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Abstract This article applies Bayesian reference analysis, widely considered as the
most successful method to produce objective, model-based, posterior distributions, to
a problem of inference in survival analysis. A formulation is considered where indi-
viduals are expected to experience repeated events, along with concomitant variables.
The sampling distribution of the observations is modeled through a proportional in-
tensity homogeneous Poisson process.

Keywords Reference analysis · Recurrent events · Intensity function · Poisson
process · Bayesian inference
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1 Introduction

The theory for survival data has been sufficiently developed to analyze the function
of risk or survival of a patient. The methodology is designed to determine which vari-
ables affects the form of the risk function and to obtain estimates of these functions
for each individual. This study involves following units (individuals) until the occur-
rence of some event of interest, for example, the fault (death) of the unit. Frequently,
this event does occur for some units during the period of observation, thus producing
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censured data. Another characteristic of survival data is that some events of interest
are not terminal, events which are able to occur more than once for the same indi-
vidual, producing the recurrent events. Lifetime data where more than one event is
observed on each subject arise in areas such as, biomedical studies, criminology, de-
mography, manufacturing, and industrial reliability. For example, an offender may
be convicted several times, several tumors may be observed for an individual; recur-
rent pneumonia episodes arise in patients with human immunodeficiency syndrome;
a piece of equipment may experience repeated failures or warranty claims.

The data on the ith individual consists of the total number, mi of the events
observed over the time period (0, Ti] and the ordered epoch of the mi events,
0 ≤ ti1 < ti2 < · · · < timi ≤ Ti . Additionally, we may have covariate information on
each subject defined by a vector of censoring indicators. In some studies, interest
may lie in understanding and characterizing the event which defines the process for
individual subject or may focus on treatment comparisons based on the time to each
distinct event, the number of events, the type of events, and interdependence between
events. The idea is to explain the nature of the variation between subjects in terms of
treatments, fixed covariates, or other factors as unobservable factors.

In this work the methodology is illustrated using the animals carcinogenicity data
described by Gail et al. (1980) (Table 1). The experiment used 48 female rats mam-
mary tumors. There were 23 rats in Group 1 (Treatment) and 25 rats in Group 2
(Control), and the data are the days on which new tumors occurred for each animal;
a given animal may experience any number of tumors. The main objective of analy-
sis was to assess the difference between treatment Groups 1 and 2 with regard to the
development of tumors. The rats in study were all induced to remain tumor-free for
60 days and were observed over the period 60 to 182 days.

Several methodologies have been proposed to analyze the problem of recurrent
events. Lawless and Nadeu (1995) apply the Poisson process to develop models that
focus on the expected number of events occurred in a determined time interval. The
development of statistical models based on counting process data were originally in-
troduced by Aalen (1978). There is an extensive literature about point process models
(e.g., Cox and Isham 1980); this approach offers tools powerful enough able to gen-
eralize several situations. In this article the problem is treated under the focus of
punctual counting process. The Poisson process has been well studied, and many re-
cent discussions about lifetime and stochastic process transition data have focused on
modeling and analyzing the effects of so-called unobserved heterogeneity (e.g., Flinn
and Heckman 1982).

From a Bayesian perspective there is an extensive literature. Main pointers are
Ibrahim and Laud (1991), Ibrahim et al. (2001), Ibrahim and Chen (1998), Kim and
Ibrahim (2001), and Tomazella (2003). It is well known that under a Bayesian per-
spective the outcome of any problem of inference is the posterior distribution of the
quantity of interest, which combines the information provided by the data with avail-
able prior information; it has been often recognized that there is a pragmatically im-
portant need for a form of prior to posterior analysis which captures, in a well-defined
sense, the notion that the prior should have a minimal effect, relative to the data, on
the posterior inference.

