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SUMMARY

Probabilistic prediction of the value of a given observable quantity given a random sample of past
observations of that quantity is a frequent problem in the sciences, but a problem which has not a
commonly agreed solution. In this paper, Bayesian statistical methods and information theory are used
to propose a new procedure which is model-free, in that no assumption is required about an underlying
statistical model, and it is objective, in that a reference non-subjective prior distribution is used. The
proposed method may be seen as a Bayesian analogue to conventional kernel density estimation, but one
with an appropriate predictive behaviour not previously available. The procedure is illustrated with the
analysis of some published astronomical data.

Keywords: BAYESIAN STATISTICS; KERNEL DENSITY ESTIMATION; INFORMATION THEORY;
PREDICTION; PREDICTIVE DISTRIBUTIONS; REFERENCE ANALYSIS; SCORING RULES.

1. THE PREDICTION PROBLEM

Let x = {z1,...,2,} be a set of n real-valued observations of some observable real-valued
quantity z, and consider a situation where one is interested in a (necessarily probabilistic)
prediction of a future observation of the same quantity. Let us suppose that the observed values
{z1,...,z,} may be assumed to be a subset of an exchangeable sequence, so that the order
in which these observations have been obtained is assumed to contain no relevant information
on the behaviour of the z’s. Note that, in particular, this includes all cases in which & may be
assumed to be a random sample from some underlying probability model.

It then follows from the general representation theorem (see e.g., Bernardo and Smith, 1994,
Ch. 4 and references therein) that there exists some probability model m(z; | @), labelled by
some parameter 6 € O, such that the joint probability density of & may be written as

() =p(x1, ..., 2,) = m(x; | 0)p(0)deo. (1)
p(z) = pla /@H p

Consequently,  may always be regarded as a random sample from some, typically unknown,
probability model m(z; | €), indexed by some unknown (possibly multidimensional) parameter
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0 € O, defined as the limit as n — oo of some function of «, for which a prior distribution
p(0) necessarily exists. Note that this result is an existence theorem in probability theory and,
hence, it is not subject to any of the polemics often associated to the use of Bayesian statistics
in the sciences with a subjective prior specification.

An immediate corollary of the representation theorem is that all the information about the
value of future observation x contained in the observed data x is encapsulated in its (posterior)
predictive distribution

p(:z:|a:):p(:z:]xl,...,:z:n):/@m(x\e)p(ma:)de, (2)

where, by Bayes’ theorem, the posterior distribution p(8 | ) of the unknown parameter 6 is of
the form

p(O]2) = p(8| 21, .., 20) ox p(8) [[ (i), 3)
=1

For any exchangeable data set x, the posterior predictive distribution p(x | ) given by (2)
is the solution to the problem posed: it precisely describes all available information about a
future observation x. If a point estimate x is desired, the mode, the median or the mean of
p(z|x1,...,x,) could be used; confidence regions R(«) with posterior probability 1 — o may
be obtained as solutions of the equation | R(a) p(z|x)dr = 1 — a. Those are however only
partial (if very useful) descriptions of the available information about a future value of x; the
complete solution is simply and elegantly encapsulated in p(x | ). Moreover, any other form
of solution will necessarily violate the basic rules of probability theory; unfortunately, this
includes most conventional proposals, such as those obtained by plug-in estimates of the form
m(z | @), for some estimate @ of 0. Naturally, the problem is to find a suitable model m(z | 9),
and to specify the prior distribution, p(8), for its associated parameter 6.

In some scientific contexts, there are good reasons to select a particular model m(z | );
this may be suggested, for instance, by an underlying physical theory, by invariance consid-
erations, or by judicious application of some limit theorem. If this is the case, the problem
reduces to specifying an appropriate, non-subjective, model based, ‘reference’ prior distribu-
tion (@) which would let the data ‘speak for themselves’. The prediction problem would then
be immediately solved by the corresponding reference posterior predictive distribution

(x| @) = (x| 21, ., 20) :/@m(a:|0)7T(9]a:1,...,xn)d0,

n (4)
m(0|21,...,x) < w(0) [ [ m(xi]6).
=1

For a detailed description of Bayesian prediction, including the use of dynamic models, see the
excellent review paper by West (1998), and references therein.

