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1. Concept of Probability

1.1. Introduction

1 Tentatively accept formal statistical model
Typically suggested by informal descriptive evaluation
Conclusions conditional on the assumption that model is correct

1 Bayesian approach firmly based axiomatic foundations
Mathematical need to describe by probabilities all uncertainties
Parametersmusthave a prior) distribution describing available

Information about their values
Nota description of their variabilityfixed unknowmuantities),
but a description of thancertaintyabout their true values.

1 Important particular case: no relevant (or subjective) initial information:
scientific and industrial reporting, public decision making, ...
Prior exclusivel\based on model assumptions and available,
well-documented dataDbjective Bayesian Statistics



e Notation

1 Under conditions”, p(x | C), n(0 | C') are, respectivelyprobability
densities (or mass) functions observableax andparameter®
p(x|C) >0, [yp(x|C)de =1, E[x|C] = [yxp(x|C)dz,
m(@|C) >0, [on(@]|C)d0 =1, E[6|C] = |gOn(8]|C)do.
1 Special densities (or mass) functions use specific notation, as
N(z | u,0), Bi(z|n,0), or Pn(z| ). Other examples:

Beta {Be(x|a,p), O<a:<1, a>0,0>0}

Be(CIL' ‘ O‘aﬁ) — I&(C;—i_(ﬁ)) ( — I)ﬁ_l

Gamma {Ga(a:|a, ), x>0, a>0,0>0}

Gar|a,B) = ﬁ ~le=pr

Student {St(x|p,0,c), xR, peR, o>0 a>0}

Q N2 —(a+1)/2
Stz | p, 0,0) = F{(F(Z%Q)}ajﬁ [1 + 2 (%)




e Statistical Models

[ Statistical modegeneratinge € X, {p(x |0),x € X,0 € O}

Parameter vectof = {6, ...,0;} € ©. Parameter spac® C R*.
Datasetr € X. Sampling (Outcome) space, of arbitrary structure.

1 Likelihood functiorof x, (0 | x).
[(8|x) =p(x]| @), as afunction ob € O.

1 Maximum likelihood estimator (mle) 6
0 = 0(x) = arg supgcg (0] )

1 Datax = {x1,...,xy} random sampl¢id) from model if
p(z|0) = ?:1p(:13j‘9), 213]'6.)(, X ="

1 Behaviour under repeated sampling (general, not iid data)
Considering{x1, x9, . ..}, a (possibly infinite) sequence
of possible replications of theompletedata setre.

Denote byz (™) = {x1,...,xm} afinite set ofn such replications.
1 Asymptotic results obtained as — oo



1.2. Intrinsic Divergence

e Logarithmic divergences

1 The logarithmic divergence (KuIIback-LeibIek){ﬁ\p} of a density
p(x), x € X from its true density(x), is

k{D|p} = [y p(x)log= E %da} (provided this exists)

The functionak{p | p} is non-negative, (zero ifh(x) = p(x) a.e.) and
Invariantunder one-to-one transformationsaaf

1 Butk{py|pso} is not symmetri@and diverges if, strictlyYy C Xy .

e Intrinsic discrepancy between distributions

. £r
0 6{p1,p2}t = mm{f;gl p1(x) logggwg dz, [y, pa z)log” E gdw}
Theintrinsic discrepancy{pi, p2} is hon-negative (zero Iffp1 = P9
a.e.), andnvariantunder one-to-one transformationsaaf

] Defined if X9 C X7 or X1 C X9, operative interpretation as the
minimum amount of information (inits) required to discriminate.



e Interpretation and calibration of the intrinsic discrepancy

1 Let{pi(x|01),01 € O1} or{po(x|09),09 € Oy} be two alternative
statistical models fox € X, one of which is assumed to be true. The
intrinsic divergencey {01,605} = 6{p1,p2} Is thenminimum expected
log-likelihood ratio in favour of the true model

Indeed, ifp1(x | 81) true model, the expected log-likelihood ratio in its
favouris g [log{pi(x |01)/p2(x | 01)}] = k{pa |p1}. Ifthe true model
ispa(z | B2), the expected log-likelihood ratio in favour of the true model
is k{p2 | p1}. Butd{pa |p1} = min|x{p2 |p1}, x{p1 |p2}].

1 Calibration. § = log|100] =~ 4.6 nits, likelihood ratios for the true model
larger thanl00 makingdiscrimination very easy

0 = log(1 + ¢) =~ ¢ nits, likelihood ratios for the true model may about
1 + e makingdiscrimination very hard

Intrinsic Discrepancy 0.69 23 46 6.9

Average Likelihood Ratio
for true modelexp|J] 2 10 100 1000
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1 Example.Conventional Poisson approximation(Pnn6) of Binomial
probabilities B{r | n, 6)

Intrinsic discrepancy between Binomial and Poisson distributions
6{Bi(r|n,0),Por|nf} = min|k{Bi | Po}, k{Po| Bi}| = k{Bi | Po}
= > _r=0Bi(r|n, 0)log[Bi(r|n, 8)/Po(r|nb)] = é{n, 6}

5{3,0.05} = 0.00074 oL Eolm o) .
6{5000, 0.05} = 0.00065 0.14
0.12 Hfg
0{00,0} = [ — log(1 — )] 0.1 N=co
0.08
Good Poisson approximations 0. 06
areimpossiblgaf 8 is not small,  0.04

however large: might be. 0.02

0.1 0.2 0.3 0.4 0.5



e Intrinsic Convergence of Distributions

1 Intrinsic convergence A seguence of probability densities (or mass)
functions{p;(x)}; 2, convergesntrinsically to p(x) if (and only if) the
intrinsic divergence between (x) andp(x) converges to zero.e., iff
lim; 50 6(p;,p) = 0.

1 Example Normal approximation to a Student distribution.

o(a) = 0{St(x | p,0,a),N(z | p,0)} = min[k{Sta [N}, £{N | Sta }]
N(z|0,1) 7

_ — 1)1 ~

0.01;

0. 008 ¢

k{N|St,} diverges fora < 2

k{St, | N} is finite for alla. > 0.

