properties; for instance, the posterior of the sum of the squares of
normal meang = Z 2 u2 based on a joint uniform prior on the mear(g:1, . . . ,Mm) x lis
extremely unsatlsfactory as a non-subjective posterior (Stein, 1959), but so it is the posterior of
¢ based on the@ropermultinormal priorm(p1, . . ., pm) o< [[; N(140, o), for larges. Proper
or improper, what must pragmatically be required from non-subjective priors is that, for any
data set, they lead to sensible, data dominated, posterior distributions.

4.3. Calibration

Non-subjective posterior credible intervals are often numerically very close, and sometimes
identical, to frequentist confidence intervals basedsofiicientstatistics (for an instructive
discussion of how unsatisfactory confidence intervals may be when not based on sufficient
statistics see Jaynes, 1976). Indeed, the analysis on the frequentist coverage probabilities of
credible intervals derived from non-subjective posteriors, —in an attempt to verify whether
or not they are “well calibrated —, has a very long history, and it does provide some bridges
between frequentist and Bayesian inference. References within this topic include Lindley
(1958), Welch and Peers (1963), Bartholomew (1965), Peers (1965, 1968), Welch (1965),
Hartigan (1966, 1983), DeGroot (1973), Robinson (1975, 1978), Rubin (1984), Stein (1985),
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Chang and Villegas (1986), Tibshirani (1989), Dawid (1991), Severini (1991, 1993, 1994),
Ghosh and Mukerjee (1992, 1993), Efron (1993), Mukerjee and Day (1993), Nicolau (1993),
DiCiccio and Stern (1994), Samaniego and Reneau (1994), Datta and Ghosh (1995a) and Datta
(1996).

This is a very active research area; indeed, the frequentist coverage probabilities of poste-
rior credible intervals have often been an important element in arguing among competing non-
subjective posteriors, as in Stein (1985), Efron (1986), Tibshirani (1989), Berger and Bernardo
(1989), Ye and Berger (1991), Liseo (1993), Berger and Yang (1994), Yang and Berger (1994),
Ghosh, Carlin and Srivastava (1995) and Sun and Ye (1995). Reference posteriors have con-
sistently been found to have very attractive coverage properties, even for small samples, but no
general results have been established.

4.4. Further Signposts

The classic books by Jeffreys (1961), Lindley (1965) and Box and Tiao (1973) are a must
for anyone interested in non-subjective Bayesian inference; they prove that most “textbook”
inference problems have a simple non-subjective Bayesian solution, and one which produces
credible intervals which are oftenumerically either identical or very close to their frequentist
“accepted” counterparts, but much easier to obtain. Zellner (1971) is atextbook on econometrics
from a non-subjective Bayesian viewpoint; Geisser (1993) summarizes many results on non-
subjective posterigpredictivedistributions.

The construction of non-subjective posterior distributions has a very interesting history,
which dates back to Laplace (1812), and includes Jeffreys (1946, 1961), Perks (1947), Lindley
(1961), Geisser and Cornfield (1963), Welch and Peers (1963), Hartigan (1964, 1965), Novick
and Hall (1965), Jaynes (1968, 1971), Good (1969), DeGroot (1970, Ch. 10), Villegas (1971,
1977, 1981) Box and Tiao (1973, Sec. 1.3), Zellner (1977, 1986), Akaike (1978), Bernardo
(1979), Geisser (1979, 1984), Rissanen (1983), Tibshirani (1989) and Berger and Bernardo
(1989, 1992c) as some of the more influential contributions. The development of this long quest
may conveniently be traced from Bernardo and Smith (1994, Sec. 5.6.2), Kass and Wasserman
(1996), and references therein.

Some recent developments include Ghosh and Mukerjee (1992), Mukerjee and Dey (1993),
Clarke and Wasserman (1993), George and McCulloch (1993), Clarke and Barron (1994),
Wasserman and Clarke (1995), Datta and Ghosh (1995b, 1995c, 1996) and Zellner (1996).
Yang and Berger (1996) is a partiedtalog alphabetically ordered by probability model, of
many non-subjective priors which have been suggested in the literature. Bernardo (1997) is a
non technical analysis, in a dialog format, ontbendationalssues involved, and it is followed
by a discussion.

For someone specifically interested in reference distributions, the original paper, Bernardo
(1979), is easily read and it is followed by a very lively discussion; Bernardo (1981) extends
the theory to general decision problems; Berger and Bernardo (1989, 1992c) contain crucial
mathematical extensions. A textbook level description of reference analysis is provided in
Bernardo and Smith (1994, Sec. 5.4).

Papers which contain explicit analysis of specific reference distributions include Bernardo
(1977, 1978, 1979, 1980, 1982, 1985), Bayarri (1981, 1985), Ferrandiz (1982, 1985), Sendra
(1982), Eaves (1983a, 1983b, 1985), Bernardo and Bayarri (1985), Chang and Villegas (1986),
Hills (1987), Mendoza (1987, 1988), Bernardo and Girén (1988), Lindley (1988), Berger and
Bernardo (1989, 1992a, 1992b, 1992c), Pole and West (1989), Chang and Eaves (1990), Polson
and Wasserman (1990), Ye and Berger (1991), Stephens and Smith (1992), Liseo (1993), Ye
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(1993, 1994, 1995), Berger and Yang, (1994) Kubokawa and Robert (1994), Yang and Berger
(1994, 1996), Datta and Ghosh (1995c) Ghosh, Carlin and Srivastava (1995), Sun and Ye (1995),
Ghosal (1996) and Reid (1996).
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APPENDIX

Proposition A1 Fora > 0,b>0,c > 1,
1

b, 1T@EG)
/0 (1 — ex) dx_c“l“(a—{—b)

Proof. The change = cx reduces this to a standard Beta integralg

Proposition A2. Fora > 0,b > 0,c > 1, if
a F(a + b) l,a—l

p(m\a,b,c):cm L

(1—ca)’™', 0<z<c,
then,

Fllog a] = log - + t(a) — ¥(a+b)
wherey(.) = F'(:c)/l“(:z:) is the digamma function. In particular, it = b = 1/2, then
Ellog z] = —log4c.

Proof. Taking logarithms in Proposition A1,
(:_1
log/ 291 = ca)’ 'z = —alogc + log I'(a) + log I'(b) — log '(a + b),
0
and taking derivatives with respectdo

1
Jo logzz*~1(1-— cx)’ L

—1
Jo oz l(1- cx)’

= —logc+y(a) —(a+b);

-1
but the left hand side iy  log z p(z | a, b, ¢) dz = E[log z]. The particular case follows from
the fact that)(1/2) — (1) = —2log2. 4

Proposition A3. Fora > 0,6 > 0,¢c > 1,

C oty e T@TG)
/Ox Le—a) dx_CerlF(a—kb)

Proof. The change = = /c reduces this to a standard Beta integral.

Proposition A4. Fora > 0,6 > 0,
/oo r1 ['(a)T'(b)
0 (

de —
1+ g)otd v I'(a+b)

Proof. The change = (1 + z)~! reduces this to a standard Beta integral.