In the long quest for these ‘baseline’ non-subjective distributions, a number of requirements
have emerged which may reasonably be regarded as their necessary properties. These include
invariance, consistent marginalization, good frequency properties, general applicability and
limiting admissibility. The reference analysis algorithm, introduced by Bernardo (1979b) and
further developed by Berger and Bernardo (1989, 1992) is, to the best of our knowledge, the
only available method to derive non-subjective distributions which satisfy all these desiderata.
For a recent discussion of the many polemic issues involved in this topic, see Bernardo (1997).
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For an introduction to reference analysis, see Bernardo and Smith (1994, Ch. 5), or Bernardo
and Ramon (1998).

In many situations however, it is very difficult to specify the probability model m(x | @) with
a reasonable degree of confidence. An exact Bayesian approach then requires to specify a very
large class of meodels m(x | 6), @ € ©, where O is often infinitely dimensional, one of whose
members hopefully provides a good approximation to the underlying probability mechanism,
and a prior p(0) which describes available information on this structure; popular choices are
mixture models with Dirichlet priors (see e.g., West, 1992; Escobar and West, 1995, Roeder
and Wasserman, 1997, and references therein). However, subjective prior specification within
this framework is very difficult —and often polemic—, and the reference priors for those models
are typically very difficult to derive.

A possible alternative, which will be described in this paper, is to consider an approximate,
data-based ‘model’ may be used as a proxy to the actual, unknown underlying model. The more
successful techniques to achieve such a type of approximation are known under the general
heading of kernel density estimation. Those are considered in the next section.

2. KERNEL DENSITY ESTIMATION
2.1. Conventional Approach

Let x = {z1,...,z,} be a random sample from some unknown underlying model m(x | 6).
Conventional kernel density estimation consists on assuming that an appropriate proxy for the
required predictive density is provided by

IL’|$ qu|mla 9 (5)

where the kernel q(- | 1, o) is some location-scale probability model

dlzlmo) = SHC ) rw 0, [ rwd=1, (6
o) o) R
and 6 = &(x) is an estimate of the unknown parameter o (see e.g., Silverman, 1986).

A large proportion of the literature on kernel density estimation deals with the appropriate
selection of the kernel function and the corresponding estimate & of its ‘window’ . The more
popular choice seems to be a normal kernel, g(x | u, o) = N(x | 4, o), with the so-called normal
reference rule

o=4/3)"Psn P 2106507, (n—1)3 = (2, —7)% (7)
i=1

as its corresponding estimate (see Scott, 1992, p. 131, and references therein).

This is a plug-in estimate solution and, therefore, it is bound to violate basic probability
theory principles. Indeed the use of (5) is found to be both inconsistent under marginalization,
and incompatible with Bayes theorem (West, 1991).



2.2. A Bayesian Approach

As described in Section 1, if data * = {z1,...,2,} are assumed to be a subset of some
exchangeable sequence, then they may be considered as a random sample from some unknown
underlying model. Note that the exchangeability assumption is not unduly restrictive; for
instance, the underlying model may well be a mixture model, thus allowing to model outlying
observations.

We will assume that for some k£, with0 < k& < n, the underlying model may be approximated
by a kernel-type mixture based on a subset of size k of the observed data. Intuitively, we are
assuming that the probabilistic behaviour of the exchangeable sequence from which the data
have been sampled may approximately be described by mixtures with £ components, where the
value of k has yet to be specified. Formally,

Kernel approximation assumption. Let x; = {x1,...,x} be a subset of size k of some
exchangeable sequence. It is assumed that there is a location-scale kernel q(- | 1, o) indexed
by positive parameter o, which may depend on xy, such that, for any other element x in the

sequence,
1 k
plz|o) ~ EZ q(z| z;,0) (8)

Under the kernel assumption, an approximate expression for the required posterior predictive
density p(z | x,) may be obtained. Indeed, it follows from (8) that for any partition of the
observed data x,, = {z1,...,z,} of the form x,, = {x,y,,}, Where x; is a size k subset
of x,,, and y,, consists of those observations in x,, which are not in &, with m = n — k and
0 < k < n, one may obtain a reasonable approximation to p(y,, | o), namely

p(Ym o) = pr1|0 H{iqyll%, } (9)
=1 =

Thus, for any other element x in the exchangeable sequence,

o0
p(@ | @p y) = /0 (x| 0) plo | @4, y) do

k
|
~ /0 2D ale] 2j,0)p(o |z y,,) do (10)

which is the average of k integrated kernels with respect to the posterior distribution of o,