The use of a prior function that somehow represents lack of prior knowledge about
the quantity of interest, has been a constant in the history of the Bayesian inference.
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Table 1 Days where new tumors occurred for 48 rats

N◦ of Treatment (23 rats) N◦ of Control (25 rats)

tumors tumors

1 182 7 63,102,119,161,161,172,179,182a

0 182a 11 88,91,95,105,112,119,119,137,145,167,172,182a

2 63,68,182a 9 91,98,108,112,134,137,161,179,182a

1 152,182a 2 71,174,182a

4 130,134,145,152,182a 9 95,105,134,134,137,140,145,150,150,182a

3 98,152,182 4 68,68,130,137,182a

6 98,95,105,130,137,167,182a 6 77,95,112,137,161,174,182a

1 152,182a 7 81,84,126,134,161,161,174,182a

1 181,182a 6 68,77,98,102,102,102,182a

5 71,84,126,134,152,182a 1 112,182a

2 116,130,182a 13 88,88,91,98,112,134,134,137,137,140,140,

1 91,182a 152,152,182a

5 63,68,84,95,152,182a 2 77,179,182a

2 105,152,182a 1 112,182a

3 63,102,152,182a 10 71,71,74,77,112,116,116,140,140,140,167,182a

4 63,77,112,140,182a 4 77,95,126,150,182a

5 77,119,152,161,167,182a 5 88,126,130,130,134,182a

5 105,112,145,161,182 11 63,74,84,84,88,91,95,108,134,137,179,182a

1 152,182a 11 81,88,105,116,123,140,145,152,161,161,179,182a

2 81,95,182a 9 88,95,112,119,126,126,150,157,179,182a

6 84,91,102,108,130,130,134,182a 12 68,68,84,84,102,105,119,123,123,137,161,179,182

0 182a 1 140,182a

1 91,182a 3 152,182,182

1 81,182a

3 63,88,134,182a

3 84,134,182

aIndicates that in this time no new tumor was found

Reference analysis, introduced by Bernardo (1979) and futher developed by
Berger and Bernardo (1989, 1992a, 1992b, 1992c) and Berger et al. (2009a, 2009b),
is widely considered today the most successful algorithm to derive noninformative
priors (Bernardo 1997). For a recent review see Bernardo (2005). Notice that refer-
ence priors are not proposed as an approximation to the scientist’s (unique) personal
beliefs, but rather as a collection of formal consensus (not necessarily proper) prior
functions which could conveniently be used as standards for scientific communica-
tion.

Reference posteriors are obtained by formal use of the Bayes theorem with a refer-
ence prior function. If required, they may be used to provide point or region estimates,
to test hypothesis (Bernardo 1998), or to predict the value of future observations. This
provides a unified set of objective Bayesian solutions to the conventional problems
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of scientific inference, objective in the precise sense that those solutions only depend
on the assumed model and the observed data.

In this paper, reference analysis is developed for a survival model based on pro-
portional intensity Poisson process, where individuals may be expected to experience
repeated events, and concomitant variables are observed.

Section 2 contains an overview of reference analysis, where the definition is mo-
tivated, and heuristic derivations of explicit expressions for the one-parameter, two-
parameter, and multiparameter cases are sequentially presented. In Sect. 3 we de-
scribe the survival model. In Sect. 4, the theory is applied to an inference problem, the
parameters survival model, for which no objective Bayesian analysis has been previ-
ously proposed, and which has been chosen because it combines intrinsic importance
and pedagogic value. Some final concluding remarks are presented in Sect. 5.

2 An overview of reference analysis

The notion of a noninformative prior, that is, of a prior which describes lack of prior
knowledge about the quantity of interest, has been the object of many debates within
the Bayesian community; it is intended to be a prior function which by formal use
of the Bayes theorem produces a posterior distribution dominated by the information
provided by the data (Bernardo 1979; Berger et al. 2005). Objective reference priors
do not depend on the data, but they depend on the probabilistic model that is assumed
to have generated the data. The basic idea follows from the fact that the amount
of information which may expected from an experiment clearly depends on prior
knowledge: the larger the available prior knowledge, the lesser will be the amount
of information to be expected form the data. An infinitelty large experiment would
provide all information not yet available about the parameter of interest, all miss-
ing information; it is then natural to define a “noninformative” prior as that which
maximizes the missing information about the parameter of interest. However, since
“missing information” is defined as a limit which is not necessarily finite, the refer-
ence prior is actually defined as the limit of a sequence of priors which maximize
increasingly large experiments. We now summarize its formal derivation. For details,
see Bernardo (2005).

