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0.1 Introduction

In objective Bayesian analysis, the prior distribution is chosen to represent
‘minimal information,’ the idea being that this allows Bayesian inferences
to be made based only on the model (and data). This is thus the part of
Bayesian analysis that is compatible with the BFF agenda, since Fiducial and
Frequentist analyses are likewise based (primarily) on the model (and data).

There have been many efforts to formally define what it means to be objec-
tive and to then develop objective prior distributions. Our belief is that this
is generally misguided; there is no unambiguous objectivity. The best one can
do is to find prior distributions that represent minimal information, in some
sense, and which have desirable properties, such as resulting in statistical pro-
cedures that have good frequentist performance. Once found, such priors can
be the conventional priors to use in objective Bayesian analysis, in the sense
that we professionally agree to use them as the objective priors in specified
inference problems.

The rest of this section presents background issues that are useful for the
development and understanding of objective Bayesian analysis. Section 0.2 re-
views some of the most prominent approaches to objective Bayesian analysis
that have been developed. Section 0.3 presents our preferred approach, called
the reference prior approach. The reference prior approach can result in dif-
ferent prior distributions for different unknown parameters in a model, which
can be unwieldy in practice. Hence, in Section 0.4, approaches to developing
overall objective priors are discussed, with hierarchical normal modeling being
highlighted.

0.1.1 Conditioning and Frequentist Performance

Objective Bayesian inference is closely tied with frequentism in various ways,
as will be seen throughout the chapter. Here we discuss two general issues
needed to understand the relationship.

0.1.1.1 Conditioning

Conditional inference is a crucial concept in statistics, but is often neglected.
This is partly because conditioning occurs automatically in Bayesian analysis
and is, hence, not taught there. On the other hand, in the frequentist paradigm
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conditioning is very difficult and there is no established theory as to how to
choose conditional procedures. It is useful to begin with a simple example,
taken from [13], which discusses conditioning in general.

Example 0.1 There are two observations, x1 and x2, having distribution

xi =

{
θ + 1 with probability 1

2

θ − 1 with probability 1
2

.

Consider the confidence set, for the unknown θ, given by

C(x1, x2) =

{
the point { 1

2
(x1 + x2)} if x1 ̸= x2

the point {x1 − 1} if x1 = x2.

The frequentist coverage of this confidence set can be shown to be

Pr(C(x1, x2) contains θ | θ) = 0.75.

This is a very inadequate report, once the data is observed. Indeed, ob-
serve that, if x1 ̸= x2, then it is certain that their average is equal to θ,
so the confidence should then be given as 100%. Conversely, if x1 = x2, θ
could be the data’s common value plus one or the common value minus
one, each of which is equally likely to have led to this result.

A common way to obtain sensible frequentist answers here, is to define
the conditioning statistic s = |x1 − x2| chosen to measure the ‘strength
of evidence’ in the data: s = 2 reflects data with maximal evidential
content, while s = 0 reflects data of minimal evidential content. One then
defines frequentist coverage in the usual way, but does so conditional on
the strength of evidence s. An easy computation gives this conditional
confidence, for the two distinct cases, as

Pr(C(x1, x2) contains θ | s = 2, θ) = 1

Pr(C(x1, x2) contains θ | s = 0, θ) = 1
2
.

Note that the unconditonal coverage is still 75% (the report of 100%
occurs half the time and the report of 50% occurs half the time), so these
conditional reports are still proper frequentist reports. But clearly the
conditional reports are much more informative.

Finding good conditioning statistics in complex problems is very difficult,
so that the conditional frequentist theory of statistics is underdeveloped. In
contrast the objective Bayesian approach automatically conditions properly.

Example 0.2 Example 0.1 continued. The objective prior for this ex-
ample is π(θ) = 1 (since θ is a location parameter — see Section 0.2.4).
Application of Bayes theorem shows that, if x1 ̸= x2, the posterior dis-
tribution for θ gives probability one to the point (x1 + x2)/2 while, if
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x1 = x2, the posterior distribution gives probability 1/2 each to the com-
mon value of the data plus 1 and the common value minus 1. Thus the
objective Bayesian confidence statements for C(x1, x2) are 1 and 0.5 for
the two cases, respectively, which is the correct answer.

In the above example, the objective Bayesian analysis produced the same
stated confidences as did the optimal conditional frequentist procedure, auto-
matically conditioning correctly. This is not a coincidence. Quite often, objec-
tive Bayesian procedures yield results that are (nearly) optimal (conditional)
frequentist answers, and often the conditional frequentist results could not be
easily obtained in any other way.

0.1.1.2 Frequentist Performance

Objective Bayesian priors are often chosen to achieve (unconditional) fre-
quentist goals. For instance, ’frequentist-matching’ priors (see Section 0.2.3)
are priors that produce Bayesian credible sets with good frequentist proper-
ties. Reference priors will also be seen to yield procedures that have excellent
frequentist performance.

Objective Bayesian inference can also overcome some problems that face
frequentists. Here is an example.

Example 0.3 A Variance Components Problem: For i = 1, . . . ,m,

xi ∼ Normal(xi | µi, 1) and µi ∼ Normal(µi | ξ, τ2),

the µi and ξ being means and 1 and τ2 being variances. The marginal
density of xi, given ξ and τ2, is

m(xi | ξ, τ2) =
∫

N(xi |µi, 1)N(µi | ξ, τ2) dµi = N(xi | ξ, 1 + τ2) .

The marginal likelihood for the full data x = (x1, . . . , xm), and with
s2 =

∑
(xi − x̄)2, is then

m(x | ξ, τ2) =
m∏
i=1

N(xi | ξ, 1+τ2) ∝
1

(1 + τ2)m/2
exp

{
−n(x̄− ξ)2 + s2

2(1 + τ2)

}
.

(1)

The standard maximum liklihood estimate (mle) ξ̂mle = x̄ is fine, but

τ̂2mle = max{0, s
2

m − 1}, the marginal maximum likelihood estimate of τ2,
is problematical. This is particularly so if s2/m < 1, in which case the
mle would be τ̂2mle = 0. Setting τ2 to 0 is equivalent to declaring that
µ1 = . . . = µp exactly (since µi ∼ Normal(· | ξ, τ2)); this would be silly.

Indeed, in this situation, there is actually a great deal of uncertainty
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about τ2. This can be seen by looking at the marginal likelihood of τ2

found by integrating (1) over ξ, resulting in

m(x | τ2) ∝ (τ2 + 1)−(m−1)/2 exp

{
− s2

2(τ2 + 1)

}
. (2)

0 5 10 15 20

0.02

0.04

0.06

0.08

τ2

FIGURE 1
Marginal likelihood function of τ2 when p = 5 and s2 = 5 is observed.

For illustration, Figure 1 gives this marginal likelihood when m = 5, and
s2 = 5. It is mostly decreasing away from 0, but not very quickly, indicat-
ing that there is considerable uncertainty about τ2 even though τ̂2mle = 0.
Frequentist methods have difficulty incorporating the uncertainty in τ2

when the maximum of the likelihood is achieved at a boundary, while
objective Bayesian analysis results in a posterior distribution for τ2 that
correctly reflects the uncertainty in the likelihood.

While a value of s2/m ≤ 1 is somewhat unusual here (if, for instance,
m = 5, n = 1 and τ2 = 1, then Pr(s2/5 < 1) = 0.264), it is common in
variance component models with multiple variances to have at least one
mle variance estimate equal to 0.

Another frequentist use of objective Bayesian procedures is as an alternative
to asymptotics. Asymptotics is often used to develop statistical procedures,
but the performance of the procedures with small or moderate sample sizes
may well be uncertain. The objective Bayesian approach is an attractive al-
ternative to asympotics, for two reasons.

First, objective Bayesian procedures typically automatically have the de-
sired asymptotic properties. For instance, the central limit theorem was first
developed by [26] as a normal approximation to the posterior distribution;
this approximation is identical to the frequentist central limit theorem com-
monly taught today. Objective Bayesian procedures will typically even have
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the correct asymptotics when the problem is irregular (i.e., the usual central
limit theorem does not hold); Example 0.17 provides an illustration. Note that
objective Bayesians need not do any asymptotic computations; the Bayesian
procedures will automatically yield the correct asymptotic answer if the sam-
ple size is large enough for the asymptotics to apply. The second motivation
for using objective Bayesian analysis is that the objective Bayesian answers
are still likely to be sensible when the sample size is too small for asymptotics
to apply.

