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Statistical Inference as a Decision Problem:
The Choice of the Sample Size
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Professor Lindley is to be congratulated for providing another example of the power and
versatility of a decision-oriented, fully Bayesian approach. As he stresses, maximisation of the
expected utility provides a general method to determine the optimal sample size, whatever the
specific preferences of the decision-maker might be; in particular, he points out that inference
may be seen as a particular decision problem where the action space consists of the class of
possible distributions of the quantity of interest, and the utility function is a logarithmic score.
I will extend his comments on this very important particular case, in the hope of making easier
to the reader its practical use.

As described in the paper, if one faces a decision problem with alternatives d ∈ D whose
consequences depend on some (unknown) relevant quantity θ ∈ Θ ⊆ � with prior distribution
pθ(.), if one is prepared to make an experiment in order to learn more about θ which consists of
observing data {x1, x2, . . .}, xi ∈ X , related to θ by px(. | θ), and if the utility of performing
an experiment of size n, obtain x = {x1, . . . , xn}, and choose d if θ is true, is given by

u(n, x, d, θ) = g(d, θ) − c(n, x),

where the gain function g and the cost function c are expressed in the same (say monetary)
units, then coherence implies that the optimal sample size is that value of n which maximizes

u∗(n) =
∫

Xn
px(x) sup

d∈D

∫
Θ

g(d, θ)pθ(θ |x) dθ dx − c∗(n)

where

pθ(θ |x) ∝
n∏

i=1

px(xi | θ)pθ(θ),

px(x) =
∫

Θ

n∏
i=1

px(xi | θ)pθ(θ) dθ,

c∗(n) =
∫

Xn
c(n, x)px(x) dx.
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Moreover, scientific inference may appropriately be described as the particular decision problem
where D = {qθ(.)} is the class of possible distributions of θ which could conceivably be reported
as the final conclusion of the statistical analysis, and the gain function is a proper, local scoring
rule, so that, necessarily, (Bernardo, 1979a)

g(qθ(.), θ) = A log qθ(θ) + B(θ).

In a setting designed to analyse the value of an experiment, it is natural to set to zero the
gain from reporting the prior distribution. This obviously implies B(θ) = −A log pθ(θ) and
hence, the expected gain from an experimental result x is

∫
Θ

g(d, θ)pθ(θ |x) dθ = Iθ{x, pθ(.)} = A

∫
Θ

pθ(θ |x) log
pθ(θ |x)
pθ(θ)

dθ.

The function Iθ{x, pθ(.)}, which is obviously invariant under one-to-one transformations of
θ and depends both on the data x and on the prior pθ(.), is the appropriate expression for the
amount of information about θ provided by x, not the non-invariant minus entropy of equation
(9) in the paper. If, furthermore, one chooses A = v/ log(2), where v is the expected value of
one bit of information about θ, that is, the expected value for the decision maker of the answer
to one question about θ with two alternative answers with the same prior probability, then the
expected utility of a sample of size n is given by

u∗(n) = vI(n) − c∗(n)

where

I(n) =
∫

Xn
px(x)

∫
Θ

pθ(θ |x) log2
pθ(θ |x)
pθ(θ)

dθ dx

is Shannon’s expected information about θ from a sample of size n.

Extending previous results (Bernardo, 1979b), I have found (work in progress) that, under
broad regularity conditions,

I(n) =
1
2

log2(1 +
n

n0
) + o(1), (n → ∞),

where n0, which may aptly be termed the sample size equivalent of the prior distribution pθ(.)
with respect to an experiment which consists of a random sample from px(. | θ), is given by

n0 = − 1
i(θ)

∂2

∂θ2 log
pθ(θ)√

i(θ)

∣∣∣∣∣
θ=θ0

where θ0 is the solution to the equation

∂

∂θ
log

pθ(θ)√
i(θ)

= 0,

and i(θ) is Fisher’s information function,

i(θ) =
∫

X
px(x | θ)

{
− ∂2

∂θ2 log px(x | θ)
}

dx.
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It may be verified that, provided that pθ(.) is reasonably well behaved, the expression above
gives very good approximations to the expected information even for rather moderate values
of n.

Very often, the cost structure of an experiment is such that its expected value c∗(n) is
approximately linear on n. In this case, the expected utility of a sample of size n may be written
as

u∗(n) ≈ v

2
log2(1 +

n

n0
) − c0 − cn,

where v is the expected value of one bit of information about θ, and c is the expected cost of
each observation. It follows that the optimal sample size must be such that

n0 + n =
1

2 log 2
v

c
.

In words, the total sample, i.e., the sample size equivalent of the prior information plus the
experimental sample size, must equal 1/(2 log 2) ≈ 0.72 of the ratio of the value of one bit of
information to the cost of one observation.

I will conclude by outlining a simple example. Suppose that a firm is about to order a
survey to learn on the proportion θ of people which would like a particular product, and that
their beliefs are such that (i) their most likely value for θ is 0.15 and (ii) they have probability
0.99 that θ is smaller than 0.39. It may be verified that this roughly corresponds to a prior Beta
distribution Be(θ | 4.5, 20.5).

Using the definition given above, the sample size equivalent n0 of a Be(θ |α, β) prior
distribution with respect to a binomial experiment with parameter θ may found to be α+β− 1.
Incidentally, this is consistent with the fact the appropriate reference distribution in this case is
πθ(θ) = Be(θ | 0.5, 0.5), with sample size equivalent 0, not the uniform distribution. Thus, in
our example, the sample size equivalent of the prior knowledge is 4.5 + 20.5 − 1 = 24.

If, say, the firm is prepared to pay $5,000 for the answer to one bit of information about θ
(in order to know, for example, whether θ is inside or outside [0.11, 0.21], which is the 50%
HPD interval of the prior), and if the expected cost of each interview is $10, then the firm should
require a total sample of

1
2 log 2

5000
10

≈ 360.

Since the sample size equivalent of their prior knowledge is 24, they should pay for a survey of
size 360 − 24 = 336.
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