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SUMMARY

A frequent statistical problem is that of predicting a set of quantities given the values of some covariates,
and the information provided by a training sample. These prediction problems are often structured
with hierarchical models that make use of the similarities existing within classes of the population.
Hierarchical models are typically based on a ‘natural’ definition of the clustering which defines the
hierarchy, which is context dependent. However, there is no assurance that this ‘natural’ clustering
is optimal in any sense for the stated prediction purposes. In this paper we explore the this issue by
treating the choice of the clustering which defines the hierarchy as a formal decision problem. Actually,
the methodology described may be seen as describing a large class of new clustering algorithms. The
application which motivated this research is briefly described. The argument lies entirely within the
Bayesian framework.
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1. INTRODUCTION

Dennis Lindley taught me that interesting problems often come from interesting applications.
Furthermore, he has always championed the use of Bayesian analysis in practice, specially when
this has social implications. Thus, when I was asked to prepare a paper for a book in his honour,
I thought it would be specially appropriate to describe some research which originated on a
socially interesting area, –politics–, and may be used to broaden the applications of one of the
methodologies he pioneered, –hierarchical linear models–.

2. THE PREDICTION PROBLEM

Let Ω be a set of N elements, let y be a, possibly multivariate, quantity of interest which
is defined for each of those elements, and suppose that we are interested in some, possibly
multivariate, function

t = t(y1, . . . ,yN )
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of the values of these vectors over Ω. Suppose, furthermore, that a vector x of covariates is also
defined, that its values {x1, . . . ,xN} are known for all the elements is Ω, and that a random
training sample

zn = {(xi,yi), i = 1, . . . , n},
which consists of n pairs of vectors (x,y), has been obtained. From a Bayesian viewpoint, we
are interested in the predictive distribution

p(t |zn,xn+1, . . . ,xN ).

If the set Ω could be partitioned into a class C = {Ci, i ∈ I} of disjoint sets such that
within each Ci the relationship between y and x could easily be modelled, it would be natural
to use a hierarchical model of the general form

p(yj |xj,θi[j]), ∀j ∈ Ci

p(θ |ϕ) (1)

p(ϕ)

where i[j] idenfifies the class Ci to which the j-th element belongs, p(y |x,θi) is a conditional
probability density, totally specified by θi, which models the stochastic relationship between y
andxwithinCi, p(θ |ϕ)describes the possible interrelation among the behaviour of the different
classes, and p(ϕ) specifies the prior information which is available about such interrelation.

Given a specific partition C, the desired predictive density p(t |zn,xn+1, . . . ,xN ) may be
computed by:

(i) deriving the posterior distribution of the θi’s,

p(θ |zn,C) ∝
∫ n∏

j=1

p(yj |xj,θi[j])p(θ |ϕ) p(ϕ) dϕ; (2)

(ii) using this to obtain the conditional predictive distribution of the unknown y’s,

p(yn+1, . . . ,yN |xn+1, . . . ,xN,zn,C) =
∫ N∏

j=n+1

p(yj |xj,θi[j])p(θ |zn,C) dθ; (3)

(iii) computing the desired predictive density

p(t |zn,xn+1, . . . ,xN,C) = f [y1, . . . ,yn, p(yn+1, . . . ,yN |xn+1, . . . ,xN,zn)] (4)

of the function of interest t as a well-defined probability transformation f of the joint predic-
tive distribution of the unknown y’s, given the appropriate covariate values {xn+1, . . . ,xN}
and the known y values {y1, . . . ,yn}.

This solution is obviously dependent on the particular choice of the partition C. In this
paper, we consider the choice of C as a formal decision problem, propose a solution, which
actually provides a new class of (Bayesian) clustering algorithms, and succinctly describe the
case study, –Mexican State elections–, which actually motivated this research.
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3. THE DECISION PROBLEM

The choice of the partition C may be seen as a decision problem where the decision space is
the class of the 2N parts of Ω , and the relevant uncertain elements are the unknown value of the
quantity of interest t, and the actual values of the training sample zn. Hence, to complete the
specification of the decision problem, we have to define a utility function u[C, (t,zn)] which
measures, for each pair (t,zn), the desirability of the particular partition C used to build a
hierarchical model designed to provide inferences about the value of t, given the information
provided by zn.