0.1.2 Informal Objective Bayesian Solutions

A variety of ad hoc methods have been proposed for choosing a default prior
distribution and it is useful to briefly discuss some of them so as to see the
problems that can be encountered. Use of a constant prior distribution is
the most common objective Bayesian method and will be discussed in Sec-
tion 0.2.1. While a constant prior is often fine, examples will be seem in which
the constant prior is inadequate.

0.1.2.1 Truncation of the Parameter Space

If the parameter space is unbounded, there is often worry about using, say,
a constant prior, because the prior then has infinite mass and there is no
guarantee that the resulting posterior distribution will be proper. A common
‘solution’ is to, instead, choose the prior to be constant over some (large)
bounded region of the parameter space, since it will then be proper (after
normalization). This does not really solve the problem, however, because, if
the posterior resulting from the constant prior on the entire parameter space
is improper, then inferences arising from the truncated prior will strongly
depend on the (arbitrary) choice of the truncation point. Thus, to use this
approach one would need to perform careful sensitivity studies to determine
the effect of the truncation points.

0.1.2.2 Vague Proper Priors

Use of vague proper priors is popular, the following being a typical example.

Example 0.4 Normal mean. Suppose the problem is to estimate a
normal mean θ, with known variance. The standard objective prior is
π(θ) = 1. A vague proper prior alternative is to use the N(θ | 0,K) prior
distribution, with a large value of K. In estimation problems this will
yield essentially the same answer as the constant prior and is thus rea-
sonable to use but, in hypothesis testing, such vague proper priors can
be very bad (see the chapter “Objective Bayesian Testing and Model
Uncertainty” in this book).

It is not uncommon to see vague proper priors used that are an approxima-
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tion to an inferior default prior. The use of the vague proper prior then is also
inferior and its use can hide the problem. Here is a commonly encountered
example.

Example 0.5 Example 0.3 continued. In the variance components ex-
ample, consider priors of the form π(ξ, τ2) = π∗(τ2) (constant in ξ). The
resulting posterior distribution for τ2 is

π(τ2 | x) ∝
∫

1

(1 + τ2)m/2
exp

{
−n(x̄− ξ)2 + s2

2(1 + τ2)

}
π∗(τ2)dξ

∝ 1

(1 + τ2)(m−1)/2
exp

{
− s2

2(1 + τ2)

}
π∗(τ2) .

A commonly used prior for a normal variance σ2 is 1/σ2, and so it is
tempting to choose π∗(τ2) = 1/τ2. This results in an improper posterior,
however, because there is a non-integrable singularity at zero,∫ ϵ

0

π(τ2 | x)dτ2 ≈ exp

{
−s

2

2

}∫ ϵ

0

1

τ2
dτ2 = ∞ .

A commonly used vague proper alternative is π∗(τ2) ∝ τ−2(1+ϵ)e−ϵ/τ2

,
and the resulting posterior will be proper. However, this posterior gives
almost all of its mass to a small region near 0, and will essentially ignore
the data. Thus the vague proper prior does not fix the problem, and may
even cause the problem to be hidden. Instead, one should simply use a
good objective prior for the problem. The simplest choice is π∗(τ2) =

1/
√
τ2, which results in an excellent objective posterior distribution.

Another commonly used ad hoc vague proper prior is to choose a flat prior
(e.g., a contant) that ‘spans the range of the likelihood function.’ The rationale
for doing this is typically stated to be a desire to reduce the influence of the
prior, by choosing a prior that is compatible with the likelihood function. It is
not really possible to evaluate this strategy. On the one hand, it may often be
better than using an arbitrarily chosen objective prior (e.g. a constant prior),
but it corresponds to a disturbing double use of the data.

0.1.3 Justifying Posteriors from Improper Priors

When π(θ) is improper, Bayes theorem no longer applies, and so it is not
obvious how to justify use of the posterior density

π(θ |x) = p(x |θ)π(θ)∫
Θ
p(x |θ)π(θ) dθ

. (3)

For this expression to define a probability density, it is clearly necessary that

p(x) =

∫
Θ

p(x |θ)π(θ) dθ <∞ , (4)
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and we take this as a minimal requisite condition for use of the improper prior
to make sense (but see [27] for counterarguments).

This section presents a strong justification for use of (3) with improper pri-
ors, showing that π(θ |x) is the limit of proper posteriors arising from proper
priors that approximate the improper π(θ). To this end, for an improper
prior π(θ), consider an increasing sequence of subsets of the parameter space
{Θ1,Θ2 . . .}, such that

Θi ⊂ Θi+1,

∫
Θi

π(θ) <∞, ∀ i ≥ 1, and lim
i→∞

Θi = Θ. (5)

Then, π(θ) can be normalized within each of the Θi’s to produce the sequence
of proper priors {π1(θ), π2(θ), . . .} defined by

πi(θ) =


π(θ)∫

Θi
π(θ) dθ

if θ ∈ Θi

0 otherwise.

Since the πi(θ)’s are all proper probability distributions, Bayes theorem can
be applied, given the data x, to obtain the corresponding sequence of posterior
densities {π1(θ |x), π2(θ |x), . . .} defined by

πi(θ |x) =


p(x |θ)πi(θ)∫

Θi
p(x |θ)πi(θ) dθ

if θ ∈ Θi

0 otherwise.

Here is the type of convergence of distributions that we consider.

Definition 0.1 Reverse KL Convergence. A sequence of probability distri-
butions, defined by their density functions {pi(x)}∞i=1, is said to reverse KL
converge to a probability distribution with density p(x) whenever

lim
i→∞

∫
X
pi(x) log

pi(x)

p(x)
dx = 0 .

Theorem 0.1 Let π(θ) be an improper prior on Θ, having a sequence of
subsets satisfying (5). If

∫
Θ
p(x |θ)π(θ) dθ < ∞ at x, then {πi(θ |x)} is

reverse KL convergent to π(θ |x) at x.

This theorem, from [7], is quite powerful in that it says that only the minimal
condition (4) is needed for reverse KL convergence; thus if the formal posterior
is proper, its use is justified.
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0.2 Approaches to Objective Bayesian Analysis

There have been many efforts to develop and implement objective Bayesian
analysis. Some of the more prominent approaches are discussed in this section.
Discussion of our favorite approach, called reference analysis, is delayed until
Section 0.3. Two other approaches, the confidence distribution approach and
the fiducial approach, can also be considered to be attempts at implementing
objective Bayesian analysis, but we do not present them here because they
are extensively discussed in other chapters of the handbook.

0.2.1 The Constant Prior and Inverse Probability

The first clear Bayesian was the Reverend Thomas Bayes. His paper (published
posthumously) An essay towards solving a problem in the doctrine of chances
([1]) was the first unambiguous statement and use of what is now known as
Bayes theorem.

The paper was also a significant work in objective Bayesian analysis. In
today’s language, the paper considered the basic binomial problem of observ-
ing x from p(x | θ) = Bi(x |n, θ), with θ unknown. While inference concerning θ
given an observed x (via Bayes theorem) was one focus of the paper, the other
focus was that of coming up with a reasonable objective prior distribution,
π(θ), for θ. Bayes argued that the marginal distribution of x should be uni-
form, and showed that π(θ) = 1 achieved this; this was thus the recommended
objective prior.

The real inventor of objective Bayesian analysis, as a paradigm for statistical
analysis, was Simon Laplace. In a series of papers culminating in Théorie
Analytique des Probabilités ([26]), he invented a statistical paradigm that was
to dominate statistics for well over a century. The approach of Laplace to
statistical inference was essentially objective Bayesian analysis with utilization
of a constant prior density for all unknown parameters of statistical models.
Laplace did not do this blindly, but rather argued that one should choose
a parameterization of the problem in which different values of the unknown
were equally likely.

To distinguish Laplace’s method from ordinary probability reasoning (com-
puting probabilities of various data arising from the model) Augustus de Mor-
gan ([20]) called reasoning from the data to the model inverse probability. This
name reigned until roughly 1950, when it became replaced by ‘Bayesian anal-
ysis’ for rather unclear reasons, as extensively discussed in [22].