6(18) =~ 0.04 9(25) ~ 0.02
(NSt 50 -0. 0012 Expected log-density ratios

ZIIZIIZIIZII:II:II:IIIIZIIZIIZII...:'E at |eaSD . OO ]. Wh e n Oé < 40 .

20 40 60 80 100

0. 006 ¢

0. 004 ¢
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1.3. Foundations

e Foundations of Statistics

1 Axiomatic foundations on rational description of uncertainty imply that
the uncertainty about all unknown quantities should be measured with
probability distributions{= (6 | C),0 € ©} describing the plausibility
of their given available conditions.

1 Axioms have a strong intuitive appeal; examples include
e Transitivity of plausibility
If £ >~ Eo|C,andEy - Eg|C,thenE| - E3|C
e The sure-thing principle
If £ > E9|A,CandFEq| = Ey| A, C, thenE| - E5 | C).

1 Axioms are not alescriptionof actual human activity, but aormative
set of principles for those aspiring to rational behaviour.

1 “Absolute” probabilities do not exist. Typical applications produce
PrE |z, A, K), a measure of rational belief in the occurrence of the
eventFE, given datar, assumptions! and available knowledg& .
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e Probability as a Measure of Conditional Uncertainty

1 Axiomatic foundations imply that PE | C'), theprobability of an event
E givenC'is alwaysa conditional measure of the (presumably rational)
uncertainty, on 80, 1] scale, about the occurrencelgiin conditionsC.

e Probabilistic diagnosid/ is the event that a person carries a virus
and-+ a positive test resultAll related probabilities.g,
Pr(+|V) = 0.98, Pr(+| V) = 0.01, PV | K) = 0.002,
Pr(+|K) =Pr(+ | V)PV |K) +Pr(+ | V)PV | K) = 0.012

PV |+, A K) = Pr(+FL:(/3L|3|f[({‘§!K) = (0.164 (Bayes’ Theorem)

are conditional uncertainty measures (and proportion estimates).
e Estimation of a proportiorsurvey conducted to estimate

the proportiory of positive individuals in a population.

Random sample of size with r positive.

Prla < 8 <b|r,n, A, K), a conditional measure of the uncertainty

about the event th@&tbelongs tda, b| givenassumptions,

initial knowledgeK and data{r, n}.
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e Measurement of a physical constavieasuring the unknown value of
physical constant, with datax = {x{,...,xy}, considered to be
measurements of subject to error. Desired to find
Prla < pu<b|xy,...,zn, A, K), theprobability that the unknown
value ofu (fixed in nature, but unknown to the scientists)
belongs tda, b] given the information provided by the data
assumptions!t made, and available knowledgé.

1 The statistical model may includreiisanceparameters, unknown quan-
tities , which have to be eliminated in the statement of the final results.

For instance, the precision of the measurements described by unknown
standard deviation in a N(z | 1, o) normal model

1 Relevant scientific information may imposstrictionson the admissi-
ble values of the quantities of interest. These must be taken into account.

For instance, in measuring the value of the gravitational field a
laboratory, it is known that it must lie betwe8rv803 m/seé (average
value at the Equator) arid’8322 m/seé (average value at the poles).
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e Future discrete observatiortsxperiment counting the number
of times that an everi takes place in each af replications.
Desired to forecast the number of timethat £/ will take place
in a future, similar situation, Pr|r{,...,ry, 4, K).

For instance, no accidents in eachnof 10 consecutive months
may yield P(r = 0| x, A, K) = 0.953.

e Future continuous observatio¥atax = {yq,...,y,}. Desired
to forecast the value of a future observatipm(y | =, A, K).
For instance, from breaking strengths= {y1,...,yn} 0f n

randomly chosen safety belt webbings, the engineer may find
Prly > y* |z, A, K) = 0.9987.

e Regressiorata set consists of paiis= {(y1,v1),--., (Yn, vn)}
of quantityy ; observed in conditions;;.
Desired to forecast the value gfin conditionsv, p(y | v, x, A, K).

For instancey contamination levels; wind speed from source;
environment authorities interested iNPr> y* |v, x, A, K)
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2. Basics of Bayesian Analysis

2.1. Parametric Inference

e Bayes Theorem

1 LetM = {p(x|0),x € X, 0 € O} be an statistical model, le{ 0 | K)
be a probability density fa# given prior knowledgd< and letz be some
available data.

p(x|0)m(0]| K)
> 9 213, M, K — )
(0] ) Jop(x|0) (0| K)dO
encapsulates all information abdligiven data and prior knowledge.
1 Simplifying notation, Bayes’ theorem may be expressed as
m(0[x) o< p(x|0)m(0) :
The posterior is proportional to the likelihood times the prioffhe
missing proportionality constantg p(x |0) 7 () d0]~1 may be de-
duced from the fact that(@ | £) must integrate to one. To identify a

posterior distribution it suffices to identify leernel (8, ) such that
w(0|x) = c(x) k(0,x). This is a very common technique.
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e Bayesian Inference with a Finite Parameter Space

1 Model{p(x|0;),x € X,0; € O}, with©® = {64,...,0}, so thatf
may only take dinite numberm of different values. Using the finite
form of Bayes’ theorem,

Pr(d; | ) = 75(%‘97’) 0:) , t=1,...,m.

™ p(x |0;) Pr(6)

1 Example: Probabilistic diagnosis A test to detect a virus, Is known
from laboratory research to give a positive resuld&¥; of the infected
people and in% of the non-infected. The posterior probability that a
person who tested positive is infected is

Pr(V | +)

B 0.98p 1,

Pr(V | +) = 598 p70.01 (1=p)
as a function op = Pr(V). N F
1 Notice sensitivity of posterior o

Pr(V | +) to changes .
in the priorp = Pr(V). - Py

0.2 0.4 0.6 0.8 1




e Example: Inference about a binomial parameter

1 Let datax ben Bernoulli observations with parameteér

16

which contain- positives, so thagb(x |0,n) = 6" (1 — )" ".

