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Foundations

Time to revise foundations?

• No obvious agreement on the appropriate Bayesian solution to even

simple (textbook) stylized problems:

Best point estimate for the normal variance?

Inferences on the correlation coefficient of a bivariate normal?

Comparing two normal means or two binomial proportions?

Testing compatibility of the normal mean with a precise value?

• Let alone in problems within complex models with many parameters!

Proposal: Return to basics and use decision-theoretic machinery.
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Bayesian Inference Summaries
• Assume data z have been generated as one random observation form

Mz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}, where θ is the vector of

interest and λ a nuisance parameter vector.

• Let p(θ,λ) = p(λ |θ) p(θ) be the assumed joint prior.

• Given data z and assuming model Mz, the complete solution to

all inference questions about θ is contained in the marginal posterior

p(θ | z), derived by standard use of probability theory.

• Appreciation of p(θ | z) may be enhanced by providing both point

and region estimates of the vector of interest θ, and by declaring

whether or not some context-suggested specific value θ0 (or maybe

a set of values Θ0), is (are) compatible with the observed data z. All

of these provide useful (and often required) summaries of p(θ | z).
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Decision-theoretic structure

• All these summaries may be framed as different decision problems

which use precisely the same loss function `{θ0, (θ,λ)} describing, as

a function of the (unknown) (θ,λ) values which have generated the

data, the loss to be suffered if, working with model Mz, the value θ0

were used as a proxy for the unknown value of θ.

• The results dramatically depend on the choices made for both the

prior and the loss functions but, given z, only depend on those through

the expected loss, `(θ0 | z) =
∫

Θ

∫
Λ `{θ0, (θ,λ)} p(θ,λ | z) dθdλ.

• As a function of θ0 ∈ Θ, `(θ0 | z) is a measure of the unacceptability

of all possible values of the vector of interest. This provides a dual,

complementary information on all θ values (on a loss scale) to that

provided by the posterior p(θ | z) (on a probability scale).
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Point estimation

To choose a point estimate for θ is a decision problem where the

action space is the class Θ of all possible θ values.

Definition 1 The Bayes estimator θ∗(z) = arg infθ0∈Θ `(θ0 | z) is

that which minimizes the posterior expected loss.

• Conventional examples include the ubiquitous quadratic loss

`{θ0, (θ,λ)} = (θ0 − θ)t(θ0 − θ), which yields the posterior mean as

the Bayes estimator, and the zero-one loss on a neighborhood of the

true value, which yields the posterior mode a a limiting result.

• Bayes estimators with conventional loss functions are typically not

invariant under one to one transformations. Thus, the Bayes estimator

under quadratic loss of a variance s not the square of the Bayes estima-

tor of the standard deviation. This is rather difficult to explain when

one merely wishes to report an estimate of some quantity of interest.
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Region estimation

Bayesian region estimation is achieved by quoting posterior credible

regions. To choose a q-credible region is a decision problem where the

action space is the class of subsets of Θ with posterior probability q.

Definition 2 (Bernardo, 2005). A Bayes q-credible region Θ∗q(z) is

a q-credible region where any value within the region has a smaller

posterior expected loss than any value outside the region, so that

∀θi ∈ Θ∗q(z), ∀θj /∈ Θ∗q(z), `(θi | z) ≤ `(θj | z).

• The quadratic loss yields credible regions with those θ values closest,

in the Euclidean sense, to the posterior mean. A zero-one loss function

leads to highest posterior density (HPD) credible regions.

• Conventional Bayes regions are often not invariant: HPD regions in

one parameterization will not transform to HPD regions in another.
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Precise hypothesis testing

• Consider a value θ0 which deserves special consideration. Testing

the hypothesis H0 ≡ {θ = θ0} is as a decision problem where the

action space A = {a0, a1} contains only two elements: to accept (a0)

or to reject (a1) the hypothesis H0.

• Foundations require to specify the loss functions `h{a0, (θ,λ)} and

`h{a1, (θ,λ)} measuring the consequences of accepting or rejecting H0

as a function of (θ,λ). The optimal action is to reject H0 iif∫
Θ

∫
Λ[`h{a0, (θ,λ)} − `h{a1, (θ,λ)}] p(θ,λ | z) dθdλ > 0.