Since, by assumption, we are only interested in predicting t given zn, the utility function
should only depend on the reported predictive distribution for t, say qt(. |zn,C), and the actual
value of t, i.e., should be of the form

u[C, (t,zn)] = s[qt(. |zn,C), t]. (5)

The function s is known is the literature as a score function, and it is natural to assume that
it should be proper, i.e., such that its expected value should be maximized if, and only if, the
reported prediction is the predictive distribution pt(. |zn,xn+1, . . . ,xN,C). Furthermore, in
a pure inferential situation, one may want the utility of the prediction to depend only on the
probability density it attaches to the true value of t. In this case (Bernardo, 1979), the score
function must be of the form

s[qt(. |zn,C), t] = A log[p(t |zn,xn+1, . . . ,xN,C)] + B, A > 0. (6)

Although, in our applications, we have always worked with this particular utility function, the
algorithms we are about to describe may naturally be used with any utility function u[C, (t,zn)].

For a given utility function u and sample size n the optimal choice of C is obviously that
which maximizes the expected utility

u∗[C |n] =
∫ ∫

u[C, (t,zn)] p(t,zn) dt dzn. (7)

An analytic expression for u∗[C |n] is hardly ever attainable. However, it is not difficult to
obtain a numerical approximation. Indeed, using Monte Carlo to approximate the outer integral,
the value of u∗[C |m], for m < n may be expressed as

u∗[C |m] ≈ 1
k

k∑
l=1

∫
u[C,zm(l), t)] p(t |zm(l)) dt, (8)

where zm(l) is one of k random subselections of size m < n from zn. This, in turn, may be
approximated by

u∗[C |m] ≈ 1
k

k∑
l=1

1
ns

ns∑
j=1

u[C,zm(l), tj)], (9)

where tj is one of nj simulations obtained, possibly by Gibbs sampling, from p(t |zm(l)).
Equation (9) may be used to obtain an approximation to the expected utility of any given

partition C. By construction, the optimal partition will agglomerate the elements of Ω in a form
which is most efficient if one is to predict t given zn. However, the practical determination of
the optimal C is far from trivial.
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4. THE CLUSTERING ALGORITHM

In practical situations, where N may be several thousands, an exhaustive search among all
partitions C is obviously not feasible. However, the use of an agglomerative procedure to
obtain a sensible initial solution, followed by an application of a simulated annealing search
procedure, leads to practical solutions in a reasonable computing time.

In the aglomerative initial step, we start from the partition which consists of all the N
elements as classes with a single element, and proceed to a systematic agglomeration until
the expected utility is not increased by the process. The following, is a pseudocode for this
procedure.

C := {all elements inΩ}
repeat

for i:=1 to N
for j:=i + 1 to N

begin
C∗ := C 	 (i, j), {Ci → Ci ∪ Cj)}
if u∗[C∗] > u∗[C] then C := C∗

end
until No Change

The result of this algorithm may then be used as an initial solution for a simulated annealing
procedure. Simulated annealing is an algorithm of random optimization which uses as a heuristic
base the process of obtaining pure crystals (annealing), where the material is slowly cooled,
giving time at each step for the atomic structure of the crystal to reach its lowest energy level at the
current temperature. The method was described by Kirkpatrick, Gelatt and Vechhi (1983) and
has seen some statistical applications, such as Lundy (1985) and Haines (1987). The algorithm
is special in that, at each iteration, one may move with positive probability to solutions with
lower values of the function to maximize, rather than directly jumping to the point with the
highest value within the neighborhood, thus drastically reducing the chances of getting trapped
in local maxima. The following, is a pseudocode for this procedure.

get Initial Solution C0, Initial Temperature t0, Initial Distance d0;
C := C0; t := t0; d := d0;
repeat
while (not d-Finished) do

begin
while (not t-Optimized) do

begin
Choose Random(Ci | d)
δ := u∗[Ci] − u∗[C0]
if (δ ≥ 0) then C := Ci

else if (exp{−δ/t} ≤ Random) then C := Ci

end;
t := t/2

end;
Reduce Distance(d)
until d < ε

In the annealing procedure, the distance among two partitions is defined as the number of
different classes it contains.
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5. AN APPLICATION TO ELECTION FORECASTING

Consider a situation where, on election night, one is requested to produce a sequence of
forecasts of the final result, based on incoming returns. Since the results of the past election are
available for each polling station, each incoming result may be compared with the corresponding
result in the past election in order to learn about the direction and magnitude of the swing for
each party. Combining the results already known with a prediction of those yet to come, based
on an estimation of the swings, in each of a set of appropriately chosen strata, one may hope to
produce accurate forecasts of the final results.