1 If w(0) = Be(f | o, 3), then
(0| z) x 97“-|-0z—1(1 . e)n—r—l—ﬁ—l
kernel of B0 | r + a,n — r + ().

1 Prior information )
P(0.4 < 6<0.6)=0.95,
and symmetric, yielda = 5 = 47;
1 No prior informationa = 3 = 1/2
1 n = 1500,r = 720
P0 <05|x, K)=0.933
P(# <0.5|x) =0.934
1 n=100,7r=0
P(0 <0.01|x)=0.844
Notice: 8 = 0, but M@ | ] = 0.0023

30|
25|
20|
15|
10|

5,

|

ﬂ/

K

500
400
300
200
100

0.35 0.4 0.45 0.5 0.55 0.6 0.65

e —

0.005 0.01 0.015 0.02 0.025
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e Sufficiency

]

Given a modep(x | 8), a function of the data = t(x), is asufficient
statistic If it encapsulates all information abduavailable inx.

Formally, t = t(x) is sufficientif (and only if), for any priorz(0)
w(@|x)=n(0]|t). Hencex (0 |x) = w(0 |t) x p(t|0) w(0).

This is equivalent to the frequentist definition; thtus ¢(x) is sufficient
iff p(x|0) = f(6,t)g(x).

1 A sufficient statistic always exists, féfx) = « is obviously sufficient

A much simpler sufficient statistic, with fixed dimensionality
Independent of the sample size, often exists.

This is case whenever the statistical model belongs to the
generalized exponential famjlwhich includes many of the
more frequently used statistical models.

In contrast to frequentist statistics, Bayesian methods are independent
on the possible existence of a sufficient statistic of fixed dimensionality.

For instance, If data come from &tudendistribution, there is10 suffi-
cient statistioof fixed dimensionalityall data are needed
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e Example: Inference from Cauchy observations

1 Datax = {z1,...,xn} random from Cézr | 4, 1) = St(x | u, 1, 1).
1 Objective reference prior for the location parametés m(u) = 1.
1 By Bayes’ theorem,

n
W(u!w)mﬂj Ca(z;|p, 1)m ocH] 1TT

Proportionality constant easily obtained by numerical integration.

1 Five samples of size = 2 \
simulated from Caz|5,1).

0.5

— )%

ZCl 5172 0.4
4.034 4.054 03!
21.220 5.831 0l
5.272 6.475
4.776 5.317 0L

7.409 4.743
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e Improper prior functions

]

Objective Bayesian methods often use functions which play the role of
prior distributions but areot probability distributions.

An improper prior functionis an non-negative functiom(8) such that
Jo 7(0) df is not finite.

The Cauchy example uses the improper prior functigm) = 1, u € R.
m(6) is an improper prior function{©;}>°, an increasing sequence
approximatingd, such thatf@i m(6) < oo, and{m;(0)}>2 the proper
priors obtained byenormalizingr(€) within the ©;’s.

For any datax with likelihood p(x | 0), the sequence of posteriors
7,;(0 | &) converges intrinsically ta(0 | x) « p(x | 0) 7(8).

Normal datag known, 7 () = 1. L
m(ul@) ocp@|po)m(p) (1| )

ox expl—515(T — )] / |
m(u|z) =N(p|T,0/v/n) Ny %Ww) |
Example:n =9, x =2.11, 0 =4 N N M
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e Sequential updating

1 Prior and posterior are termslativeto a set of data.

1 Ifdatax = {xq,...,x,} are sequentially presented, the final result will
be the same whether data are globally or sequentially processed.
m(@|xy, ... @ip1) xp(xip1]0) w(0| @1, . .. ;).
The “posterior” at a given stage becomes the “prior” at the next.
1 Typically (but not always), the newosterior 7(0 |xz1,...,x;.1), IS
more concentratedround the true value than@ | x1, ..., x;).
1 Posteriorst(\ | xq,...,x;)
from increasingly large )|
simulated data from Poisson
Pnx|\),withA =3 a
(A xq,...,2;) 1
ZGa()\.‘TZ'—I—l/Q,Z') ol
r; = Z-:l CEJ A
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e Nuisance parameters

]

In general thevector of interests not the whole parameter veciéybut
some functionp = ¢(0) of possibly lower dimension.

By Bayes’ theoremr(0 |x) « p(x|0)7(0). Letw = w(O) € Q be
another function o0& such that) = {¢,w} is a bijection off, and let
J (1) = (00/0) be the Jacobian of the inverse functipn= (0).

From probability theoryg (v | x) = |J()|[7 (0 | w)]9:9(¢)
andr (¢ |x) = Jo7(¢P,w]|x)dw.

Any valid conclusion onp will be contained int(¢ | x).
Particular casemarginal posteriors

Often model directly expressed in terms of vector of integgstand
vector of nuisance parametessp(x | 0) = p(x | P, w).

Specify the prior 7(0) = n(¢) 7(w | @)
Get the joint posterior W((b,w \ x) xplx|p,w)r(w| @) ()
Integrate outy, w(¢|x) x (@) Jop(x|P,w)T(w|P)dw
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e Example: Inferences about a Normal mean
1 Datax = {x{,... xn} random from N:z; |, o ). Likelihood function
p(a|p,0) o o~ expl-n{s® + (T — p)? }/(20 ),
with nz = 3", z;, andns? = 3, (z; — T)2.
1 Objective prior is uniform in botl andlog(o), i.e., w(u,0) = o
Joint posterior (i1, o | ) o o~ (") exp[—n{s? + (T — u)2}/(202)].

1 Marginal posterion (i1 | ) oc [°7(u, 0 | ) do o< [s2+(T—p)%] /2,
kernel of the Student density (&t| z, s/v/n — 1,n — 1)

1 Classroom experiment to
measure gravity yields 401
T = 9.8087, s = 0.0428 m(g|T,s,n)
with n = 20 measures.

ﬂ-(g‘fvsvn) 20
= St(g | 9.8087,0.0098, 19)

PI(9.788 < g < 9.829 | x)
—0.95 (shaded area) | 9.

9.75 9.8 9.85 9.9
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e Restricted parameter space

1 Range of values o restricted by contextual considerations.

If & known to belong t®, C ©, 7(0) > 0iff 8 € O,
By Bayes’ theorem,

’

(0 |x) .
) f 9
(0| x,0 € Of) = < f@cw(ﬁ\w)de ! € 9
\ 0 otherwise

1 To incorporate a restriction, it suffices tenormalizethe unrestricted
posterior distribution to the séi. C © of admissible parameter values.