Inverse probability (i.e., objective Bayesian analysis using a constant prior
density) was arguably the dominant mode of formal statistical inference until
the 1920’s ([17], [23]). While dominating statistical practice, inverse proba-
bility was not without its critics. Much of the criticism was ill-placed, but at
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least some of the philosophical criticisms were legitimate. Foremost among
these criticisms was the fact that the statistical answers arising from the use
of inverse probability will depend on the choice of the parameterization that
is used for the statistical model.

Example 0.6 Inference on a binomial parameter. Suppose x is dis-
tributed according to the binomial Bi(x |n, θ) distribution. Inverse prob-
ability says use the objective prior π(θ) = 1. Suppose someone chose
ψ(θ) = 2

πArcSin(
√
θ) as the unknown parameter, rather than θ. Inverse

probability then says use the prior π(ψ) = 1 (note that 0 < ψ < 1).

To see that this will typically result in different Bayesian answers, make
the change of variables from ψ back to θ. With this change of variables,
the objective prior π(ψ) = 1 transforms to

π(θ) = 1× ψ′(θ) = π−1 θ−1/2(1− θ)−1/2,

which is the Be(θ | 1
2 ,

1
2 ) density. The posterior mean for θ corresponding

to the uniform prior can be shown to be (x + 1)/(n + 1), while that
corresponding to the Be(θ | 1

2
, 1
2
) prior will be (x + 1

2
)/(n + 1

2
), which

are clearly different. Of course, these are typically very close; if x = 5
and n = 30, for instance, the two posterior means are 0.188 and 0.177
respectively, and the difference is negligible from a practical perspective
(since the posterior standard errors are on the order of 0.07). Still, it is
unappealing to have different answers depending on the rather arbitrary
choice of parameterization.

0.2.2 The Jeffreys-rule Prior

In the 1930’s, Harold Jeffreys, being aware of the inconsistencies that could
arise if one always used the constant prior, sought a ‘rule’ to specify an objec-
tive prior which would give the same results, no matter which parameteriza-
tion is chosen. In [25] he developed such a rule, for any continuous parameter
vector θ = (θ1, . . . , θm) ∈ Θ ⊂ IRm, based on the Fisher information matrix
I(θ), namely the m×m matrix having elements (assuming they exist)

I(θ)ij = Ex | θ
[
− ∂2

∂θi∂θj
log p(x |θ)

]
=

∫
X

[
− ∂2

∂θi∂θj
log p(x |θ)

]
p(x |θ)dx. (6)

It can easily be shown that the prior distribution

π(θ) ∝ |I(θ)|1/2, (7)

called the Jeffreys-rule prior, is invariant under one-to-one reparameterization
and so will result in coherent answers across different parameterizations.

The Jeffreys-rule prior can be proper (when normalized) or improper. When
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improper, it has the surprising property of virtually always resulting in a
proper posterior π(θ |x) ∝ p(x |θ) |I(θ)|1/2, i.e.,

∫
Θ
p(x |θ)|I(θ)|1/2 dθ <∞.

When one has n iid observations, I(θ) is just n times the Fisher information
for a single observation. Since proportionality constants like n are irrelevant
if the prior is improper and are renormalized anyway if the prior is proper,
one only needs to compute the Fisher information for one observation.

0.2.2.1 The Single Parameter Case

In one parameter regular continuous models, {p(x | θ), θ ∈ Θ ⊂ IR, x ∈ X},
where the sampling space X does not depend on the parameter θ, and the
model probability density is twice continuously differentiable with respect to
θ, Jeffreys rule (7) reduces to

π(θ) ∝
√
I(θ), I(θ) = Ex | θ

[
− ∂2

(∂θ)2
log p(x | θ)

]
. (8)

Example 0.7 Jeffreys-rule prior for the parameter of a Poisson model.
Let x = (x1, . . . , xn) be a random sample of size n from a Poisson prob-
ability model Pn(x | θ) = e−θθx/x!. Recalling that, in the iid case, it
suffices to compute the Fisher information for a single observation, and
noting that E[x | θ] = θ, the Fisher information is

I(θ) = Ex | θ
[
− ∂2

(∂θ)2
log

e−θθx

x!

]
= Ex | θ

[
x

θ2

]
=

1

θ
.

Thus, using (8), the Jeffreys-rule prior is the improper prior

π(θ) ∝
√
I(θ) = θ−1/2.

Example 0.8 Location models. Let x = (x1, . . . , xn) be a random sam-
ple from a location model p(x | θ) = h(x− θ), x ∈ IR, θ ∈ IR. (8) gives

π(θ) ∝
[∫ ∞

−∞

h′(x− θ)2 − h(x− θ)h′′(x− θ)

h(x− θ)
dx

]1/2
,

and changing the integration variable to y = x−θ shows that the integral
does not depend on θ and, hence, the resulting prior is proportional to
some constant.

Example 0.9 Scale models. Consider the model p(x | θ) = θ−1g(x/θ).
This is a general scale model and can be transformed to the location
model p(y |ϕ) = g(exp{y − ϕ}), with the change of variables y = log x
and ϕ = log θ. For ϕ, the Jeffreys-rule prior is constant and changing
variables back to θ results in π(θ) ∝ π(ϕ)|dϕ/dθ| ∝ θ−1, which is thus
the Jeffreys-rule prior for scale models.
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As stated earlier, Jeffreys rule cannot be applied to non-regular problems.
This includes those situations where the sampling space X depends on the
parameter.

Example 0.10 Uniform data on [0, θ]. Let x be a sample from the uni-
form distribution on the real interval (0, θ), so that p(x | θ) = θ−1, if
0 < x < θ, and zero otherwise. The sample space X = (0, θ) depends on
the parameter θ and, therefore, Jeffreys rule (8) is not applicable. (Blind
use of the formula yields a negative information function.) This will be
considered, again, in Section 0.3.2, where the reference prior approach
will be shown to yield the sensible objective prior π(θ) = 1/θ.

0.2.2.2 The Multi-parameter Case

Although Jeffreys rule (7) does provide a multivariate invariant objective
prior, the results are very often unappealing.

Example 0.11 Inference on a normal mean, with variance unknown. Let
x = (x1, . . . , xn) be a random sample of size n from a normal distribu-
tion N(x |µ, σ2), both parameters unknown. Using (6), the corresponding
Fisher information matrix for a single observation is

I(µ, σ2) =

(
1/σ2 0
0 1/[2σ4]

)
, (9)

and, hence, by (7), the Jeffreys-rule prior is

π(µ, σ2) ∝ |I(µ, σ2)|1/2 ∝ σ−3. (10)

If the prior is of the form π(µ, σ2) ∝ σ−α, for some α > 0, Bayes
theorem yields a joint posterior

π(µ, σ2 |x, α) ∝ σ−(n+α) exp
{
− n

2σ2
[s2 + (x− µ)2]

}
, (11)

where x is the sample mean and s2 =
∑

(xi − x)2/n. Integrating out σ2,
the corresponding marginal posterior for µ is (provided n + α > 3), the
Student t density

π(µ |x, α) = St(µ |x, s/
√
n+ α− 3, n+ α− 3) . (12)

The use of (10) (α = 3) thus leads to π(µ |x) = St(µ |x, s/
√
n, n).

Jeffreys was unhappy with this result; he mentions that this is against
the ‘standard practice’ of removing one degree of freedom from the sample
size per estimated parameter (which is the result for α = 2). This led Jef-
freys to recommend the use of α = 2, i.e., of π(µ, σ2) ∝ σ−2, even though
it contradicted his multivariate rule. His argument to rationalize this
choice was to treat µ and σ independently. This Jeffreys-recommended
prior has now become known as the Jeffreys independence prior.
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Example 0.12 Multinomial distribution. Suppose x = (x1, . . . , xm) is
multinomial Mu(x |n, θ1, . . . , θm) (suppressing the (m + 1)st cell count,
xm+1 = n −

∑m
j=1 xj , and probability, θm+1 = 1 −

∑m
j=1 θj , since they

are determined by the others) so that

p(x |n, θ1, . . . , θm) =
n!∏m

j=1 xj !(n− Σxj)!

m∏
j=1

θ
xj

j (1− Σθj)
n−Σxj .