• Hence, only ∆`h{θ0, (θ,λ)} = `h{a0, (θ,λ)}−`h{a1, (θ,λ)}, which

measures the conditional advantage of rejecting, must be specified.
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• Without loss of generality, the function ∆`h may be written as

∆`h{θ0, (θ,λ)} = `{θ0, (θ,λ)} − `0
where (precisely as in estimation), `{θ0, (θ,λ)} describes, as a function

of (θ,λ), the non-negative loss to be suffered if θ0 were used as a proxy

for θ, and the constant `0 > 0 describes (in the same loss units) the

context-dependent non-negative advantage of accepting θ = θ0 when

it is true.

Definition 3 (Bernardo and Rueda, 2002). The Bayes test criterion

to decide on the compatibility of θ = θ0 with available data z is to

reject H0 ≡ {θ = θ0} if (and only if), `(θ0 | z) > `0, where `0 is a

context dependent positive constant.

• The compound case may be analyzed by separately considering each

of the values which make part of the compound hypothesis to test.
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• Using a zero-one loss function, so that the loss advantage of reject-

ing θ0 is equal to one whenever θ 6= θ0 and zero otherwise, leads

to rejecting H0 if (and only if) Pr(θ = θ0 | z) < p0 for some context-

dependent p0. Use of this loss requires the prior probability Pr(θ = θ0)

to be strictly positive. If θ is a continuous parameter this forces the

use of a non-regular “sharp” prior, concentrating a positive probability

mass at θ0, the solution early advocated by Jeffreys.

This formulation (i) implies the use of radically different priors for

hypothesis testing than those used for estimation, (ii) precludes the use

of conventional, often improper, ‘noninformative” priors, and (iii) may

lead to the difficulties associated to Jeffreys-Lindley paradox.

• The quadratic loss function leads to rejecting a θ0 value whenever

its Euclidean distance to E[θ | z], the posterior expectation of θ, is

sufficiently large.
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• The use of continuous loss functions (such as the quadratic loss)

permits the use in hypothesis testing of precisely the same priors that

are used in estimation.

• With conventional losses the Bayes test criterion is not invariant

under one-to-one transformations. Thus, if φ(θ) is a one-to-one trans-

formation of θ, rejecting θ = θ0 does not generally imply rejecting

φ(θ) = φ(θ0).

• The threshold constant `0, which controls whether or not an expected

loss is too large, is part of the specification of the decision problem,

and should be context-dependent. However a judicious choice of the

loss function leads to calibrated expected losses, where the relevant

threshold constant has an immediate, operational interpretation.
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Loss Functions
• A dissimilarity measure δ{pz, qz} between two probability densities

pz and qz for a random vector z ∈ Z should be

(i) non-negative, and zero if (and only if) pz = qz a.e.,

(ii) invariant under one-to-one transformations of z,

(iii) symmetric, so that δ{pz, qz} = δ{qz, pz},
(iv) defined for densities with strictly nested supports.

Definition 4 The intrinsic discrepancy δ{p1, p2} is

δ{p1, p2} = min [κ{p1 | p2}, κ{p2 | p1} ]

where κ{pj | pi} =
∫

Zi
pi(z) log[pi(z)/pj(z)] dz is the (KL) diver-

gence of pj from pi. The intrinsic discrepancy between p and a

family F = {qi, i ∈ I} is the intrinsic discrepancy between p and

the closest of them, δ{p,F} = infq,∈F δ{p, q}.
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The intrinsic loss function

Definition 5 ConsiderMz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}.
The intrinsic loss of using θ0 as a proxy for θ is the intrinsic

discrepancy between the true model and the class of models with

θ = θ0, M0 = {p(z |θ0,λ0), z ∈ Z,λ0 ∈ Λ},

`δ{θ0, (θ,λ) |Mz} = inf
λ0∈Λ

δ{pz(· |θ,λ), pz(· |θ0,λ0)}.