In Bernardo and Girón (1992), a hierarchical prediction model for this problem was devel-
oped, using electoral districts within counties as a ‘natural’ partition for a three stage hierarchy,
and the results were successfully applied some weeks later to the Valencia State Elections.
One may wonder, however, whether the geographical clustering used in the definition of the
hierarchical model is optimal for the stated prediction purposes.

With the notation of this paper, a two-stage hierarchical model for this problem is defined
by the set of equations

yj[i] = xj[i] + θi + ε0j[i], j ∈ Ci, p(ε0j[i] |α0), E[ε0j[i]] = 0

θi = ϕ + ε1i, i ∈ I, p(ε1i |α1), E[ε1i] = 0 (10)

π(ϕ,α0,α1)

where yj[i] is the vector which describes the results on the new election in polling station j
which belongs to class Ci, xj[i] contains the corresponding results in the past election, the
error distributions of ε0 = (ε01[1], . . . , ) and ε1 = (ε11, . . . , ), p(ε0 |α0) and p(ε1 |α1), have
zero mean and are fully specified by the hiperparameters α0 and α1, and π(ϕ,α0,α1) is the
reference distribution (Berger and Bernardo, 1992) which corresponds to this model.

The function of interest is the probability vector which describes the final results of the new
election, i.e.,

t =
∑
i∈I

∑
j∈Ci

βj[i]yj[i] (11)

where βj[i] is the (known) proportion of the population which lives in the poling station j of
class Ci. The posterior distribution of t may be derived using the methods described above.

In this particular application, however, interest is essentially centered on a good estimate
of t. Given some results from the new election, i.e., the training sample zn, the value of t may
be decomposed into its known and unknown parts, so that the expected value of the posterior
distribution of t may be written as

E[t |zn] =
∑
i∈I

∑
j∈ Obs

βj[i]yj[i] +
∑
i∈I

∑
j∈ NoObs

βj[i]E[yj[i] |zn], (12)

where

E[yj[i] |zn] = xj[i] +
∫ ∫

E[θi |zn,α0,α1] p(α0,α1 |zn) dα0 dα1. (13)

The conditional expectation within the double integral may be analytically found under dif-
ferent sets of conditions. In their seminal paper on hierarchical models, Lindley and Smith (1972)
already provided the relevant expressions under normality, when y is univariate. Bernardo and
Girón (1992) generalize this to multivariate models with error distributions which may be
expressed as scales mixtures of normals; this includes heavy tailed error distributions such
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as the matrix-variate Student t’s. If an analytical expression for the conditional expectation
E[θi |zn,α0,α1] may be found, then an approximation to E[yj[i] |zn] may be obtained by
using Gibbs sampling to approximate the expectation integral.

In particular, when the error structure may be assumed to have the simple form

D2[ε0 |h0,Σ] =
1
h0

(I ⊗ Σ), D2[ε1 |h1,Σ]] =
1
h1

(I ⊗ Σ), (14)

where the I’s are identity matrices of appropriate dimensions and ⊗ denotes the Kronecker
product of matrices, and when the error distribution is expressable as a scale mixture of normals,
then the conditional reference reference distribution π(ϕ, |h0, h1,Σ) is uniform and the first
moments of the conditional posterior distribution of the θi’s are given by

E[θi |zn, h0, h1,Σ] =
nih0r.i + h1r..

nih0 + h1
(15)

D2[θi |zn, h0, h1,Σ] =
1

nih0 + h1
Σ, (16)

where ni is the number of polling stations the sample which belong to class Ci,

r.i =
1
ni

∑
j∈Ci

(
yj[i] − xj[i]

)
, i ∈ I (17)

are the average sample swings within class Ci, and

r.. =
1
n

n∑
j=1

yj − xj = r.i (18)

is the overall average swing.
Since (14) are the rather natural assumptions of exchangeability within classes, and ex-

changeability among classes, and (15) remains valid for rather general error distributions, (12),
(13), and Gibbs integration over (15) provide together a practical mechanism to implement the
model described.