m k
p(o | @k ) D) Py | @ o) = (o) [[{ D atwil i)} (1)

i=1  j=1

Since this is true for all partitions of this type, an estimate of the desired posterior predictive
distribution may be obtained as

p(z |k, x,) = Zp :L‘\:I;k ,ym) (12)
i



J. M. Bernardo. Model-Free Objective Bayesian Prediction 5

where 1, is an arbitrary number of random partitions of the form x,, = {x},,y,,}. Itis suggested
that n,, should be of the same order than the sample size n; in the examples quoted in this paper,
the number of simulations n, has been chosen to be equal to the corresponding sample size.
Note that the solution explicitly depends on the number & of components in the mixtures which
are judged necessary for an accurate description the behaviour of the data; we postpone to
Section 4 our discussion of the choice of k.

The proposed solution conditions on one part of the data, xy, to build the model, and
on the rest of the data, y,,, to learn about its parameter o. This is intended as a workable
approximation to an exact Bayesian approach which would require a probability model on the
unknown sampling distribution and a prior over its parameters what, as mentioned before, may
be extremely difficult to implement from a non-subjective viewpoint.

2.3. Choice of the Kernel Function

The procedure described could be implemented for any choice for the kernel density. However,
there are several arguments which suggest the use of normal kernels:

(i) Published literature on both kernel density estimation and Bayesian mixture models sug-
gests that normal mixtures are typically able to provide good approximations to predictive
densities (see e.g., Diaconis and Ylvisaker, 1985).

(i) A ‘maximum entropy’ argument may be used to argue that normal kernels are the ‘less
demanding’ of all possible location-scale kernels on the real line. Indeed, (see e.g., Bernardo
and Smith, 1994, Sec. 3.4 and references therein) if z is a real-valued location quantity
defined on (—c, c), then the positive, invariant, logarithmic divergence between a density
p(z) and the uniform density on (—c, ¢), m(z) = (2¢) 71,

C C

o).} = [ p()log 27 gz — 1ogf2] - [ s p@yas, (13

—c 7'('(56) -

measures the amount of information about x contained in p(z). If p(z) has both finite mean p
and finite variance o for all ¢, then a simple calculus of variations argument may be used
to prove that, as ¢ — oo, d{p(+), ¢} is minimized if, and only if p(z) = N(z | i, o), so that
normal kernels may be described as those containing the minimum amount of information
among all possible location-scale kernels on the real line. Thus, normal kernels suggest
themselves as a ‘default’ option for kernel estimation.

(iii) Ifrestrictions in the range of possible x values, to say an interval [a, b], are relevant, then one
may work with the unrestricted transformed data z; = log[(x; — a)/(b — z;)], use normal
kernels to obtain p(z | k, z), and transform back to the original metric to derive the required
predictive density

(o | ky) = plz] by 2)— logl(z — a)/(b—2)].  (14)
x|k,x)=p(z|k, =z , z =log[(x —a —x)].
In the rest of this paper, we will restrict attention to normal kernels so that, with the notation
established above, q(y | 1, 0) = N(y | u, o). We will find more convenient to work in terms of
the variance ¢ = o2, so that we will use kernels of the form

12 (y — p)?
qy|p, ) = N eXp[—T]-

The relevant mixture model will be therefore p(y | x, ¢) = k1> y q(y|z;, ¢), where the x;’s
are known constants and ¢ > 0 is an unknown parameter.

(15)



To implement our proposal, there are two problems which remain to be solved. First, an
appropriate reference prior w(¢) with respect to the model p(y | , ¢) has to be chosen; then,
a computable expression for the corresponding posterior density for 7(¢ | y,,,) given a random
sample y,,, = {y1,...,ym} of m observation from p(y | x, ) has to be found. In words, we
have to provide a reference analysis of the mixture model p(y | «, ¢). This is done in the next
section.

3. REFERENCE ANALYSIS OF A MIXTURE OF NORMAL KERNELS
3.1. Mixture of Normal Models with Known Locations

For a given known vector x = {x1,...,x;} € R* and unknown ¢ > 0, consider the mixture
of k normal densities centered at each of the z;’s, with common variance ¢, that is

1< 1<
y\w _EZ y[:z:],<b _%Z{

This is a probability model with a single unknown parameter ¢ > 0, whose first two moments
are immediately found to be

b1/

o[- UL yen o)

?rlr—‘

k
Z —-7)% (17)

The likelihood function which corresponds to a sample y,,, = {y1,. .., ym} of size m is

m k m k ¢71/2 dij
L(¢, x, Ypn) ZE{ ;qyylxj,cb)}mg{;\/ﬁexp[—%]}, (18)

k
Ely|. 6] =7 fzéz Varly|z, 6] = £+ 6, 5* =

where d;; = (y; — x;)%. Clearly, L(¢,},y,,) is a computationally formidable quantity for
large k and m values; it is known, however that, by definition, the reference prior only depends
on the asymptotic behaviour of the likelihood function.