1 Classroom experimentto 4o}
measure gravity with _
restriction to lie between 3¢ m(g|T,s,n,Re)
go = 9.7803 (equator)
g1 = 9.8322 (poles).

Pr(9.7921 < g < 9.8322| )
= 0.95 (shaded area) g

9.7 9.75 9.8 9.85 9.9
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e Asymptotic behaviour, discrete case

[ If the parameter space = {61, 6o, ...} is countableand
The true parameter valuk is distinguishabldrom the others.e.,

0ip(x | 61), p(x|0;)) > 0,4 7 t,

lim 7w(0|x1,...,2pn) =1

n—00

lim 7(0;|xy,...,2n) =0, 1#£t
n—00

1 To prove this, take logarithms is Bayes’ theorem,
definez; = log[p(x | 6;)/p(x | 6;)],
and use the strong law of large numbers onrthe
I.I.d. random variablesy, ..., 2.

1 For instance, in probabilistic diagnosis the posterior probability of the
true disease converges to one as new relevant information accumulates
providedthe model distinguishes the probabilistic behaviour of data un-
der the true disease from its behaviour under the other alternatives.
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e Asymptotic behaviour, continuous case

]

If the parameteé is one-dimensional and continuguso that® C R,

and the mode{p(x | 0), = € X'} isregular. basically,
X does not depend ah
p(x | 0) is twice differentiable with respect th

Then, asw — oo, (0| xq, ..., xy) converges intrinsically
to anormaldistribution with mean at the mle estimatir
and with variance(x1, ..., xy, ), where
_ A 2
v @, 0) = = S0 T loglp(x; | 6]
To prove this, express is Bayes’ theorem as
m(@ @1, ...,2n) oc expllogm(0) + 37 log p(z; | 0)],
and expand_7_; log p(«; | 6)] about its maximum, the mie

The result is easily extended to the multivariate dase {61, . ..,0,.},
to obtain a limitingk-variate normal centered @f and with a dispersion
matrixV (xq, ..., xn, @) which generalizes(x1,...,xy,0).
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e Asymptotic behaviour, continuous case. Simpler form

1 Using the strong law of large numbers on the sums above a simpler, less
precise approximation is obtained:

[ If the parameted = {61, ...,0;} is continuous, so th&) C Rk

and the mode{p(x |0), « € X'} isregular, so thatX does not depend
on @ andp(x | 0) is twice differentiable with respect to each of #és,
then, asn — oo, w(0|xq,...,xn) converges intrinsically to aulti-
variate normaldistribution with mean the ml@ and precision matrix
(inverse of the dispersion or variance-covariance matrik) ), where

F(0) is Fisher’'s matrix, of general element
2
Fij(6) = —Eg | glg,9 log p(| 0)]

1 The properties of the multivariate normal yield from this result the asymp-
totic forms for themarginal and theconditionalposterior distributions
of any subgroup of thé;’s.

7 In one dimensiong (0| x1,...,zn) ~ N |0, (nF(0)~1/2),
whereF () = —Eg, | [0%log p(a | 6) /067
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e Example: Asymptotic approximation with Poisson data

1 Datax = {z1,...,xn} random from Pt | A) o e A\ /2!

hencep(z|\) o< e "M\, r = YT, and\ = r/n.

Fisher’s function isF'(\) = —E, B [(9)\2 log Pn(z | )\)] = %

1 The objective prior function is(\) = F(\)1/2 = A~1/2
Hencer (A | @) oc e AN —1/2
the kernelofGé)\\r+%,n) 1 | r(\| )

1 The Normal approximatlon IS 08!
m(A@) & N{A|A, (n F(V) 712}
= N{A[r/n, Vr/n} 0al

1 Samples, = 5 andn = 25
simulated from Poissoh = 3

yieldedr = 19 andr = 82 —_— - =
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2.2. Reference Analysis

e NO Relevant Initial Information

1 Identify the mathematical form of a “noninformative” prior. One with
minimal effect, relative to the data, on the posterior distribution of the
guantity of interest

7 Intuitive basis:

Useinformation theoryto measure the amount on information about the
guantity of interest to be expected from data. This depends on prior
knowledge: the more it is known, the less the amount of information the
data may be expected to provide.

Define themissing informationabout the quantity of interest as that
which infinite independent replications of the experiment could possible
provide.

Define thereference prioras that whichmaximizes the missing informa-
tion about the quantity if interest
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e EXxpected information from the data

1 Given model{p(x|0),x € X,0 € O}, theamount of information

1%{x,7(6)} which may be expected to be provided #y about the
value off is defined by

1%{x,7(0)} = 6{p(=,0), p()r(0)},

the intrinsic discrepancy between the joint distributigee, 0) and the
product of their marginalg(x )= (6), which is theinstrinsic association
between the random quantitizsandé.

1 Considerl?{ X* ()} the information about which may be expected
from k conditionally independent replications of the original setup.
As k — oo, this would provide anynissing informatiormboutf. Hence,

ask — oo, the functionall?{ X%, x(0)} will approach the missing
information abou® associated with the prior(6).

1 Let7(0) be the prior which maximizeE’{ X* = (6)} in the classP of
strictly positive prior distributions compatible with accepted assumptions
on the value of) (which be the class dll strictly positive priors).

Thereference priorr™(0) is the limit ask — oo (in a sense to be made
precise) of the sequence of pridrs;.(0), k = 1,2, .. .}.
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e Reference priors in the finite case

1 If & may only take dinite numberm of different values{éy,...,0,}
andw(0) = {p1,...,pm}, Wwithp, = Pr(6 = 6,), then
limy, o I9{ X%, 7(0)} = H(p1, ..., pm) = — 121 pilog(p;),

that is, theentropyof the prior distribution{p1, ..., pm}.

1 Inthe finite case, the reference prior is that withximum entropwithin
the classP of priors compatible with accepted assumptions.
(cf. Statistical Physics)

1 If, in particular,’P containsall priors over{6,...,0,}, the reference
prior is theuniformprior, 7(0) = {1/m,...,1/m}.
(cf. Bayes-Laplace postulate of insufficient reason)
0.3 H(p27p3)

0 Prior {p1, po. p3, p4}
INn genetics problem

wherep; = 2po.