2.1 One parameter

Definition 1 Consider an experiment ε which consists of one observation x from
p(x|φ), φ ∈ Φ ⊂ R. Let zk = {x1, . . . ,xk} be the result of k independent replications
of ε. Then, under suitable regularity conditions,

πk(φ) = exp
{∫

Xk
p(zk|φ) logq(φ|zk) dzk

}
, (1)

where q(φ|zk) is an asymptotic approximation to the posterior distribution p(zk|φ).
The reference posterior distribution is a function π(φ|x) such that

lim
k→∞

[∫

Φ
πk(φ|x) log

{
πk(φ|x)

π(φ|x)

}
dφ

]
= 0,
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where

πk(φ|x) = p(x|φ)πk(φ)∫
Φ p(xφ)πk(φ) dφ

, k = 1,2, . . . .

A reference prior φ is a function which, for any data, provides the reference pos-
terior π(φ|x) by formal use of the Bayes theorem, i.e., a positive function π(φ) such
that, for all x ∈ X,

π(φ|x) = p(x|φ)π(φ)∫
Φ p(x|φ)π(φ) dφ

. (2)

Thus the reference prior π(φ) is the limit of the sequence {πk(φ), k = 1,2, . . .}
defined by (1) in the precise sense that the information-type limit of the corresponding
sequence of posterior distributions {πk(φ|x), k = 1,2, . . .} is the posterior obtained
from π(φ) by formal use of the Bayes theorem.

Proposition 1 (Reference priors under asymptotic normality) Let p(x|φ), x ∈ X,
be a probability model with one real-valued parameter φ ∈ Φ ⊂ R. If the asymp-
totic posterior distribution of φ given k replications of the experiment is normal with
standard deviation s(φ̂) such that φ̂k is a consistent and asymptotically sufficient
estimator of the φ, then, the reference prior is given by

π(φ) ∝
{

1
s(φ)

}
,

where, under regularity conditions, s(φ) = h(φ)−1/2, and h(·) is the Fisher informa-
tion function.

2.2 One nuisance parameter

Consider now the case where the statistical model p(x|φ,ω), (φ,ω) ∈ Φ × Ω ⊂
R × R, contains one nuisance parameter, where the parameter of interest is φ, and
the nuisance parameter is ω. We shall only consider here the regular case where joint
posterior asymptotic normality may be established.

Proposition 2 Let p(x|φ,ω), (φ,ω) ∈ Φ × Ω ⊆ R × R, be a probability model
with two real-valued parameters φ and ω, where φ is the quantity of interest, and
suppose that the joint posterior distribution of (φ,ω) is asymptotically normal with
covariance matrix S(φ̂, ω̂), where (φ̂, ω̂) is a consistent estimator of (φ,ω). Let
H(φ,ω) = S−1(φ,ω). Tipically, H(φ,ω) is Fisher information matrix.

(i) The conditional reference prior of ω is

π(ω|φ) ∝ h22(φ,ω)1/2, ω ∈ Ω(φ).

(ii) If π(ω|φ) is not proper, a compact approximation {Ωi (φ), i = 1,2, . . .} to Ω(φ)
is required, and the reference prior of ω given φ is given by

πi (ω|φ) = h22(φ,ω)1/2
∫
Ωi (φ) h22(φ,ω)1/2 dω

, ω ∈ Ωi (φ).
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(iii) Within each Λi (φ), the marginal reference prior of φ is obtained as

πi (φ) ∝ exp
{∫

Ωi (φ)
πi (ω|φ) log

[
s

1/2
11 (φ,ω)

]
dω

}
,

where s
1/2
11 (φ,ω) = hφ(φ,ω) = h11 − h12h

−1
22 h21.