Using (6), computation of the Fisher information matrix yields

I(θ1, . . . , θm) =
n

1− Σθj


1+θ1−Σθj

θ1
1 . . . 1

1
1+θ2−Σθj

θ2
. . . 1

. . . . . . . . . . . .

1 1 . . .
1+θm−Σθj

θm


with

|I(θ1, . . . , θm)| = nm
[(

1−
∑m

j=1
θj

)∏m

j=1
θj

]−1

.

Thus, the Jeffreys-rule prior, proportional to |I(θ1, . . . , θm)|1/2, is the
proper Dirichlet prior

πJ(θ1, . . . , θm) ∝
(
1−

∑m

j=1
θj

)−1/2 m∏
j=1

θ
−1/2
j , (13)

i.e., the Di((θ1, . . . , θm) | ( 1
2
, . . . , 1

2
)) distribution. Multiplying this by the

multinomial likelihood immediately yields that the corresponding poste-
rior distribution is Di((θ1, . . . , θm) | (x1 + 1

2
, . . . , xm + 1

2
)).

Again, (13) does not have appropriate behavior for an objective prior.
As a numerical illustration of this, consider the case where the sample
size n is small relative to the number of classesm+1; thus we have a large
sparse table. For instance, suppose n = 3 and m = 1000, with x240 = 2,
x876 = 1, and all the other xi = 0. The posterior means resulting from
using the Jeffreys-rule prior can be shown to be

E[θi |x] =
xi + 1/2∑m

j=1[xj + 1/2]
=
xi + 1/2

n+m/2
=
xi + 1/2

503
,

so that E[θ240 |x] = 2.5/503 , E[θ876 |x] = 1.5/503, and E[θi |x] =
0.5/503. So, cells 240 and 876 only have total posterior probability of
4/503 = 0.008, even though all 3 observations are in these cells.

The problem is that the Jeffreys-rule prior effectively added 1/2 to the
998 zero cells, making them more important than the cells with data!
That the Jeffreys-rule prior can encode much more information than is
contained in the data is hardly desirable for an objective analysis.
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In this section, we have seen two important examples — the normal model
with both parameters unknown and the multinomial model — where the mul-
tiparameter form of the Jeffreys-rule prior fails to provide appropriate objec-
tive posteriors. We actually know of no multiparameter example in which the
Jeffreys-rule prior has been verified to be satisfactory. In higher dimensions,
that prior always seems to be either ‘too diffuse’ as in the normal examples,
or ‘too concentrated’ as in the multinomial example.

0.2.3 Frequentist Matching

We have encountered situations where Bayesian credible sets are identical to
frequentist confidence sets and have the same stated confidence or coverage.
Ensuring that this holds, at least approximately, is the goal of the frequentist
matching approach to developing objective priors.

0.2.3.1 Definition of Matching Priors

It is customary to consider one-sided credible sets (−∞, θα(x)], for a real
parameter θ, where θα(x) denotes the α−posterior quantile of θ given x, i.e.,

Pr(θ ≤ θα(x) |x) = α, (14)

for α ∈ (0, 1). Now, consider C(x) ≡ (−∞, θα(x)] to be a frequentist confi-
dence set, with x random and arising from p(x | θ), for given θ. The frequentist
coverage probability of this confidence set is clearly

Pr(θ ≤ θα(x) | θ) . (15)

Note that, in (14), θ is random while x is fixed but, in (15), x is random
while θ is fixed. The idea is now to study how close the frequentist coverage
probability Pr(θ ≤ θα(x) | θ) is to α, the stated Bayesian coverage.

Definition 0.2 If the frequentist coverage (15), of the one-sided Bayesian
credible sets (−∞, θα(x)], is exactly equal to the Bayesian credible probability
α, then the Bayesian credible sets are said to be exact frequentist matching
(or ‘exact matching’ for short).

Example 0.13 Normal mean with variance known. Let x = (x1, . . . , xn)
be a random sample of size n from a normal distribution N(x |µ, σ2),
with µ unknown but σ2 known. Under the Jeffreys prior, π(µ) ∝ 1, Bayes
theorem yields π(µ |x) = N(µ |x, σ2/n). In this case, the posterior α-
quantile of µ given x is µα(x) = x+Zασ/

√
n, where Zα is the α-quantile

of N(0, 1). Algebra yields that the frequentist coverage is

Pr(µ ≤ µα(x) |µ) = Pr

(√
n(x− µ)

σ
≥ −Zα

∣∣ µ) = Pr

(√
n(x− µ)

σ
≤ Zα

∣∣ µ) = α,

∀µ ∈ IR and α ∈ (0, 1). Consequently, the constant prior for µ is an
exact matching prior for µ.



Approaches to Objective Bayesian Analysis 17

Having exact matching credible sets is actually a fairly common phe-
nomenon. Indeed, this occurs for a wide class of models that are ‘invariant’ to
certain transformations; see Section 0.2.4 for development. But more generally,
one must settle for a weaker form of matching.

Definition 0.3 Asymptotic Matching Prior. A prior π(θ) is an i-th order
matching prior for η = g(θ) if

P (η ≤ ηα(x) |θ) = α+ o(n−i/2), ∀θ ∈ Θ and α ∈ (0, 1). (16)

Note that virtually any prior with full support is matching up to an error term
of order O(n−1/2). What is typically thus sought is an error term of order
O(n−1), which would be a ‘first order’ matching prior. Higher order matching
is rare (except for the exact matching scenario), but sometimes possible.

0.2.3.2 Single Parameter Case

When there is a single parameter, [33] proved that a one-sided posterior cred-
ible interval arising from use of the Jeffreys-rule prior (proportional to the
square root of the Fisher information I(θ)), has the desired frequentist cov-
erage probability up to O(n−1). In fact, they showed that a prior π is a first
order matching prior if, and only if, the differential equation

∂

∂θ

( π(θ)√
I(θ)

)
= 0 (17)

is satisfied. Consequently, under the regularity conditions where the Fisher
information exists, the Jeffreys prior is the only first order matching prior.

0.2.3.3 Multiparameters

[29] was among first authors to study matching priors for the two parameter
case, where one is a parameter of interest and the other is a nuisance parame-
ter. [30] extended the results in [33] and [29] and introduced a method to find
a prior that is matching for a parameter to order O(n−1), in the presence of
nuisance parameters. [32] generalized this method by using a one-to-one trans-
formation of the parameter vector into a parameter of interest and a nuisance
parameter vector orthogonal in the sense of [16]. [18] derived a matching prior
for a smooth function η = η(θ) for θ = (θ1, · · · , θm), their result being stated
in the following theorem.

Theorem 0.2 Let I(θ) be the Fisher information for one observation, and
define the gradient vector

∇η = {∂η/∂θ1, · · · , ∂η/∂θm}t . (18)
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Also, define

ξ(θ) ≡ (ξ1, · · · , ξm)t =
I(θ)−1∇η√

(∇η)tI(θ)−1∇η
. (19)

Then a first order matching prior π(θ) for η must satisfy

m∑
i=1

∂

∂θi
[π(θ)ξi(θ)] = 0. (20)

A matching prior is not unique in the multiparameter case. Indeed, the class
of solutions of (20) is often quite large, growing with the dimension m. Also,
note that the equation to be solved depends on the parameter of interest, so
that there could be a different matching prior for each parameter of interest.
If the interest is in all the coordinates of θ, one might hope that there is a
simultaneous solution to all m matching equations. Sometimes this is so, but
not always (cf. [19]).

Example 0.14 Inference on a normal variance with unknown mean.
Consider again Example 0.11 and define s2n−1 =

∑
(xi − x)2/(n − 1).

Consider the class of priors πa(µ, σ
2) ∝ 1/σa.

When η = σ2, ∇η = (0, 1)t, and ξ ≡ (0,
√
2σ2)t. Thus (20) becomes

√
2
∂σ2π(µ, σ2)

∂σ2
= 0.

Clearly the independent Jeffreys prior for (µ, σ2) is a first order matching
prior for σ2, but the Jeffreys-rule prior (a = 3) is not. Thus, contrary
to the one-parameter case (under regularity), the Jeffreys-rule prior need
not be first order matching in multiparameter problems.

A comprehensive study of higher order matching priors can be found in [19].