3.2. Asymptotic Behaviour of the Likelihood Function
The probability density of an inverted gamma distribution with parameters « and (3 is given by

Ig(6| o, B) = % e epl-d) a0, >0

therefore, the likelihood function (18) may be reexpressed as

mo gk m ¢ 1 d;
TSRS (IS IID B 1 (p o MMCIEICS)

=1 =1 j=1

L)

—o IS ()5 P} v
1= J= 1]

thus, the likelihood function is proportional to the product of m mixtures of £ inverted gamma
densities Ig(¢ | a, b;;) with a = 1/2, b;; = d;;/2, and weights inversely proportional to /d;;.
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The logarithmic divergence of an inverted gamma density Ig(¢ | «, 3) from a general density
p(¢) is given by
0
p(¢)
Sap) = [ (o) 1og 2 do
@O =), PO 0 B) (20)
= c+alogf —logT[a] — (a + 1)E[log ¢] — FE[¢"],

where c is an irrelevant constant; this is minimized if, and only if,

Ellog¢] =log 8 — ¥(),  E[p '] =a/B, (21)

where /() is the digamma function. The right hand sides of (21) are, respectively, the expected
values of {log ¢} and {¢~'} when ¢ has an inverted gamma Ig(¢ | o, 3) distribution; thus,
according to the commonly accepted logarithmic divergence criterium, (Bernardo, 1987; West
and Harrison, 1989, Ch. 12) to approximate the density of a positive random quantity ¢ by an
inverted gamma distribution, one should match the expected values of both {log ¢} and {¢~1}.

Taking p(¢) = >_; p; 1g(¢ | %, Bj), it follows, after some algebra, that the best approxima-
tion to this mixture of inverted gammas by a single inverted gamma Ig(¢ | o, (3) is obtained by
the solution to the non-linear equation system

(0)
log @ — () = log } —¢(%>+log%, B—2a 3" (21)

where
8O = exp[SipslogBl, BV = (3p; 871 (22)

are, respectively, the weighted logarithmic and harmonic means of the 3;’s.
An approximate explicit solution to (21) may be obtained making use the Stirling approxi-
mation to the digamma function, namely, log ¢ — 1 (t) ~ (2t)~!; this leads to

0) -1
{a~t/2, B~ t3V}, t= (1—|—log%) . (23)

The use of (23) to approximate the mixtures of inverted gammas in (19) leads to

Lo x " ][ { S, te(s] - 90)) ~ o T {1etoaih) -
=1 j=1 i=1

ox @™ ¢ Ut exp[—Xb; /@] o< ¢ exp-mb/g),

where @ = m~'%;a; and b = m~1'Y; b;, with

(1) 0) _
t; t; dl _ dz !
ai:§’ bi = 9 tl_<1+logd(1)> ’
(0) k (1) i -1 a2 (25)
4y = exp [Z wjj log dzy}, d;’ = [Z wij d;; } o Wij = Sk :
j=1 Jj=1 J=1 "ij

and where, as before, d;; = (y; — )%



3.3. Reference Distributions for ¢

The asymptotic approximation to the likelihood function derived above provides a heuristic
argument to obtain the reference prior. Indeed, it follows from (24) that, for large sample
sizes m, the posterior distribution of ¢ will approximately proportional to =" % exp|—m b/¢],
which has a maximum at qAb = b/a, the approximate maximum likelihood estimate of ¢. Taking
logarithms and expanding around QAﬁ, one finds, after some algebra,

mh(3)
2

(6—0)% hi¢)=as¢ 2, (26)

where c is some irrelevant constant. Hence (Bernardo and Smith, 1994, p. 314) the required
reference prior should be

logp(¢ | xr, Ypm) = ¢+

() o h(@)"? o o7, (27)
as one could possibly expect for an scale-type parameter. A more detailed analysis of the
asymptotics involved would be necessary for a formal proof.