(iv) The reference posterior distribution of φ given data {x1, . . . , xn} is

π(φ|x1, . . . , xn) ∝ π(φ)

{∫

Ω(φ)

{
n∏

l=1

p(xl |φ,ω)

}

π(ω|φ) dω

}

.

Corollary If the nuisance parameter space Ω(φ) = Ω is independent of φ and if the
functions s

−1/2
11 (φ,ω) and h

1/2
22 (φ,ω) factorize in the form

{
s11(φ,ω)

}−1/2 = f1(φ)g1(ω),
{
h22(φ,ω)

}1/2 = f2(φ)g2(ω),

then

π(φ) ∝ f1(φ), π(ω|φ) ∝ g2(ω);
the reference prior relative the parametric value ordered (φ,ω) is given by

π(ω,φ) = f1(φ)g2(ω),

and in this case, there is no need for compact approximation, even if the conditional
reference prior is not proper. For proof and details, see Bernardo (2005).

3 The multiparameter case

The approach to the nuisance parameter considered above was based on the use of an
ordered parameterization whose first and second components were φ and ω, respec-
tively, referred as the parameter of interest and the nuisance parameter. The reference
prior for the ordered parameterization (φ,ω), was then sequentially derived to obtain
πω(φ,ω) = π(ω|φ)π(φ).

When the model parameter vector θ has more than two components, this sequen-
tial conditioning idea can obviously be extended by considering θ as an ordered pa-
rameterization, θ = (θ1, . . . , θm), and generating, by successive conditioning, a refer-
ence prior, relative to this ordered parameterization, of the form

π(θ) = π(θm|θ1, . . . , θm−1) · · ·π(θ2|θ1)π(θ1). (3)

Proposition 3 Let p(x|θ), θ = (θ1, . . . , θm) be a probability model with m real-
valued parameters, let θ1 be the quantity of interest, and suppose that the joint distrib-
ution of (θ1, . . . , θm) is asymptotically normal with covariance matrix S(θ̂1, . . . , θ̂m).
Then, if Sj is the j × j upper matrix of S, Hj = S−1

j , and hjj (θ1, . . . , θm) is the
(j, j) element of Hj .
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(i) The conditional reference priors are

π(θm|θ1, . . . , θm−1) ∝ hmm(θ1, . . . , θm)1/2 for i = m − 1,m − 2, . . . ,2, and

π(θi |θ1, . . . , θi−1) ∝ exp

[∫

Λi+1

· · ·
∫

Λm

log
[
hi+1,i+1(θ1, . . . , θm)1/2]

×
{

m∏

j=1

π(θj |θ1, . . . , θj−1)

}

dθ i+1

]

,

where dθ j = dθj × · · · × dθm.
(ii) The marginal reference prior of θ1 is

π(θ1) ∝ exp

{∫

Λ1

· · ·
∫

Λm

log
[
s11(θ1, . . . , θm)−1/2]

×
{

m∏

j=1

π(θj |θ1, . . . , θj−1)

}

dθ1

}

.

(iii) After data {x1, . . . , xn} have been observed, the reference posterior distribution
of the parameter of interest θ1 is

π(θ1|x1, . . . , xn) ∝ π(θ1) ∝ exp

{∫

Λ1

· · ·
∫

Λm

m∏

j=1

p(xl |θ1, . . . , θm)

×
{

m∏

j=1

π(θj |θ1, . . . , θj−1)

}

dθ1

}

.

For proof and details, see Berger and Bernardo (1992a, 1992b, 1992c).
A commonly used objective prior in Bayesian analysis is Jeffreys prior (Jeffreys

1946, 1961). It is obtained by applying Jeffreys’s rule, which is to take the prior
density proportional to the square root of the determinant of the Fisher information
matrix (

√
detJ (φ,ω)). However, Jeffreys himself was aware that often this does not

work well in multiparameter settings.