Reference prior is
{0.324,0.162,0.257,0.257}
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e Reference priors in one-dimensional continuous case

]

Let 71.(0) be the prior which maximizeE’{ X*_ « ()} in the classP of
acceptable priors.

For any datar € X, let 71.(0 | x) < p(x|0) 7.(0) be
the corresponding posterior.

The reference posterior density™ (0 | ) is defined to be the intrinsic
limit of the sequencén,.(0|x),k=1,2,...}

A reference prior functionr™(6) is any positive function such that,
forallx € X, 7*(0|x) x p(x|0) 7*(0).

This is defined up to an (irrelevant) arbitrary constant.

Letz(*¥) ¢ x* be the result of: independent replications af € X.
The exact expression fat.(6) (which may be obtained with calculus of
variations) is

— (k)
m(6) = exp[E 1) |, {log (9| 2P}
This formula may be used, by repeated simulation frama | 0) for

differentd values, to obtain aumerical approximatiomo the reference
prior.
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e Reference priors under regularity conditions

]

Let ék = é(az(k)) be a consistent, asymptotically sufficient estimator
of . In regular problems this is often the case with the mle estintator

The exact expression faf,.(6) then becomes, for large
T (0) ~ exp| gkw{logﬁk( [ 0)}]

As k — oo this converges tar. (4 | Hk)‘ékze

Let 6, = 6(z(*)) be a consistent, asymptotically sufficient estimator

of 6. Let(6]|6;.) be any asymptotic approximation #d6 | a:(k)), the
posterior distribution of6.

Hence, 7*(0) = 7 (0 | ék)’ékze
Under regularity conditions, the posterior distributiorfof

is asymptotically Normal, with medrand precisiom F(9), where
F(0) = —Eg | 9[0° log p(x | 6)/967] is Fisher's information function.

Hence, 7*(0) = F(0)1/2 (Jeffreys’ rule).
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e One nuisance parameter

1 Two parametersreduce the problem to sequentialapplication of the
one parameter case. Probability modghisx |0, 1,0 € ©, A € A} and
a¢-reference priorr, (6, A) is required. Two steps:

(i) Conditional ond, p(x |0, A) only depends on, and it is possible to
obtain theconditionalreference priotr™ (A | 6).

(i) If 7*(\|0) is proper, integrate out to get the one-parameter model
p(x|0) = [y p(x]|0, ) 7*(\|0)dA\, and use the one-parameter solu-
tion to obtainm™*(6).
Thed-reference prior is thenr, (0, A) = (A | 0) 7*(0).
The required reference posterioris (0 | ) o< p(x | 0)7*(0).

0 If 7%(\ | 0) is animproperprior function, proceed within an increasing
sequencg A;} over whichz™(\ | 8) is integrable and, for given daig
obtain the corresponding sequence of reference post¢ro(g | x }.

The required reference posteriof(0 | x) is their intrinsic limit.

A O-reference prior is any positive function such that, for any data
(0] x) oc [y p(z |6, ) 756, A) dX.
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e The regular two-parameter continuous case

1 Modelp(x |0, \). If the joint posterior of(6, \) is asymptotically nor-
mal, thef-reference prior may be derived in terms of the corresponding
Fisher’s information matrixF'(0, \).

ro = () F6)). s -ren,
Thed-reference prior isry (0, A) = 7" (A | 0) 7 (6), where

(A 6) x Fl//\z(e, A), A€ A, and, if7*(\|0) is proper,
7(0) o exp { [} 7 (A |0) log[Sy,/2(0, \)] dA}, 6 € ©.

0 If #%(\|0) is not proper, integrations are performed within an approx-
imating sequencéA;} to obtain a sequencer; (A |0) 7 (0)}, and the
0-reference priorr, (0, A) is defined as its intrinsic limit.

1 Evenif7*(\|60) is improper, ifd and\ are variation independent,
—1/2 1/2
Sgo” (0. 0)  Jy(0) gg(N), andFy\*(8, 3) o< £3(6) gA(M),
Thenw,» = fp(0) gr(N).
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e Examples: Inference on normal parameters

1 The information matrix for the normal model(X| x, o) is

F(,LL,U): <002 20_02>7 S(:LL70>:F_1<M70-): (%2 0.20/2>7

Sincep, ando are variation independent, and béth, andS),, factorize,

w*(a\,u)ocFlézoca Lo (w ) o Sy L2

The u-reference prior, as ant|C|pated, IS

(o) =7 (o | p) 7 () = o,

. e uniform on bothu andlog o
1 SinceF'(u, o) is diagonal ther- reference prior is

5 (1, 0) = ¥ (p| o)n* (o) = o1, the same as u(p, o) =me(p, o).
1 In fact, it may be shown that, for Iocatlon-scale models,

p(x|p,0) = 2f(555),

the reference prior for the location and scale parameters are always
(1, 0) = mh(p,0) = oL,

ox 1.



36
1 Within any given modeb(x | 8) the ¢-reference priow;’;(@) maximizes

the missing information about = ¢(0) and, in multiparameter prob-
lems, that priomay change with the quantity of interest

1 For instance, within a normal (¥ | ., 0) model, let thestandardized
mean¢ = u/o. be the quantity of interest.

Fisher’s information matrix in terms of the paramet@erando is
F(¢p,0) = J' F(u,0)J, whereJ = (0(u, 0)/0(¢,0)) is the Jacobian
of the inverse transformation; this yields

1 o/o [ 1+ 6%/2 —do/2
Flono) = <¢/a (2+¢2)/02>’ S6.0) = ( A )

with 5 o o1, ands /% oc (14 62/2) 712

| Theg-reference prior isg’, (¢, ) = (1 + ¢2/2)" 1251,
In the original parametrizatiom,;;(u, o) = (14 (u/0)?/2)
which is different fromm, (1, o) = 75 (1, 0).