0.2.4 Invariance Priors

The big advance of Jeffreys-rule priors was in providing inferences that were
consistent no matter what parameterization was chosen for the model; this
is often called ‘invariance to parameterization.’ Here we discuss an additional
type of invariance, namely invariance to other transformations (of both the
data and the parameters) that seem to leave the problem unchanged. There are
many illustrations of this in the literature but the most extensively studied and
reliable invariance theory is ‘invariance to a group operation on the model’;
here is an illustration.

Example 0.15 Consider a scale parameter density

p(x | θ) = 1

θ
f
(x
θ

)
, x > 0, θ > 0.
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� Consider a change of scale for the problem (e.g., measure in terms
of meters, rather than feet) to x∗ = c x > 0 and θ∗ = c θ > 0.

� The density of x∗ can be shown to be p(x∗ | θ∗) = (1/θ∗)f(x∗/θ∗),
which is of exactly the same mathematical form as the original
density. Another density of exactly the same mathematical form is
(1/σ)f(y/σ).

� Objective priors are determined by the mathematical form of the
density so it would seem that the objective prior for θ should be the
same function as that for the objective prior for θ∗ (or σ).

This logic, when combined with ‘invariance to parameterization,’ leads to
what are called ‘invariance priors.’

The development of invariance priors is achieved through the mathematical
tools of group theory. In the above example, the transformation ‘multiplica-
tion by positive constants’ is called the scale group or multiplication group.
We do not delve deeply into group theory here and, hence, only present in-
variance priors in simple cases. For an introduction to the use of group theory
in developing invariance priors, see [2].

Curiously, the development of invariance priors initially mirrors the success
and failure of the Jeffreys-rule prior. For one-parameter problems having a
group-invariance structure, the invariance prior is the Jeffreys-rule prior (also
the reference prior and first order matching prior), so all is well. In multi-
parameter problems, however, the natural invariance prior is what is called
the left Haar prior1, and is problematical in much the same ways that the
Jeffreys-rule prior is problematical in multi-parameter problems.

Unlike the situation with the Jeffreys-rule prior, however, a ‘fix’ was devel-
oped for the invariance prior in multi-parameter problems; instead of using
the left Haar prior, use what is called the right Haar prior. This development
was actually a frequentist development, finding the prior distribution in in-
variant problems that is exact frequentist matching; it is the right-Haar prior
that achieves this.

Example 0.16 A model of the form p(x |µ, σ) = (1/σ)f((x − µ)/σ) is
called a location-scale model. (Were this the normal model, σ would be
the standard deviation, which is differently parameterized than using the
variance.) It can be shown for such a model that the left-Haar prior is
πl(µ, σ) = σ−2 (the Jeffreys-rule prior), while the right-Haar prior is
πr(µ, σ) = σ−1 (the independence-Jeffreys prior); it is the latter that
results in Bayesian credible sets with correct frequentist coverage (e.g.,
the left-Haar prior gave the wrong degrees of freedom in the normal case).

As a specific example, suppose the (x1, . . . , xn) are iid observations

1The Haar measures, from which the Haar priors are derived, were introduced in the
1930’s by the Hungarian mathematician Alfred Haar (cf. [31])
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from the Cauchy density p(x |µ, σ) = 1/(πσ[1+ (x−µ)2/σ2]) and that it
is desired to find a 90% frequentist confidence set for ξ = µ+ σ, which is
the third quartile of the distribution. The natural Bayesian credible set
for ξ is the equal-tailed credible set, given by C(x) = (l(x), u(x)), where
πr(µ, σ |x) is the posterior distribution arising from πr(µ, σ),∫
{(µ,σ):µ+σ<l(x)}

πr(µ, σ |x) dµdσ =

∫
{(µ,σ):µ+σ>u(x)}

πr(µ, σ |x) dµdσ = 0.05 .

C(x) is guaranteed to be a 90% frequentist confidence set. Furthermore it
is a 90% frequentist confidence set conditional on the (ancillary) statistic
s = (x2−x1

x1
, . . . , xn−x1

x1
); as discussed in Section 0.1.1, it is important to

find confidence sets that condition properly on relevant statistics, such as
s. Trying to develop conditional frequentist confidence procedures directly
from frequentist reasoning would be virtually impossible here.

A simple version (without conditioning on s) of the exact matching property
of the right-Haar prior can be found in [2]. A more general version can be found
in [15]. The whole class of such theorems is sometimes called the Hunt-Stein
theorem, which was developed in [24] for testing.

0.3 Reference Priors

We have not yet presented a general method for developing good objective pri-
ors in multi-parameter problems. The Jeffreys-rule prior in multi-parameter
problems simply seems to be unsuitable. Matching priors and invariance priors
in multiparameter problems are typically suitable, but they are often unavail-
able (e.g., the solutions to the system of differential equations may not be
available, or the model may not have a suitable group invariance structure).
In this section, we describe a method for deriving an objective prior in multi-
parameter problems which seems to be essentially always effective.

0.3.1 Introduction to the Reference Prior Approach

In the matching prior approach for multi-parameter models, we saw that dif-
ferent parameters in the model could have different matching priors. This is
also true of the reference prior approach. A reference prior will be a prior
distribution on the full parameter space, but it will be developed to focus on
the parameter of interest. If there is more than one parameter of interest in a
problem, there could thus be more than one reference prior.

The information to be expected from one observation from model
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M ≡ {p(x |θ),x ∈ X ,θ ∈ Θ}, when the proper prior for θ is π(θ), is com-
monly taken to be the Kullback-Liebler divergence between the prior distri-
bution and the posterior distribution, which is given by

I{π |M} =

∫ ∫
X×Θ

p(x | θ)π(θ) log π(θ | x)
π(θ)

dx dθ . (21)

The sharper the prior, the more information it contains, reducing the infor-
mation expected from the data; in the extreme, a point mass prior provides
complete information about θ, so the data can add no information. The prior
that maximizes I{π |M} can thus claim to be that prior which maximizes the
amount of information provided by the data and is, hence, a natural candidate
for an objective prior.

Unfortunately, the resulting prior turns out to be problematical, in that it
will typically be a discrete prior that depends on the sample size, even when
θ is a continuous parameter ([6]). This makes it unappealing in practice.

An alternative, proposed in [14], is to apply this idea asymptotically, consid-
ering k independent replications ofM, resulting in the sequence of realizations
x(k) = {x1, . . . ,xk} and the ensuing replicated model Mk. Then I{π |Mk}
is the amount of information in x(k). As k → ∞, the posterior distribution
will typically converge to a point mass, providing complete information about
θ. Thus, intuitively, limk→∞ I{π |Mk} provides a measure of the missing
information about θ associated to the prior π(θ). Maximizing this missing in-
formation is thus another natural way to define an objective prior and is the
basis of the reference prior approach that we will be discussing.

0.3.2 The Reference Prior for a Real Parameter

Consider first the situation in which the model has only one real continu-
ous parameter θ. The following theorem, from [7] in which the proof can be
found, provides an explicit expression for the reference prior for θ (i.e., that
prior which maximizes the asymptotic missing information), under mild con-
ditions. Recall that x refers to the entire vector of observations from the model
and x(k) = {x1, . . . ,xk} refers to a vector of (artificial) independent replicates
of these vector observations from the model. It is often more convenient (and
equivalent) to work with sufficient statistics tk = tk(x

(k)) ∈ T k for the repli-
cated observations, so the theorem will be stated in terms of such sufficient
statistics.

Proposition 0.1 Explicit form of the reference prior. Consider a standard
model M ≡ {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR}. Let π∗(θ) be a continuous strictly
positive function such that the corresponding formal posterior

π∗(θ | tk) =
p(tk | θ)π∗(θ)∫

Θ
p(tk | θ)π∗(θ) dθ

(22)
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is proper and asymptotically consistent and, for any interior point θ0 ∈ Θ,
define

fk(θ) = exp

{∫
T k

p(tk | θ) log
[
π∗(θ | tk)

]
dtk

}
and (23)

f(θ) = lim
k→∞

fk(θ)

fk(θ0)
. (24)

Suppose fk(θ) is continuous and, for any fixed θ and sufficiently large k,
{f0k (θ)/f0k (θ0)} is either monotonic in k or bounded above by some h(θ) which
is integrable on any compact set. Then πR(θ) = f(θ) is the reference prior.

The choice of π∗ is essentially arbitrary and can be chosen for computational
convenience, and the choice of θ0 is immaterial.