4 Model formulation

Suppose that n individuals may experience a single type of recurrent event. Let mi

denote the number of events occurring for the ith individual. Assume that the ith in-
dividual is observed over the interval (0, Ti], where Ti is determined independently
of mi . Let 0 ≤ ti1 < ti2 < · · · < timi ≤ Ti , where the variables of interest tij denote
the continuous failure times for the ith individual and the j th occurrence events
(i = 1, . . . , n and j = 1, . . . ,mi). Besides that, we are going to consider that each
individual carries a covariate vector represented by x, so data from ith individual
consist of the total number of events mi observed about a time period (0, Ti] in the
ordered occurrence, ti1, . . . , timi , and the covariate vector x.
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It is assumed that the repeated events of an individual with k ×1 covariate vector x
occur according to a nonhomogeneous Poisson process with intensity function given
by

λxi (t) = λ0(t) exp(x′
iβ), t ! 0, i = 1,2, . . . , n, (4)

where λ0(t) is a baseline intensity function, xi = (xi1, xi2, . . . , xik), and β =
β1, . . . ,βk is a vector of unknown parameters.

The corresponding cumulative or integrated intensity function is

Λx(t) =
∫ t

0
λx(u) du = Λ0(t)e

x′β , (5)

where Λ0(t) =
∫ t

0 λ0(u) du.
Methods of analysis will be considered semi parametric if λ0(t) is arbitrary and

completely parametric if λ0(t) is specified by a parameter vector θ . In the case of
the function of baseline hazard to be constant, this is a homogeneous Poisson process
(see Cox and Isham 1980). The Poisson process model (4) is often known as the Cox
proportional risk model (see Cox 1972).

Consider a parametric Poisson process where λ0(t) = λ0(t; θ). Then, the likeli-
hood function for the model (4) for θ and β is given by (see Cox and Lewis 1996)

L(θ ,β) =
n∏

i=1

{
mi∏

j=1

λxi (tij , θ)

}

exp
{
−Λxi (Ti, θ)

}
, (6)

which can be decomposed as L(θ ,β) = L1(θ)L2(θ ,β), where

L1(θ) =
{

n∏

i=1

mi∏

j=1

λ0(tij ; θ)

Λ0(Ti; θ)

}

and

L2(θ ,β) =
n∏

i=1

exp
[
Λ0(Ti; θ)ex′

iβ
][

Λ0(Ti; θ)ex′
iβ

]mi .

The first likelihood kernel L1(θ) arises from the conditional distribution of the
event times, given the counts, and the second the likelihood kernel L2(θ ,β) arises
form the Poisson distribution of the counts m1, . . . ,mn.

4.1 Modeling the baseline hazard

The exponential distribution is one of the simplest and more important probability
distributions used in the modeling of data that represent the life time. It has been used
intensively in the literature of survival and reliability, as, for example, in study areas
on lifetime of items manufactured (see Davis 1952), in research involving survival or
time of remission of chronic illnesses (see Feigl and Zelen 1965).

The exponential distribution has been extensively used to model the baseline haz-
ard function due to its simplicity and flexibility. This is the particular case where

λ0(t) = λ0(t; θ) = ν. (7)
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The corresponding intensity function and integrated intensity function are

λx(t) = νex′β and Λx(T ) = T νex′β . (8)

Considering the decomposition in (6), the likelihood function for ν,β is given by

L(ν,β) =
n∏

i=1

T
−mi
i exp

[
−νTi ex′

iβ
][

νTi ex′
iβ

]mi , (9)

where L2(ν,β) = ∏n
i=1 exp[−νTi ex′

iβ ][νTi ex′
iβ ]mi is the nucleus of the regression

model for which mi has a Poisson distribution with average and variance E(mi |xi ) =
Var(mi |xi ) = νTi ex′

iβ .

The log-likelihood function (9) is given by

l(ν,β) ∝
n∑

i=1

mi log(ν) +
n∑

i=1

mix
′
iβ −

n∑

i=1

νTie
x′β . (10)

Interval estimates and hypothesis tests for the parameters can be performed, in
principle, by considering the asymptotic normal distribution of the maximum likeli-
hood estimates (mle) and the asymptotic chi-squared distribution of the likelihood
ratio statistics, respectively (Lawless 2002).