This prior is shown to lead to a reference posteriorgfavith consistent
marginalization properties

~1/2,-2
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e Many parameters

1 The reference algorithm generalizes to any number of parameters.
If the model isp(x | @) = p(x|01,...,0y), ajoint reference prior

™ (dm | dm—1,-- -, 1) X ... x T (P2 | ¢1) x 7 (¢1) May sequentially
be obtained for eachrdered parametrization{¢1(0), ..., om(0)}.

Reference priors anavariantunder reparametrization of thg(0)’s.

1 The choice of the ordered parametrizatighy, . . . , ¢, } describes the
particular prior required, namely that whiskquentially
maximizes the missing information about each of ks,
conditional on{¢1,...,¢;_1}, fori=m,m—1,...,1.

1 Example: Stein’s paradox Data random from an-variate normal
Ny, (x|, I). The reference prior function for any permutation of
the u;’s 1s uniform, and leads to appropriate posterior distributions for

any of theu;’s, but cannot be used if the quantity of interestis > . M?,
the distance of: to the origin.

The reference prior fofd, \{, ..., \,,,_1} produces, for any choice of
the \;’s, an appropriate the reference posterioréor
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2.3. Inference Summaries

e Summarizing the posterior distribution

]

TheBayesian finabutcomeof a problem of inference about any unknown
quantity@ is precisely thegosterior densityr(0 | x, C).

Bayesian inference may be described as the problem of stating a proba-
bility distribution for the quantity of interest encapsulating all available
Information about its value.

In one or two dimensions, graph of the posterior probability density

of the quantity of interest conveys an intuitive summary of the main
conclusions. This is greatly appreciated by users, and is an important
asset of Bayesian methods.

However, graphical methods not easily extend to more than two dimen-
sions and elementaguantitativeconclusions are often required.

The simplest forms teummarizeéhe information contained in the poste-
rior distribution are closely related to the conventional concepts of point
estimation and interval estimation.
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e Point Estimation: Posterior mean and posterior mode

1 It is often required to provide point estimates of relevant quantities.
Bayesian point estimation is best described dsa@sion problemvhere

one has tahoosea particular valu@ as an approximate proxy for the
actual, unknown value .

7 Intuitively, any location measure of the posterior densit§ | x)
may be used as a point estimator. When they exist, either
E[0|x] = |g@n(6|x)dl (posterior mean,)or
Mol[f | ] = argsupg.g (6 | z) (posterior mode)
are often regarded as natural choices.

1 Lack ofinvariance Neither the posterior mean not the posterior mode are

Invariant under reparametrization. The point gstimaZEmT a bijection
1 = 1 (0) of 8 will generally not be equal tg(9).

In pure “inferential” applications, where one is requested to provide a
point estimate of the vector of interest without an specific application in
mind, it is difficult to justify a non-invariant solution:

The best estimate of, say,= log(#) should bep™ = log(6%).
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e Point Estimation: Posterior median

1 A summary of a multivariate density(0 | ), where@ = {64, ...,0,.},
should contain summaries of:
(i) each of the marginal densitieg6; | x),
(i) the densitiesr(¢ | ) of other functions of interegt = ¢(09).

1 In one-dimensional continuoysoblems thgosterior median
IS easily defined and computed as
Me[f |z] = q; PHf <q|z]= [y m(0]x)dd =1/2

The one-dimensional posterior median has many attractive properties:
(i) it is invariantunder bijections, M@ (0) | ] = ¢(Me[f | x]).

(if) it existsand it isuniqueunder very wide conditions

(i) it Is ratherrobustunder moderate perturbations of the data.

1 The posterior median is often considered to be the best ‘automatic
Bayesian point estimator in one-dimensional continuous problems.

1 The posterior median is not easily used to a multivariate setting.
The natural extension of its definition produsesfaceqnot points).

General invariant multivariate definitions of point estimators is possible
using Bayesiamlecision theory
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e General Credible Regions

]

To describer(@ | x) it is often convenient to quote regiofs, C O of
given probability contenp unders (0 | ). This is the intuitive basis of
graphical representations like boxplots.

A subset9,, of the parameter spaée such that
f@pW(H |x)df = p, sothat P(@ c ©,|x) = p,
IS aposteriorp-credible regionfor 6.

A credible region is invariant under reparametrization:
If ©) is p-credible ford, ¢(O,) is ap-credible forgp = ¢(0).

For any giverp there are generally infinitely many credible regions.
Credible regions may be selected to have minimum size (length, area,
volume), resulting irhighest probability densitfHPD) regions,

where all points in the region have larger probability density

than all points outside.

HPD regions ar@ot invariant: the imagep(©,) of an HPD regiorb,,
will be a credible region fot, but will not generally be HPD.
There is no reason to restrict attention to HPD credible regions.
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e Credible Intervals

]

In one-dimensional continuoysoblems, posterior quantiles are often
used to derive credible intervals.

If 0, = Qq|0| x| is theg-quantile of the posterior distribution 6f
the intervalo,, = {0; 0 < 0,} is ap-credible region,
and it is invariant under reparametrization.

Equal-tailedp-credible intervals of the form

Op =105 6(1_p)/2 < 0 = O14p)/2} -

are typically unique, and they invariant under reparametrization.
Example: Model Nz | i, o). Credible intervals for the normal mean
The reference posterior foris w(p|x) = St |z, s/v/n —1,n —1).
Hence the referengeosteriordistribution ofr = /n — 1(u — ) /s,

a function ofy, isw(7 |Z,s,n) = St(7]0,1,n — 1).

Thus, the equal-taileg-credible intervals foy. are

_ 1—p)/2
{pw; pex £ qg_lp)/ s/vn—1},
whereq,,(zl_lp)/2 s the(1 — p)/2 quantile of a standard Student density

with n — 1 degrees of freedom.
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e Calibration

]

]

In the normal example above , the expressieny/n — 1(u — ) /s
mayalsobe analyzed, for fixeg@, as afunction of the data

The fact that thesamplingdistribution of the statisti¢ = ¢(z, s | 4, n)

IS alsoan standard Studeptt | 4, n) = St(¢| 0,1, n — 1) with the same
degrees of freedom implies that, in this example, objective Bayesian
credible intervals aralsobe exactfrequentist confidence intervals.