Example 0.17 (Uniform data, continued.) Suppose x is one observation
from a uniform distribution {p(x | θ) = θ−1, 0 < x < θ, θ > 0}. Here the
sampling space is X = [0, θ], which depends on the parameter θ, so that
Fisher information is not defined and, hence, there is no Jeffreys-rule
prior.

The i.i.d. replication data is the vector x(k) = {x1, . . . , xk} and using
(for mathematical convenience) π∗(θ) = θ−1, the corresponding posterior
distribution is the Pareto density

π∗(θ | tk) = Pa(θ | k, tk) = k
tkk
θk+1

, θ > tk, (25)

where tk = max{x1, . . . , xk} is a sufficient statistic. The sampling distri-
bution of tk is the inverted pareto density

p(tk | θ) = Ip(tk | k, θ−1) = k
tk−1

θk
, 0 < tk < θ. (26)

Computation yields

fk(θ) = exp

[ ∫ θ

0

Ip(tk | k, θ) log
(
Pa(θ | k, tk)

)
dtk

]
=
c(k)

θ
, (27)

where c(k) = k e−(1+1/k). It follows that, for all k (not just in the limit),
f0k (θ)/f

0
k (θ0) = θ0/θ. Thus π

R(θ) = θ−1 is the reference prior.

This is an excellent prior; for instance, it is exact frequentist matching.
Indeed, using Bayes theorem, the corresponding reference posterior for
an i.i.d. sample x = (x1, . . . , xn) is the Pareto distribution Pa(θ |n, tn),
having density

π(θ |x) = π(θ | t) =
{
n tnθ−(n+1) if θ ≥ t
0 otherwise

.
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A one-sided posterior credible set, at level 1−α, can be shown to be the
interval (tn, tn α

−1/n) and, using (26), the frequentist coverage of this, as
a confidence procedure, can easily be shown to be 1−α. Interestingly, this
interval has width tn(α

−1/n − 1) = tn(exp{− 1
n log(α)}− 1) ≈ − log(α)

n for
large n, showing that this model has non-standard asymptotics. (Regular
models have confidence intervals of width proportional to C/

√
n for some

constant.) This is, thus, an example of how objective Bayesian analysis
automatically produces answers with the correct non-regular asymptotics.

0.3.3 Multiple Continuous Parameters

Applying the idea of maximizing missing information works wonderfully if θ is
one-dimensional but fails – if utilized directly – when θ is multi-dimensional;
indeed, the result will often be the multivariate Jeffreys-rule prior, which was
seen in Section 0.2.2.2 to be highly problematical. The third key component of
the reference prior approach is thus to apply the idea of maximizing missing
information sequentially.

To see the idea, suppose that θ1 is the one-dimensional parameter of interest
and that the remaining parameters, θ2 = (θ2, . . . , θm), are viewed as nuisance
parameters. Suppose we were told that the ‘correct’ prior for the nuisance
parameter is π(θ2 | θ1) (the prior being allowed to depend on θ1 and assumed
here to be proper). Then θ2 could be integrated out of the model, obtaining
the (proper) marginal model

M∗ ≡ {p(x | θ1), x ∈ X , θ1 ∈ Θ1}, p(x | θ1) =
∫
Θ2

p(x | θ1,θ2)π(θ2 | θ1) dθ2 .

As this marginal model only depends on θ1, the method of maximizing missing
information can be applied (using, say, the implementation in the previous
section) to obtain the (marginal) reference prior πR(θ1). The final overall
reference prior would then simply be πR(θ1,θ

2) = π(θ2 | θ1)πR(θ1).

If the conditional prior π(θ2 | θ1) is not known, one can condition on θ1,
and then find the reference priors πR(θ2 | θ1) for θ2, given each θ1. If θ

2 is
one-dimensional, these can be determined as in the previous section. In the
general case, these can be determined in the regular situation where posterior
distributions are asympotically normal; the result is given in Proposition 0.2.
If the πR(θ2 | θ1) are proper, one can proceed as above to form the marginal
model and find the reference prior for θ1 in the marginal model.

Unfortunately, the conditional reference priors πR(θ2 | θ1) are typically not
proper, in which case p(x | θ1) is not proper and so cannot be used to determine
πR(θ1). To overcome this difficulty one must operate, as in Section 0.1.3, on
compact subsets of the parameter space which increase to the full space, taking
appropriate limits of the constrained reference priors to define the reference
prior on the full space. This is illustrated in Proposition 0.2, whose proof can
be found in [5].
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Proposition 0.2 (Two group reference prior under asymptotic normality.)
The k replications result in model M ≡ {p(x(k) | θ1,θ2),x(k) ∈ X k, (θ1,θ

2) ∈
Θ1 ×Θ2}. Let I(θ1,θ2) denote the Fisher information for a single x. Define
V (θ1,θ

2) = I(θ1,θ
2)−1 and, with I11(θ1,θ

2) and V11(θ1,θ
2) being scalar,

I(θ1,θ
2) =

(
I11(θ1,θ

2) I12(θ1,θ
2)

I21(θ1,θ
2) I22(θ1,θ

2)

)
, V (θ1,θ

2) =

(
V11(θ1,θ

2) V12(θ1,θ
2)

V21(θ1,θ
2) V22(θ1,θ

2)

)
.

Under asymptotic normality, the reference prior when θ1 is the parameter of
interest is defined as follows:

Case 1. If c(θ1) =
∫
Θ2

√
I22(θ1,θ2) dθ2 <∞, let

πR(θ2 | θ1) =
√
I22(θ1,θ2)/c(θ1), π

R(θ1) ∝ exp

{∫
Θ2

πR(θ2 | θ1) log[V −1/2
11 (θ1,θ

2)] dθ2

}
.

(28)
Then the reference prior is πR(θ1,θ

2) = πR(θ2 | θ1)πR(θ1).

Case 2. If c(θ1) is infinite, constrain θ2 to compact subsets {Θ2
l , l = 1, 2, . . . }

of Θ2, such that liml→∞ Θ2
l = Θ2, and define

πl(θ
2 | θ1) =

1

cl(θ1)

√
I22(θ1,θ2)1Θ2

l
(θ2), cl(θ1) =

∫
Θ2

l

√
I22(θ1,θ2) dθ2 ,

πl(θ1) ∝ exp

{∫
Θ2

l

πl(θ
2 | θ1) log[V −1/2

11 (θ1,θ
2)] dθ2

}
,

πR(θ1,θ
2) = lim

l→∞

πl(θ
2 | θ1)πl(θ1)

πl(θ2
0 | θ10)πl(θ10)

,

for any interior point (θ10,θ
2
0). Then π

R(θ1,θ
2) is the reference prior.

Example 0.18 Multinomial problem (continued). For the multinomial
problem, computations in [4] yield (this is a Case 1 scenario)

πR(θ1,θ
2) ∝

(
m∏
i=1

θ
−1/2
i

)
(1− θ1)

−(m−1)/2

(
1−

m∑
i=1

θi

)−1/2

. (29)

The marginal reference posterior for θ1 from πR can be shown to be

πR(θ1 | x) = Be(θi |xi + 1
2
, n− xi +

1
2
) . (30)

There is a more general reference prior method called the one-at-a-time
reference prior algorithm ([4]). In this algorithm one first finds the reference
prior πR(θm | θ1, . . . , θm−1), forms the marginal model by integrating over
θm, as was done over θ2 in (28) (operating on compact sets if necessary),
then finds the reference prior πR(θm−1 | θ1, . . . , θm−2), repeating the process
until finally obtaining πR(θ1), with the appropriate product of all of these
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being the reference prior. This is, indeed, our recommended reference prior
algorithm, since it is based on one-dimensional information matrices, which
all perspectives suggest are optimal.

This can be difficult to implement, however, and the approach discussed
above – treating the parameter of interest separately, while grouping all the
nuisance parameters together in a single step – has appeal as something much
simpler to implement. It is, of interest, in this regard, that application of the
one-at-a-time reference prior algorithm to the multinomial problem was shown
in [4] to yield a reference prior that differed from (29), but resulted in the same
marginal posterior (30) for the parameter of interest; as this is what is needed
for inference about the parameter of interest, the cruder method still gave the
optimal result.