4.2 The Fisher information matrix

The posterior distribution of the parameter is often asymptotically normal (see, e.g.,
Bernardo and Smith 1994, Sect. 5.3). In this case, the reference prior is easily derived.

Considering the log of the likelihood function (10), we have the first and second
derivatives given by

∂l

∂ν
=

n∑

i=1

mi

ν
−

n∑

i=1

Tie
x′
iβ ,

∂l

∂βr
=

n∑

i=1

mixir −
n∑

i=1

νTixire
x′
iβ , r = 0,1, . . . , k,

∂l

∂ν2 = −
n∑

i=1

mi

ν2 ,

∂l

∂βrβs
= −

n∑

i=1

νTixirxise
x′
iβ , r, s = 0,1, . . . , k,

∂l

∂ν∂βr
= −

n∑

i=1

Tixire
x′
iβ .
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The elements of the Fisher information matrix are given by

Iνν = E

[
−∂l(ν,β)

∂ν2

]
=

n∑

i=1

E

[
n∑

i=1

mi

ν2

]

= 1
ν

n∑

i=1

Tie
x′
iβ ,

Iβrβs = E

[
−∂l(ν,β)

∂βrβs

]
= ν

n∑

i=1

Tixirxise
x′
iβ , r, s = 0,1, . . . , k,

Iβrν = E

[
−∂l(ν,β)

∂βrν

]
=

n∑

i=1

Tixire
x′
iβ , r = 0,1, . . . , k.

Thus, the Fisher information matrix associated with the model is given by

H(θ) = H(ν,β) =




1
ν

∑n
i=1 Tie

x′
iβ

∑n
i=1 Tixire

x′
iβ

∑n
i=1 Tixire

x′
iβ ν

∑n
i=1 Tixirxise

x′
iβ



 . (11)

5 Reference analysis for survival model parameters

Following the methodology described in Sect. 2, now we derive the reference prior
considering two groups, which corresponds to the ordered partition {ν,β}, where β =
{β1,β2, . . . ,βk}, and ν is considered to be the parameter of interest. The reference
prior relative to this ordered parameterization is then:

π(ν,β) = π(β|ν)π(ν).

From Corollary of Proposition 3 where the nuisance parameter space Λ(β) = Λ

is independent of ν, it is easy to see that

π(β|ν) = |h22|1/2 = ν1/2

[
n∑

i=1

Tixirxise
x′
iβ

]1/2

= f1(ν)g1(β)

and

hν(ν,β) = h11 − h12h
−1
22 h21 = ν−1/2

[
n∑

i=1

Tie
x′
iβ − [∑n

i=1 Tixire
x′
iβ ]2

∑n
i=1 Tixirxise

x′
iβ

]1/2

= f2(ν)g2(β).

This implies that the conditional reference prior of the nuisance parameter β given
the parameter of interest ν is

π(β|ν) ∝ g1(β) =
[

n∑

i=1

Tixirxise
x′
iβ

]1/2

. (12)
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The reference prior needed to obtain a reference posterior for the parameter of
interest ν is

π(ν) ∝ f2(ν) = ν−1/2. (13)

Figure 1 represents the reference prior (13).

It follows that the joint reference prior for parameters ν and β is given by

π(ν,β) = π(β|ν)π(ν) ∝
[

n∑

i=1

Tixirxise
x′
iβ

]1/2

ν−1/2. (14)

Figure 2 represents the joint reference prior (14), considering in the particular case
where T = 100, n = 30, x = 1.

Fig. 1 Reference prior for the
parameter ν

Fig. 2 Joint reference prior for
the parameters ν and β
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The corresponding reference posterior for ν after data t = {t1, . . . , tn} have been
observed is

π(ν|t1, . . . , tn) ∝ π(ν)

∫

Λ

L(ν,β)π(β|ν) dβ

∝ ν−1/2
∫

Λ

n∏

i=1

T
−mi
i exp

[
−νTi ex′

iβ
][

νTi ex′
iβ

]mi

×
[

n∑

i=1

Tixirxise
x′
iβ

]1/2

dβ. (15)

For this model, the joint Jeffrey’s prior for parameters ν and β is given by

π(ν,β) =
∣∣detH(ν,β)

∣∣1/2 ∝
[

n∑

i=1

T 2
i xirxis

(
ex′

iβ
)2 −

(
n∑

i=1

Tixire
x′
iβ

)2]1/2

. (16)

Note that the joint reference prior depends on ν and β , while the Jeffreys’ prior
depends only on β .