By Bayes’ theorem (¢ | , y,,) < 7(¢) L(¢, k, y,,); thus, combining (27) and (24) we
have an approximate expression for the reference posterior distribution, immediately identified
as an inverted gamma density, namely

()| &y, Yp) X ¢~ ¢ exp[—mb/] o Ig(¢ | ma, mb) (28)

3.4. Approximate Reference Predictive Distribution

Introducing the approximation (28) in the procedure described by (10), and using the known fact
that the mixture of normal distributions with inverted gamma distributed variances produces an
Student ¢ distribution, the required reference predictive distribution may be approximated by

k [0.9]
w(elwnyn) = 1 3 [ NGl 0)1elo | ma.mb) do
j=1
(29)

k
1
=7 Z St(x |z, Vd, mt)
j=1

where

Z?& ti

In words, for a given partition of (xj,y,,) of the data set «, the desired reference predictive
density may be approximated by a mixture or Student kernels centered at each of the z;’s, with
a scale v/d, the squared root of a weighted mean of weighted harmonic means of the square
distances (y; — xj)2, which plays the same central role as that played by the ‘window’ in
conventional kernel density estimation.

1 & Mot d(l)
_ Zti; d — Zz-l et S (30)
m =1

If n, random partitions {(wg), y,(fl)), l=1,...,n,} of the same size k are performed, we
can use (12) to obtain

np k
el a) = -3 pte o, o) = - Z%Z (2l V" mi®) ()

3

We finally need a procedure to select k. This is developed in the next section.
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4. PERFORMANCE

The choice of k is a particular case of the general problem of model choice. It has often been
argued (see e.g., Bernardo and Smith, 1994, Ch. 6 and references therein) that model choice
may usefully be treated as a decision problem where the utility function is a proper scoring rule
evaluating the behaviour of the corresponding predictive distribution.

Moreover (Bernardo, 1979a; Bernardo and Smith, 1994, Sec. 3.4), it may be argued that the
logarithmic scoring rule is the appropriate proper scoring rule to use in pure inference problems;
it follows that the expected utility of using an approximate model p(x) to predict the value of an
observable random quantity = with density p(z) may reasonably be assumed to be of the form

u(p) = a /X p(z) log[p()] dzx + b, (32)

where a > 0 and b are arbitrary constants. If the true distribution p(x) is unknown but a random
sample x,, = {x1,...,x,} of observations is available, then one may use the corresponding
Monte Carlo approximation

(p) ~ a % S log[p(e; | @n1(7))] dz + b (33)
=1

where p(x; | ,—1(7)) is the predictive density of ; based on the set all the other observations
Tp—1(j) = @y — {z;}.

Equation (33) may be also seen as a cross-validation procedure, where the predictive value
of the model p(+) is judged by its average performance when predicting one observation based
on all the others.

The constants a and b in equations (32) and (33) may arbitrarily be chosen to define some
easily understandable scale and origin. In the examples which follow, we use the values a and
b defined by the equations

W{N(-10,1),0} =1,  w{N(-]0,1),3} =0, (34)

leading to
a=2/9 =~ 0.2222, b=1+log(2m)/9 ~ 1.2042. (35)

Thus, the utility of predicting the value of an observable quantity by a standard normal is set
to be one if centered at its realized value, and zero if centered three standard deviations apart;
consequently, a negative value would indicate a probabilistic prediction which associates to the
actual observation a smaller density than the density of a standard normal at the point 3.

5. EXAMPLES
5.1. Simulated Data from a Mixture of Two Normals

In his interesting report on Bayesian prediction using mixtures of Dirichlet process models,
West (1990) makes repeated used of the sample of 14 observations

x ={-1.39,-0.85, — 0.54,—0.32, —0.31, —0.30, —0.19,
—0.02, 0.54, 3.65, 4.21, 4.30, 4.98, 5.51}
generated from the mixture of two normals p(z) = 0.7N(z|0,1) + 0.3N(z |5, 1).