Exact numerical agreemebetween Bayesian credible intervals and
frequentist confidence intervals is theception, not the norm

Forlarge samplesconvergence to normality impliegpproximate
numerical agreemenf T his provides a frequentistlibrationto
objective Bayesian methods.

Exact numericahgreemenis obviouslyimpossible when the data are
discrete Precise (non randomized) frequentist confidence intervals do
not exist in that case for most confidence levels.

The computation of Bayesian credible regions for continuous parameters
IS howeveprecisely the sam&hether the data ackscrete or continuous
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2.4. Prediction

e Posterior predictive distributions

]

Datax = {zy,...,zn}, z; € X, set of “homogeneous” observations.
Desired to predict the value of a future observation X generated by
the same mechanism.

From the foundations arguments the solutmustbe a probability dis-
tribution p(x | «, K') describing the uncertainty on the value thawill
take, given data: and any other available knowled@é This is called
the (posteriorpredictive densityf .

To derivep(z | «, K) itis necessary to specify tipeecise sensia which
thexz;’s are judged to bbomogeneous

It is often directly assumed that the data= {z1, ..., z,} consist of a
random samplefrom some specified mod€lp(z | 0),x € X,0 € O},

so thatp(x |0) = p(z1,...,2n|0) = [[7_; p(z;]0).

If this is the case, the solution to the prediction problem is immediate
once a prior distributiornr () has been specified.
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e Posterior predictive distributions from random samples

1 Letx = {z1,...,2n}, v; € X arandom sample of size from the
statistical mode{p(x | 0),x € X,0 € O}
Let w(0) a prior distribution describing available knowledge (in any)
about the value of the parameter vedor
Theposterior predictive distributioms

p(z|z) =p(x|z1,...,2n) = [gp(x|0) (0| x)d6
This encapsulates all available information about the outcome of any
future observatiowr € X from the same model.

1 To prove this, make use the total probability theorem, to have
plxlx)= [gp(x]|0,x)n(0]x)do
and notice t e new observatiarhas been assumed to be conditionally
iIndependent of the observed dataso thatp(x |0, x) = p(x | 8).

1 The observable values € X may be eithediscreteor continuous
random quantities. In the discrete case, the predictive distribution will
be described by its probabilitpassunction; in the continuous case, by
its probabilitydensityfunction. Both are denoted x | x).
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e Prediction in a Poisson process

1 Datax = {ry,...,ry} random from P(r | A). The reference posterior
density ofA is (A |z) = Ga(A |t + 1/2,n), wheret = X, r;.
The (reference) posterior predictive distribution is

p(r|x) = Prr|t,n :/()OOPrl(r\)\)Ga(A\t+%,n)d)\

o oatt2 1 Tt +1/2)
- T(t+1/2) 7! (1 + n)rt+t+1/2 !
an example of a Poisson-Gamma probability mass function.

1 For example, no flash floods have been recorded on a particular location
In 10 consecutive years. Local authorities are interested in forecasting
possible future flash floods. Using a Poisson model, and assuming that
meteorological conditions remain similar, the probabilities thash
floods will occur next year in that location are given by the Poisson-
Gamma mass function above, with= 0 andn = 10. This yields,
Pri0|t,n] =0.953, Pr1|t,n| = 0.043, and P2 |¢,n| = 0.003.

Many other situations may be described with the same model.
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e Prediction of Normal measurements

1 Datax = {zq,...,zn} random fromN (x| u, o). Reference prior
™(u,0) = o~ Lor, interms of the precisioh = o2, 7%(u, A) = A~ L.
Thejoint reference posteriof;™(u, A | @) o< p(@x |, A) 7% (u, A), IS
(. A @) = N(p|F, (nA)7H2) Ga(A | (n — 1)/2,n5?/2).

1 The predictive distribution is

(z| @) = L/ /° Nz | e A~ Y2) 7 (4, A | ) dpu

o {(L+n)s® + (u—2)*} /2,
a kernel of theStudendensity 7*(z | x) = St(z | 7, s /254, n — 1),

1 Example Production of safety belts. Observed breaking strength8 of
randomly chosen webbings have mean= 28.011 kKN and standard
deviations = 0.443 kN. Specification requires > 26 kN.

Reference posterior predictiyéxr | ) = St(x | 28.011,0.490, 9).
Pr(z > 26| x) = [55 St(x]28.011,0.490,9) dz = 0.9987.
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e Regression

1 Often additional informationfrom relevant covariates. Data structure,
set of pairse = {(y1,v1),...(y,,vn)}; y;, v;, both vectors. Given a
new observation, withw known, predict the corresponding valuewpf
Formally, computev{y | v, (y1,v1),.-- (Yn, Vn)}-

1 Need a modelp(y |v,0),y € Y,0 € O} which makes precise the
probabilistic relationship betwegnandv. The simplest option assumes
a linear dependencyf the formp(y |v,0) = N(y |V 3,3), but far
more complex structures are common in applications.

0 Univariate linear regression ohcovariatesY C R, v = {vy,..., v }.
p(y|v,B,0) = N(y|vB,0°), B={B1,..., 0} Datax = {y, V},
y = {y1,...,yn}’, andV is then x k matrix with thewv,’s as rows.

p(y|V,B,0) = Ny(y| VB, o2I,); reference priorr*(8,0) = o 1.
Predictive posterior is the Student density
ply|v.y. V) =Sty |vB, s \/f(v,V) 3. n — k)

B=(VIV)"lVly, ns?=(y—vB8)(y—vB)
flo,V)=1+o(VIV) 1yt
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e Example: Simple linear regression

1 One covariate and a constant tepy | v, 3,0) = N(y | 81 + Bov, 0)
Sufficient statistic ig = {7, 7, syy, syv }, With nv = Yvj, ny = Xyj,

Syp = X0y /N — VY, Spp = Evz/n — 72,

p(y|v,t) = Sty | By + Pav, S\/f(v t) -1
Bl =Yy — 3257 52 zz% 142188
ns® = Nioalyy — - fary)?
Jlont) = 14 e :

1 Pollution density gr /m?), and
wind speed from sourcer(/s ). 0.008. D

vV 48 3.3 3.1 1.7 4.7 2.1

y; 1074 284 352 1064 712 976
v; 39 09 14 43 29 34 0.002 .