The marginal reference posterior densities (15) cannot be obtained explicitly. We
overcome this difficulty by making use of the Markov Chain Monte Carlo (MCMC)
methodology to obtain approximations for such densities. In order to make Bayesian
inference for the parameters of interest ν, we implement the MCMC methodology
considering the Metropolis–Hastings (see Hastings 1970; Chib and Greenberg 1995).

6 Example with simulated data

To analyze the behavior of the model proposed, a set of recurrent events data was
simulated for different samples sizes, n = 10, n = 30, n = 50, and n = 100, with
dichotomous covariate x equal to 0 and 1, indexing a control group and treatment
group, respectively. In this study we considered the number of recurrent m generated
from a Poisson distribution with mean λ(t) = νeβ0+xβ where ν = 2, β0 = −0.15, and
β = −0.5. The lifetime was generated from a exponential distribution with parameter
ν = 2. The total time of observation T = 2 was considered for all samples. We present
properties of estimators on reference prior and Jeffreys’ prior proposed here, where
we focus on the coverage probability and the 95% credible intervals.

Considering the simulated data set, a sample of the reference posterior (15) was
obtained generated by the Metropolis–Hastings technique, i.e., through Markov chain
Monte Carlo methods implemented in software R. The convergence of the chains
were assessed according to convergence diagnostics implemented in CODA (Best et
al. 1997). Graphical traces of those methods and kernel density estimation for the
parameters ν, β0, and β showed that there were no convergence problems. We gen-
erated two chains of 50,000 iterations each for the model parameters. The first 2,000
iterations were ignored (burn-in). A sample size of 4,000 elements was considered.
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Table 2 Estimated parameters of the posterior distribution considering the reference prior (14)

n ν β0 β1

Mean SD IC(95%) C Mean SD IC(95%) C Mean SD IC(95%) C

10 1.95 0.31 [1.34;2.60] 0.82 −0.11 0.01 [−0.63;0.31] 0.88 −0.48 0.23 [−0.50;0.47] 0.90

30 1.96 0.32 [1.37;2.64] 0.85 −0.12 0.01 [−0.63;0.32] 0.90 −0.49 0.24 [−0.52;−0.48] 0.95

50 1.96 0.32 [1.37;2.64] 0.90 −0.15 0.01 [−0.64;0.33] 0.96 −0.50 0.24 [−0.53;0.49] 0.96

100 1.96 0.32 [1.37;2.64] 0.95 −0.15 0.01 [−0.64;0.33] 0.96 −0.50 0.24 [−0.53;−0.49] 0.96

Table 3 Estimated parameters of the posterior distribution considering the Jeffreys’ prior (16)

n ν β0 β1

Mean SD IC(95%) C Mean SD IC(95%) C Mean SD IC(95%) C

10 1.90 0.30 [1.30;2.60] 0.80 −0.10 0.01 [−0.62;0.32] 0.80 −0.44 0.21 [−0.49;0.46] 0.80

30 1.93 0.31 [1.32 ; 2.64] 0.82 −0.11 0.01 [−0.63;0.32] 0.88 −0.45 0.22 [−0.50;−0.47] 0.85

50 1.94 0.32 [1.35;2.65] 0.88 −0.10 0.01 [−0.65;0.33] 0.95 −0.51 0.24 [−0.52;0.49] 0.86

100 1.96 0.32 [1.37;2.64] 0.88 −0.15 0.01 [−0.64;0.33] 0.95 −0.51 0.24 [−0.53;−0.49] 0.90

Fig. 3 Density of ν, β and β0 for n = 30

Tables 2 and 3 show the summary posterior of the interest parameters with sim-
ulated data, considering reference prior and Jeffreys prior, respectively. We observe
that the empirical coverage probability considering a reference a priori is closer to
the nominal level than Jeffreys prior; we also observe that the coverage probability
approaches its nominal value as sample size increases. Also, the estimate average
considering Jeffreys’ prior and the true values is almost always smaller than one con-
sidering reference prior, but the two prior distributions provide estimated values very
close to the true value, which indicates that the results through simulation are ade-
quate.