Invariance

• For any one-to-one reparameterization φ = φ(θ) and ψ = ψ(θ,λ),

`δ{θ0, (θ,λ) |Mz} = `δ{φ0, (φ,ψ) |Mz}.
This yields invariant Bayes point and region estimators, and invariant

Bayes hypothesis testing procedures.
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Reduction to sufficient statistics

• If t = t(z) is a sufficient statistic for modelMz, one may also work

with marginal modelMt = {p(t |θ,λ), t ∈ T ,θ ∈ Θ,λ ∈ Λ} since

`δ{θ0, (θ,λ) |Mz} = `δ{θ0, (θ,λ) |Mt}.

Additivity

• If data consist of a random sample z = {x1, . . . ,xn} from some

modelMx, so that Z = X n, and p(z |θ,λ) =
∏n

i=1 p(xi |θ,λ),

`δ{θ0, (θ,λ) |Mz} = n `δ{θ0, (θ,λ) |Mx}.
This considerably simplifies frequent computations.
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Objective Bayesian Methods
• The methods described may be used with any prior. However, an

“objective” procedure, where the prior function is intended to describe

a situation where there is no relevant information about the quantity

of interest, is often required.

• Objectivity is an emotionally charged word, and it should be explic-

itly qualified. No statistical analysis is really objective (both the experi-

mental design and the model have strong subjective inputs). However,

frequentist procedures are branded as “objective” just because their

conclusions are only conditional on the model assumed and the data

obtained. Bayesian methods where the prior function is derived from

the assumed model are objective is this limited, but precise sense.
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Development of objective priors

• Vast literature devoted to the formulation of objective priors.

• Reference analysis, (Bernardo, 1979; Berger and Bernardo, 1992;

Berger, Bernardo and Sun, 2009), has been a popular approach.

Very general, easily computable one-parameter result:

Theorem 1 Let z(k) = {z1, . . . ,zk} denote k conditionally inde-

pendent observations from Mz. For sufficiently large k

πk(θ) ∝ exp {Ez(k) | θ[ log ph(θ | z(k))]}

where ph(θ | z(k)) ∝
∏k

i=1 p(zi | θ)h(θ) is the posterior which corre-

sponds to some arbitrarily chosen prior function h(θ) which makes

the posterior proper for any z(k).
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Approximate reference priors

• Reference priors are derived for an ordered parameterization. Given

Mz = {p(z |ω), z ∈ Z,ω ∈ Ω} with m parameters, the reference

prior with respect to φ(ω) = {φ1, . . . , φm} is sequentially obtained

as π(φ) = π(φm |φm−1, . . . , φ1)× · · · × π(φ2 |φ1) π(φ1).

• One is often simultaneously interested in several functions of the

parameters. Given Mz = {p(z |ω), z ∈ Z,ω ∈ Ω ⊂ <m} with m

parameters, consider a set θ(ω) = {θ1(ω), . . . , θr(ω)} of r > 1 func-

tions of interest; Berger, Bernardo and Sun (work in progress) suggest

a procedure to select a joint prior πθ(ω) whose corresponding marginal

posteriors {πθ(θi | z)}ri=1 will be close, for all possible data sets z ∈ Z ,

to the set of reference posteriors {π(θi | z)}ri=1 yielded by the set of ref-

erence priors {πθi(ω)}ri=1 derived under the assumption that each of

the θi’s is of interest.
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Definition 6 Consider model Mz = {p(z |ω), z ∈ Z,ω ∈ Ω}
and r > 1 functions of interest, {θ1(ω), . . . , θr(ω)}. Let {πθi(ω)}ri=1

be the relevant reference priors, and {πθi(z)}ri=1 and {π(θi | z)}ri=1

the corresponding prior predictives and marginal posteriors. Let

F = {π(ω |a),a ∈ A} be a family of prior functions. For each

ω ∈ Ω, the best approximate joint reference prior within F is that

which minimizes the average expected intrinsic loss

d(a) =
1

r

r∑
i=1

∫
Z
δ{πθi(· |z), pθi(· |z,a)} πθi(z) dz, a ∈ A.