0.4 Overall Objective Priors

In single parameter problems, the reference prior (usually the Jeffreys-rule
prior) is uniquely defined but, in multiparameter models, we have seen that
the reference prior often changes, depending on the quantity of interest. There
are, however, situations where one is simultaneously interested in all the pa-
rameters of the model or, at least in several of them; in such situations having
a single overall prior for use is appealing. In prediction or decision analysis for
instance, all of the parameters of the model are typically relevant and often
none are of major interest individually.

Another situation in which having an overall prior would be beneficial is
when there is a non-standard quantity of interest (e.g., a non-standard func-
tion of the model parameters), and formal derivation of the reference prior is
not tenable. Computation can also be a consideration, since having to sepa-
rately do Bayesian computations with different reference priors for each pa-
rameter can be challenging. Finally, when dealing with non-specialists, it may
be best to just present them with one overall objective prior, rather than
attempting to explain the reasons for preferring different priors for different
quantities of interest.

0.4.1 Preliminaries

We have already encountered objective Bayes approaches that produce an
overall prior, namely use of the constant prior, use of right-Haar priors in in-
variant situations, and use of the Jeffreys-rule prior. We extensively discussed
the limitations of the constant prior and the Jeffreys-rule prior, and having a
suitably invariant model is rather special, so there is more to be done.

The approach taken in [8] to find an overall prior is to find a prior which
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yields marginal posteriors for each parameter that are close to the reference
prior marginal posteriors for each parameter. To be more precise, assume
that θ = {θ1, . . . , θm} is is the set of m > 1 parameters that are of interest.
The goal is to find a prior, πo(θ), whose corresponding marginal posteriors,
{πo(θi |x), i = 1, . . .m}, are close to the reference prior marginal posteriors
πR
θi
(θi |x) (the subscript θi indicating that this arose from the reference prior

when θi is the parameter of interest).

Example 0.19 Multinomial data. Suppose x = (x1, . . . , xm) is multi-
nomial Mu(x |n; θ1, . . . , θm), with

∑m
i=1 xi = n, and

∑m
i=1 θi = 1. In

Example 0.18, it was shown that the reference prior, when the pa-
rameter of interest is θi, is a different prior for each θi, and that the
reference prior for θi results in a Beta reference marginal posterior
πR
θi
(θi |x) = Be(θi |xi + 1

2
, n− xi +

1
2
).

It is natural here to consider the Dirichlet {Di(θ | a, . . . , a) : a ∈ (0,∞)}
class of priors. The choice of a for which the resulting marginal posteri-
ors are closest to the reference marginal posteriors is shown in [8] to be
approximately a = 1/m. Thus the recommended overall objective prior
would be πo(θ) = Di(θ | 1

m , . . . ,
1
m ).

Note that this overall prior overcomes the problem with the Jeffreys-
rule prior that was discussed in Example 13; the Jeffreys-rule prior, cor-
responding to a = 1/2, was shown to yield unreasonable posterior means
for the θi in the situation where n = 3, m = 1000, x240 = 2, x876 = 1, and
the other xi are zero. In particular, the posterior mean for θ240 was only
0.005 even though 2/3 of the observations were in that cell. The problem
is that the Jeffreys-rule prior effectively adds 1/2 to each cell, so that the
cells with xi = 0 overwhelmed the cells with xi ̸= 0. In contrast, πo(θ)
only adds 1/m = 0.001 to each cell, so that

E[θi |x] =
xi + 1/m∑m

i=1(xi + 1/m)
=
xi + 1/m

n+ 1
=
xi + 0.001

4
.

Thus E[θ240 |x] ≈ 0.5, E[θ876 |x] ≈ 0.25, and E[θi |x] ≈ 1
4000 otherwise,

all sensible results.

We will discuss various possible approaches to the development of an overall
prior in this section. Most of the approaches and examples are taken from
either [8] or [12].

0.4.2 When the Reference Prior is Common

If one is able to find a single joint prior πo(θ) whose corresponding marginal
posteriors are precisely equal to the reference posteriors for each of the θi’s,
so that, for all x ∈ X , πo(θi |x) = πR

θi
(θi |x), i = 1, . . . ,m, then it is natural

to argue that this should be an appropriate solution to the problem. The
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N(xi | µ, σ) model has already been mentioned as an example, where the
reference priors when µ or σ are the parameters of interest are the same. (Their
common reference prior is also excellent if µ and σ are jointly of interest, e.g.,
if a joint credible set for them is sought.)

0.4.3 Hierarchical Reference Approach

The hierarchical reference prior approach consists of the following steps.

(i) Choose a class of proper priors {π(θ |a) : a ∈ A} reflecting the desired
structure of the problem.

(ii) Form the marginal density for the hyperparmeter a,

p(x |a) =
∫
p(x |a)π(θ |a) dθ ,

which is proper because the π(θ |a) are proper.

(iii) Find the reference prior, πR(a), for a in this marginal model.

(iv) Use, as the overall prior for θ,

πo(θ) =

∫
π(θ |a)πR(a) da . (31)

Note that computation with this prior is often easiest if one keeps a as a
random variable, rather than integrating it out and working directly with
(31). This is especially true when {π(θ |a) : a ∈ A} is a conjugate family to
the data distribution, so that Gibbs sampling can be employed.

0.4.3.1 Application to the Multinomial Distribution

The Dirichlet {Di(θ | a, . . . , a) : a ∈ (0,∞)} class of hierarchical priors for θ
is natural here, reflecting a desire to treat all the θi similarly. The marginal
density is

p(x | a) =

∫ (
n

x1 . . . xm

)( m∏
i=1

θxi
i

)
Γ(ma)

Γ(a)m

m∏
i=1

θa−1
i dθ

=

(
n

x1 . . . xm

)
Γ(ma)

Γ(a)m

∏m
i=1 Γ(xi + a)

Γ(n+ma)
. (32)

This can be shown to be a regular, one-parameter model, so the reference
prior, πR(a), for the hyper parameter a, is the Jeffreys prior for this marginal
model. In [8], this was shown to be given by

πR(a) ∝

n−1∑
j=0

(
Q(j | a,m, n)

(a+ j)2
− m

(ma+ j)2

)1/2

, (33)
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where Q(· | a,m, n), for j = 0, . . . , n− 1, is given by

Q(j | a,m, n) =
n∑

l=j+1

(
n

l

)
Γ(l + a) Γ(n− l + (m− 1)a) Γ(ma)

Γ(a) Γ((m− 1)a) Γ(n+ma)
.

Finally, the overall prior for θ is

πo(θ) =

∫
Di(θ | a)πR(a) da .

This prior turns out to be a proper distribution, which is rather unusual
for an objective prior on an unbounded space. It turns out that the marginal
likelihoood of a does not go to zero as a grows ([8]), so that the prior must
be proper for the posterior to exist. It is a rather amazing property of refer-
ence/Jeffreys priors that they seem to always be proper when the likelihood
does not go to zero.

0.4.4 Hierarchical Normal Models

Hierarchical normal models are the basis of much of applied Bayesian statis-
tics, yet there is uncertainty as to which priors to use for hyperparameters
(parameters at higher levels of the hierarchical model). The long history of
efforts to develop objective hyperpriors is reviewed in [28] and [12], from which
this section is primarily based.

Once the difficulties of using the Jefferys-rule prior in multi-parameter mod-
els and hierarchical models became recognized, it became common to use a
constant prior for higher level variances or covariances, but the constant prior
is much too diffuse, requiring twice as many observations to obtain posterior
propriety as is logically needed (see [12], which also showed that the constant
prior has markedly poor performance in risk simulations).

[10] and [11] approached the question of choice of hyperpriors in normal
hierarchical models by looking at the frequentist notion of admissibility of
resulting estimators; an estimator is admissible if it cannot be improved upon
in terms of mean squared error and inadmissible if it can be improved. Hyper-
priors that are too diffuse result in inadmissible estimators, while hyperpriors
that are concentrated enough result in admissible estimators. Hyperpriors
that are ‘on the boundary of admissibility’ thus seem to be sensible choices
for objective priors, being as diffuse as possible without resulting in inadmis-
sible procedures. This approach was used in [12] to develop the recommended
hyperpriors presented here for any normal hierarchical model.