We used (33), with the constants a and b set to the values provided by (35), to evaluate the
behaviour of the reference predictive distribution 7(x | k, x) given by (31) for k = 1,...,12.
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Table 1. Mean and standard deviations of the predictive utilities 20 reference predictive estimates for

partition sizes k = 1, ...,12. The expected utility of the conventional kernel estimate is 0.709.
k U Su
1 0.623 0.007
2 0701 0.011
3 0.742 0.009
4 0.761 0.010
5 0.765 0.005
6 0.764 0.008
7 0.767 0.006
8 0.766 0.006
9 0.762 0.005

10 0.753 0.007
11 0.739 0.006
12 0.698 0.008

The procedure was repeated 20 times; Table 1 shows the mean and standard deviations of the
estimated expected utilities. It may be appreciated that the expected utility is maximized with
k = T leading to an expected utility 0.767. We also used (33) and (35) to evaluate the behaviour
of the conventional kernel estimate provided by (5) and (7); this lead to an expected utility
0.709.

Figure 1 shows the density from which the data were actually generated, its conventional
kernel estimate and the one of the reference predictive densities computed with the optimal
partition size, k = 7. It is easily appreciated that the Bayesian solution provides a much better
match to the true density.

Figure 1. Analysis of 14 observations simulated from the mixture of two normals (thin continuous line)
p(z) = 0.7N(z|0,1) = 0.3 N(z| 5, 1). Conventional kernel estimate p(x | x) (dashed line), and Bayes
reference estimate (thick continuous line) 7(x | x).
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5.2. Astronomical Data

Postman et al. (1986) describe a set of 82 measures of speed of galaxies, reproduced in Table 2,
which have attracted considerable discussion over their underlying structure. We will now
illustrate the proposed methodology with these data; for alternative Bayesian analysis see Roeder
(1992), Escobar and West (1995), and Roeder and Wasserman (1997).

Table 2. Ordered Speeds of Galaxies in the Corona Borealis Region (x 10 m/seg)

9.172 9350 9.483 9.558 9.775 10.227 10.406 16.084 16.170 18.419
18.552 18.600 18.92 19.052 19.070 19.330 19.343 19.349 19.440 19.473
19.529 19.541 19.547 19.663 19.846 19.856 19.863 19.914 19.918 19.973
19.989 20.166 20.175 20.179 20.196 20.215 20.221 20.415 20.629 20.795
20.821 20.846 20.875 20.986 21.137 21.492 21.701 21.814 21.921 21.960
22.185 22209 22242 22.249 22314 22374 22495 22746 22.747 22.888
22914 23206 23241 23.263 23.484 23.538 23.542 23.666 23.706 23.711
24.129 24285 24289 24366 24.717 24990 25.633 26.960 26.995 32.065
32.789 34.279

As with the simulated data above, we used (33) and (35), to evaluate the behaviour of the
reference predictive distribution 7(x | k, ) given by (31) for k = 1,...,80. It was found that
the best partition size corresponds to k = 72 leading to an expected utility 0.633. We also
used (33) and (35) to evaluate the behaviour of the conventional kernel estimate provided by
(5) and (7); this lead to an expected utility 0.604.

Over the background of a histogram of the data, Figure 2 shows its conventional kernel
estimate and the reference predictive density computed with the optimal partition size, k = 72.
It is easily appreciated that the proposed Bayesian solution suggests that, to optimize predictive
power, the model has to be far more complex than the tri-modal solution given by conventional
kernel estimation; speed galaxies appear to have many clusters, and those are duly reflected by
the reference predictive distribution. Indeed, a trimodal solution, similar to that obtained by
kernel estimation is obtained, for instance, with £ = 25 (see Figure 3) but its expected utility
is only 0.609 showing its smaller predictive power. If simplicity, rather than just predictive
power, is to be taken into consideration, this may be done within the Bayesian framework by
appropriately modifying the utility function.

It is important to note that the Bayesian solution is a predictive distribution, from which
one is entitled to derive quantitative probabilistic predictions; since the reference predictive
m(x | k, ) is a mixture of Student densities this does not even require numerical integration, but
may be done in terms of the Student distribution function. Thus, the probability that the speed
of a galaxy is, say, larger than 35, is simply

(0.9}
Prlz > 35| 2] ~ / (x| 72,2) da = 0.0012.
35

This predictive interpretation, central to most scientific data analysis is not justifiable from a
conventional kernel density estimation viewpoint.
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Figure 2. Speeds of Galaxies in the Corona Borealis Region n = 82. Conventional kernel estimate
(dashed line) and Bayes optimal reference estimate (k = 72, continuous line).

20 30 40 50 60
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Figure 3. Speeds of Galaxies in the Corona Borealis Region n = 82. Conventional kernel estimate
(dashed line) and Bayes reference estimate for k = 25 (continuous line).
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