• Example. Use of the Dirichlet family in the m-multinomial model

(with r = m + 1 cells) yields Di(θ | 1/r, . . . , 1/r), with important

applications to sparse multinomial data and contingency tables.
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Integrated Reference Analysis
• We suggest a systematic use of the intrinsic loss function, and an

appropriate joint reference prior, for an integrated objective Bayesian

solution to both estimation and hypothesis testing in pure inference

problems.

• We have stressed foundations-like decision theoretic arguments, but

a large collection of detailed, non-trivial examples prove that the pro-

cedures advocated lead to attractive, often novel solutions. Details in

the paper version of this talk, and references therein.

Estimation of the normal variance

• The intrinsic (invariant) point estimator of the normal standard de-

viation is is σ∗ ≈ n
n−1 s. Hence, σ2∗ ≈ n

n−1
ns2

n−1, larger than both the

mle s2 and the unbiased estimator ns2/(n− 1).
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Uniform model Un(x | 0, θ)
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`δ{θ0, θ |Mz) = n

{
log(θ0/θ), if θ0 ≥ θ,

log(θ/θ0, if θ0 ≤ θ.

π(θ) = θ−1, z = {x1, . . . , xn},
t = max{x1, . . . , xn}, π(θ | z) = n tnθ−(n+1)

The q-quantile is θq = t (1− q)−1/n;

Exact probability matching.

θ∗ = t 21/n (posterior median)

E[`δ(θ0 | t, n) | θ] = (θ/θ0)n−n log(θ/θ0);

this is equal to 1 if θ = θ0,

and increases with n otherwise.

• Simulation: n = 10 with θ = 2 which yielded t = 1.71;

θ∗ = 1.83, Pr[t < θ < 2.31 | z] = 0.95, `δ(2.66 | z) = log 1000.
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Extra Sensory Power (ESP) testing
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Jahn, Dunne and Nelson (1987)

Binomial data. Test H0 ≡ {θ = 1/2}
with n = 104, 490, 000 and r = 52, 263, 471.

For any sensible continuous prior p(θ),

p(θ | z) ≈ N(θ |mz, sz),

with mz = (r+ 1/2)/(n+ 1) = 0.50018,

sz = [mz(1−mz)/(n+2)]1/2 = 0.000049.

`(θ0 | z) ≈ n
2 log[1 + 1

n(1 + tz(θ0)2)],

tz(θ0) = (θ0 −mz)/sz, tz(1/2) = 3.672.

`(θ0 | z) = 7.24 = log 1400: Reject H0

• Jeffreys-Lindley paradox: With any “sharp” prior, Pr[θ = 1/2] = p0,

Pr[θ = 1/2 | z] > p0 (Jefferys, 1990) suggesting data support H0 !!!
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More sophisticated examples

• Two sample problems: Equality of two normal means.

`(H0 | z) ≈ n log[1 + 1
2n(1 + t2)], t =

√
n(x̄− ȳ)/(s/

√
2).

• Trinomial data: Testing for Hardy-Weinberg equilibrium.

`(H0 | z) ≈
∫
A `δ{H0, (α1, α2)} π(α1, α2 | z)dα1dα2,

where `δ{H0, (α1, α2)} = n θ(α1, α2),

θ(α1, α2) is the KL distance of H0 from Tri(r1, r2, r3 |α1, α2 and

π(α1, α2 | z) = Di[α1, α2 | r1 + 1/3, r2 + 1/3, r3 + 1/3].

• Contingency tables: Testing for independence.

Data z = {{n11, . . . , n1b}, . . . , {na1, . . . , nab}}, k = a× b,
`(H0 | z) ≈

∫
Θ n φ(θ) π(θ | z) dθ, φ(θ) =

∑a
i=1

∑b
j=1 θij log [

θij
αi βj

],

where αi =
∑b

j=1 θij and βj =
∑a

i=1 θij are the marginals, and

π(θ | z) = Dik−1(θ |n11 + 1/k, . . . , nab + 1/k).
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