0.4.4.1 The Hierarchical Model Considered

Consider the following two-stage hierarchical model. Suppose that, indepen-
dently and for i = 1, . . .m,

xi |θi ∼ Nk(· |θi,Σi) and θi |β,V ∼ Nk(· |Ziβ,V ) , (34)
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where the xi are the k × 1 observation vectors; the Σi are known k × k full
rank covariance matrices; the θi are k×1 unknown mean vectors; β is an l×1
unknown “hyper-mean” vector; the Zi are k× l known matrices of covariates
of full rank; and V is an unknown k× k “hyper-covariance matrix.” If the Σi

are not known, they either need to be estimated from data and plugged in
(resulting in a partly empirical Bayes approach) or incorporated into a larger
hierarchical Bayesian analysis using, say, the reference prior for a first level
covariance matrix, given in [34].

Example 0.20 (Following the path-breaking paper [21]:) Suppose k = 1
and, for i = 1, . . . ,m, xi is the batting average, after one month, of
baseball player i (after an arcsin transformation of the original binomial
random variable to normality), with σ2

i = 1/[4ni] and ni being the num-
ber of at-bats the player had in the first month. The goal is to estimate
θi, the ‘true’ batting ability of the player, as would be determined (say)
by batting average at the end of the year, using the xi ∼ N(xi | θi, σ2

i ).

The (arcsin transformed) batting averages, bi, of the players are known
from the previous year and the θi are modeled by regression on these pre-
vious batting averages, leading to the model θi ∼ N(· |β1 + biβ2, V ). In
the above notation, β = (β1, β2)

′ (the unknown regression coefficients),
Zi = (1, bi) are the covariates, and V is the unknown variance of the re-
gression. To proceed, an objective prior distribution is needed for (β, V ).

Example 0.21 At hospital i, the observations xi = (xi1, . . . , xik)
′ are

the sample averages of the costs of k different medical treatments; θi is
the corresponding unknown vector of true mean costs of the treatments
at the hospital; and Σi is the covariance matrix associated with these
sample averages.

Consider the jth coordinate, θij , of each θi; this refers to the cost of
the jth medical treatment at the ith hospital. It is natural to model this
as depending on p hospital characteristics, such as the number of pa-
tients receiving the treatment, the average severity of the condition of
the patients for the treatments, the average income of the patients, etc.
Denoting these characteristics for the jth treatment at the ith hospital as
zij = (zij1, . . . , zijp), a reasonable model would be a regression model

θij = zijαj + ϵij , for i = 1, . . . ,m; j = 1, . . . , k ,

whereαj is a p×1 column vector of weights (specific to each treatment but
assumed to be constant across hospitals) determining the effect of hospital
characteristics on the cost of treatment j, and ϵij is normal error. There
would typically be a separate regression of this form for each treatment
j, and stacking these regressions vertically leads to equation (34), where
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l = kp,

zi =


zi1 0 . . . 0
0 zi2 . . . 0
...

...
. . .

...
0 0 . . . zik

 , β =


α1

α2

...
αk

 . (35)

If it were thought that each of the treatment cost means were indepen-
dent, V could be taken as diagonal, but it is far more likely that there is
considerable dependence, so that completely unknown V is reasonable.

In this example, there could be a third level of hierarchial modeling,

αi ∼ Np(· | ξ,Ω) . (36)

Whether or not this is appropriate depends on the precise context, but we
will see that the analysis could still be done for this three-level hierarchical
model with the methodology proposed herein.

Remark 0.1 Often the data vectors themselves arise from linear models
yi ∼ Nr(· |Biθi,Λi), where the Bi are known design matrices of covariates.
In this situation, one can transform to the least squares estimates for θi,

xi = (Bt
iΛ

−1
i Bi)

−1Bt
iΛ

−1
i yi ,

which will be distributed as in (34), with covariance matrix Σi =
(Bt

iΛ
−1
i Bi)

−1.

0.4.4.2 The Recommended Prior

In [12], it is recommended to utilize independent priors for the unknown hy-
perparameters β and V , i.e., π(β,V ) = π(β)π(V ), with the following choices:

π(β) ∝ 1

[1 + ||β||2](l−1)/2
, π(V ) =

1

|V |1−1/(2k)
∏

i<j(di − dj)
, (37)

where ||β||2 = β′β and d1 > d2 . . . > dk are the ordered eigenvalues of V . For
k = 1, the second prior is defined as π(V ) = 1

√
V . Extensive justification of

these choices is given in [12].

One of the most important properties of this prior is that it can be used at
any level of a hierarchical model for the mean parameters and the covariance
matrix. This is not so for many other proposed priors such as ‘marginal Jeffreys
priors’ (see [12]). That the resulting posterior distributions are guaranteed to
be proper is shown in [12].

For the priors in (37) to be reasonable, one must deal with the fact that
the covariates (defined by the columns of Zi) often use different units of
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measurement, units which can be arbitrary, and objective priors should be
invariant to the choice of unit of measurement. The easiest way to achieve
this is to first rescale the covariates so they are ‘unitless’ and then proceed
with use of the priors in (37). Here are two common methods of such re-scaling.

Method 1 - Standard Deviation Rescaling:Define cj to be the sample standard
deviation of all non-zero entries in the jth columns of all theZi, and rescale
to obtain new covariates z∗

ij = zij/cj .

Method 2 - Max Coordinate Rescaling: Define cj to be the maximum absolute
value of all entries in the jth columns of all the Zi, and rescale as above.
(This puts everything on the interval from −1 to 1.)

Remark 0.2 If covariate j is rescaled by cj , for all j, the new hyper-mean
becomes β∗ = (c1β1, . . . , clβl)

′. Then, if the rescaled covariates are used in
Bayesian analysis, the analysis will yield the posterior for β∗, which must then
be transformed back to the posterior for β, if the latter is desired. If only the
posterior distributions of the θi are desired, the analysis carried out in the
rescaled space is fine.

0.5 Conclusions

Objective Bayesian inference has been a central part of statistics for over 250
years and this has (necessarily) been a very brief introduction to the area.
For a much more extensive review of objective Bayesian inference, see [9]
and the over 1500 references cited therein. Study of the interface between
the objective Bayesian approach and the frequentist approach is much more
recent (necessarily, because the frequentist approach is only about 100 years
old). For a more recent study of this interface, see [3] and the accompanying
discussions.
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[4] James O. Berger and José M. Bernardo. On the development of refer-
ence priors. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger,
A. P. Dawid and A. F. M. Smith, eds). Oxford: University Press, pages
35–60 (with discussion), 1992.
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[14] José M. Bernardo. Reference posterior distributions for Bayesian infer-
ence. J. Roy. Statist. Soc. B, 41:113–147 (with discussion). Reprinted in
Bayesian Inference 1 (G. C. Tiao and N. G. Polson, eds). Oxford: Edward
Elgar, 1995, 229–263., 1979.

[15] Ted Chang and Cesareo Villegas. On a theorem of Stein relating Bayesian
and classical inferences in group models. Canad. J. Statist., 14:289–296,
1986.

[16] David R. Cox and Nancy Reid. Parameter orthogonality and approximate
conditional inference. J. Roy. Statist. Soc. B, 49:1–39 (with discussion),
1987.

[17] Andrew I. Dale. A History of Inverse Probability: From Thomas Bayes
to Karl Pearson. Berlin: Springer, 1999.

[18] Gauri S. Datta and Jayanta K. Ghosh. On priors providing frequentist
validity for Bayesian inference. Biometrika, 82:37–45, 1995.

[19] Gauri S. Datta and Rahul Mukerjee. Probability Matching Priors: Higher
Order Asymptotics. New York: Springer, 2004.

[20] Augustus de Morgan. An Essay on Probabilities. London: Longman,
1838.

[21] Bradley Efron and Carl N. Morris. Data analysis using Stein’s estimator
and its generalizations. J. Amer. Statist. Assoc., 70:311–319, 1975.

[22] Stephen E. Fienberg. When did Bayesian inference become Bayesian?
Bayesian Analysis, 1:1–40, 2006.

[23] Anders Hald. A History of Mathematical Statistics from 1750 to 1930.
Hoboken, NJ: Wiley, 1998.

[24] G. Hunt and C. Stein. Most stringent tests of statistical hypotheses.
Tech. Rep., Stanford University, 1946.

[25] H. Jeffreys. An invariant form for the prior probability in estimation
problems. Proc. Roy. Soc. A, 186:453–461, 1946.
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