Figures 3 and 4 show plots of the generated samples and the empirical marginal
posteriors for model parameter ν, β, and β0 considering the sample size n = 30 based
on the generated chains of the marginal reference posterior (15).
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7 Example with the animal carcinogenesis data

The methodology is illustrated on animal carcinogenesis data from Gail et al. (1980),
Table 1. The lifetimes are days on which new tumors occurred for each animal. Each
animal may experience different number of tumors. The main objective of study was
to assess the difference between Groups 1 and 2 regarding to the development of
tumors. The rats were induced to remain tumor-free for 60 days and were observed
over the period from 60 to 182 days.

Suppose that the ith rat has intensity of tumors occurring according to (8). The
covariate vector has just one covariate x indicating whether the individual i is in
Group 1 (xi = 1) or in Group 2 (xi = 0), for i = 1, . . . ,48. As in the study the life-
times were observed after 60 days, the intervals of observation for all animals are
indeed (0, Ti) = (0,122).

The sample for the reference posterior distributions (15) of the parameters ν and
the regression parameters β and β0 were obtained by the Metropolis–Hastings tech-
nique, i.e., through Markov Chain Monte Carlo methods implemented in software R.
The convergence of the chains were tested by using the Gelman and Rubin method
(e.g., Gelman et al. 1995) implemented in CODA (Best et al. 1997). Graphical traces
of those methods and kernel density estimation for each parameter showed that there
were no convergence problems. We generated two chains of 50,000 iterations, each

Table 4 Posterior summaries
for the parameters using
reference prior

Parameters Mean D.P IC(95)

ν 0.0991 0.0083 [0.0842;0.1157]
β0 −0.9991 0.0493 [−1.0945;−0.9012]
β −0.0517 0.005 [−0.0616;−0.0416]

Table 5 Posterior summaries
for the parameters using
Jeffreys’ prior

Parameters Mean D.P IC(95)

ν 0.0992 0.0081 [0.084;0.116]
β0 −0.9994 0.0487 [−1.0932;−0.9017]
β −0.0515 0.0049 [−0.0610;−0.0418]

Fig. 5 Density of ν, β , and β0 for the real data
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for the model parameters. The first 2,000 iterations were ignored (burn-in). For each
parameter, we considered a sample size of 4,000 elements.

The posterior results form using both the reference prior and the multivariate Jef-
freys prior are shown in Tables 4 and 5, respectively. It may be noticed that the
posterior results are all very similar. It is important to note that there is significant
difference between Groups 1 and 2 regarding to the development of tumors indicated
by the estimated β, which is equal to (−0.0517) using the reference prior and equal
to (−0.0515) using Jeffreys prior.

In Figs. 5 and 6, we show plots of the generated samples and the empirical mar-
ginal posteriors for model parameter ν, based on the generated chains of the marginal
reference posterior (15).

8 Concluding remarks

In this paper, we have summarized the definition and derivation of reference posterior,
and we have illustrated the theory with an important example in survival analysis; we
have also mentioned some results that may be used to substantiate the claim that
they constitute the more promising available method to derive nonsubjective prior
distributions. We have developed a reference posterior distribution for one of the
parameters of the Poisson process model for recurrent events data, so that researchers
with a subjective initial information can compare their posterior distributions with
the reference distribution. The same technique can be developed for other parameter
of interest in the model, for example, the parameter β that measures the effect of
treatment. Using both simulated and real data, we have provided evidence that the
derived reference prior may well be recommended for objective Bayesian inference
in the Possion process model.
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