6. A CASE STUDY: STATE ELECTIONS IN MEXICO

On February 1993, I was invited by the Mexican authorities to observe their Hidalgo State
elections, in order to report on the feasibility of implementing in Mexico the methods developed
in Valencia. Although I was not supposed to do any specific analysis of this election, I could
not resist the temptation of trying out some methods.

I had taken with me the code of the algorithm I use to select a set of constituencies which,
when viewed as a whole, have historically produced, for each election, a result close to the
global result. The procedure, which is another application of simulated annealing, is described
in Bernardo (1992).

Using the results of the 1989 election in Hidalgo (which were the only available ones), I
used that algorithm to select a set of 70 polling stations whose joint behaviour had been similar
to that of the State as a whole, and suggested that the local authorities should send agents to
those polling stations to report on the phone the corresponding returns as soon as they were
counted. A number of practical problems reduced to 58 the total number of results which were
available about two hours after the polling stations closed.
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In the mean time, I was busy setting up a very simple forecasting model –with no hierarchies
included–, programmed in Pascal in a hurry on a resident Macintosh, to forecast the final results
based on those early returns. This was in fact the particular case which corresponds to the model
described in Section 4, if the partition C is taken to have a single class, namely the whole Ω.

About 24 hours later, just before the farewell dinner, the provisional official results came in.
Table 1, Line 1, contains the official results, in percentage of valid votes of PAN (right wing),
PRI (government party), PRD (left wing) and other parties. As it is apparent from Table 1,
Line 2, my forecasts were not very good; the mean absolute error (displayed as the loss column
in the table, was 3.28. Naturally, as soon as I was back in Valencia, I adapted the hierarchical
software which I have been using here. The results (Table 1, Line 3) were certainly far better,
but did not quite met the standards I was used to in Spain.

State of Hidalgo, February 21st, 1993

PAN PRI PRD Others Loss

Oficial Results 8.30 80.56 5.56 5.56

No hierarchies 5.5 76.8 9.3 8.4 3.28

Districts as clusters 6.4 80.6 7.7 5.3 1.09

Optimal clustering 8.23 80.32 6.18 5.27 0.31

Table 1. Comparative methodological analysis.

On closer inspection, I discovered that the variances within the districts used as clusters in
the hierarchical model were far higher than the corresponding variances in Spain. This prompted
an investigation on the possible ways to reduce such variances and, naturally, this lead to the
general procedures described in this paper.

We used repeated random subselection of size 58 from the last election results in Hidalgo in
order to obtain, –using the algorithms described in Section 3–, the 1989 optimal partition of the
polling stations. In practice, we made the exangeability assumptions described by (14), assumed
Cauchy error distributions, and chose a logarithmic scoring rule. We then used this partition to
predict the 1993 election, using the two-stage hirearchical model described in Section 4 and the
58 available polling station results. The results are shown in Table 1, Line 4; it is obvious from
them that the research effort did indeed have a practical effect in the Hidalgo data set.

7. DISCUSSION

Prediction with hierarchical models is a very wide field. Although very often, the clustering
which defines the hierarchy has a natural definition, this is not necessarily optimal from a
prediction point of view. If the main object of the model is prediction, it may be worth to
explore alternative hierarchies, and the preceding methods provide a promising way to do this.

Moreover, there are other situations where the appropriate clustering is less than obvious.
For instance, a model similar to that described here may be used to estimate the total personal
income of a country, based on the covariates provided by the census and a training sample which
consists of the personal incomes of a random sample of the population and their associated census
covariates. The clustering which would be provided by the methods described here may have
indeed an intrinsic sociological interest, which goes beyond the stated prediction problem.
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Finally, the whole system may be seen as a proposal of a large class of well-defined clustering
algorithms, where –as one would expect in any Bayesian solution–, the objectives of the problem
are precisely defined. These could be compared with the rather ad hoc standard clustering
algorithms as explorative data analysis methods used to improve our understanding of complex
multivariate data sets.
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