Pl’[y > 50 ’ v = O ZB] — O 66 250 500 750 100012501500

0.004
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2.4. Hierarchical Models

e Exchangeability

1 Random quantities are often “homogeneous” in the precise sense that
only theirvaluesmatter, not therder in which they appear. Formally,
this is captured by the notion ekchangeability The set of random vec-
tors{xq,...,xy} is exchangeable if their joint distribution is invariant
under permutations. An infinite sequenge;} of random vectors is
exchangeabile Iif all its finite subsequences are exchangeable.

1 Any random sample from any model is exchangealiierepresentation
theoremestablishes that if observatiofs, . . ., x, } are exchangeable,
they are @ random sampl&om some mode{p(x | 0),0 € O}, labeled
by aparameter vectofl, definedas the limit (as — oo) of some function
of thex;’s. Information abou@ in prevailing condition€’ is necessarily
described bysomeprobability distributiont (0 | C').

1 Formally, the joint density of any finite set of exchangeable observations
{x1,...,xn} has anntegral representatioof the form

p(a1,...,xn|C) = [o 11l p(x;|0) (6| C)do.
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e Structured Models

1 Complex data structures may often be usefully described by partial ex-
changeability assumptions.

1 Example: Public opinion.Samplek different regions in the country.
Samplenz- citizens in regiory and record whether or noy{; = 1 or
Yij 0) citizen 57 would vote A. Assuming exchangeable citizens

W|th|n each region implies
n

p(y?/]_?"'?yln,l/) — Hj—lp(ylj ’9 ) T 8 ( e)nz_rzv
wheref, is the (unknown) proportion of citizens in regioxoting A and
r; = E]-y@-j the number of citizens voting in region:.

Assuming regions exchangeable within the country similarly leads to

p(01, ..., 0) = [1F_ (0| d)

for some probablllty dlstrlbutlom( | ¢) describing the political varia-
tion within the regions. Often choos€6 | ¢) = Be(6 | a, ).

1 The resultingwo-stages hierarchical Binomial-Beta model
v ={y1,- - yrh ¥i = {¥i1,- - - Yin, }, random from Biy | 6;),

{61,...,0,}, random from B& | o, 3)
provides a far richer model than (unrealistic) simple binomial sampling.
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1 Example: Biological responsé&amplek different animals of the same

species in specific environment. Contrgltimes animak and record
his response$y;q, . .. ,ymi} to prevailing conditions. Assuming ex-

changeable observations within each animal implies
1
PYits - Yin,) = 112, (9351 65).
Often choosen(y;; |0;) = Nr(y|w;,31), wherer is the number of
biological responses measured.

Assuming exchangeable animals within the environment leads to

p(p1, - pg) = T15 g (i | @) o o |
for some probability distribution (e | ¢) describing the biological vari-

ation within the species. Often chooséu | @) = Ny (| g, 29).

1 Thetwo-stages hierarchical multivariate Normal-Normal model
r={y1,-- - yph vi ={vi1, - yin, , random from N(y | p;, X1),

{p1, - -, pgt random from N(pe | g, 39) o
provides a far richer model than (unrealistic) simple multivariate normal
sampling.

1 Finer subdivisionse.g, subspecies within each species, similarly lead
to hierarchical models with more stages.
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e Bayesian analysis of hierarchical models

1 A two-stages hierarchical modahas the general form
T =Y YkhH Yi = 1Zils - Zin, )
y; random sample of size; fromp(z|86,), 8; € O,
{64,...,0.}, random of siz& from 7 (0 | ¢), ¢ € D.

1 Specify aprior distribution (or a reference prior function)
m(¢) for the hyperparameter vectap.

1 Usestandard probability theoryo compute all desired

posterior distributions

w(¢ | x) forinferences about the hyperparameters,
(0, | =) for inferences about the parameters,
(zp x) for inferences about the any function= (01, ...,0}.)
of the parameters,
mw(y | x) for predictions on future observations,
w(t|x) for predictions on any functioh=t(yq,...,y,,)
of m future observations

1 Markov Chain Monte Carldasedsoftwareavailable for the necessary
computations.

g

N
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3. Decision Making

3.1 Structure of a Decision Problem

e Alternatives, consequences, relevant events

1 A decision problem if two or more possible courses of actidns the
class of possiblactions

1 For eachn € A, ©, Is the set ofrelevant eventsthose may affect the
result of choosing.

1 Each paif{a, 8}, 8 € O4, produces a consequenge, 8) € C,. In this
context,@ if often referred to as thparameter of interest

] The class of paird(©q,Cy),a € A} describes thestructure of the
decision problem. Without loss of generality, it may be assumed that the
possible actions are mutually exclusive, for otherwise the appropriate
Cartesian product may be used.

7 In many problems the class of relevant eve@isis the same for all
a € A. Even if this is not the case, a comprehengigeameter space
may be defined as the union of all thg,.
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e Foundations of decision theory

1 Different sets of principles capture a minimum collection of logical rules
required for “rational” decision-making.

These are axioms with strong intuitive appeal.
Thelir basic structure consists of:

e The Transitivity of preferences:
If a1 > a9 givenC, andas > a3 givenC,
thena; > ag givenC.

e The Sure-thing principle
If a1 > a9 givenC andE, anday > as givenC' and notE&
thenay > a9 givenC.

e The existence obtandard events
There are events of known plausibility.
These may be used as a unit of measurement, and
have the properties of a probability measure

1 These axioms are not a description of human decision-making,
but anormativeset of principles definingoherentdecision-making.
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e Decision making

1 Many different axiom sets.
All lead basically to the same set of conclusions, namely:

e The consequences of wrong actions should be evaluated in terms of a
real-valuedossfunction/(a, @) which specifies, on a numerical scale,
their undesirabillity.

e The uncertainty about the parameter of intefeshould be measured
with a probability distribution 7 (6 | C')

(@ |C) >0, 6 ¢€0, /W(O\C)d@zl,
)

describing all available knowledge about its value, given the condifions
under which the decision must be taken.

e The relative undesirability of available actiomsc A Is measured by
their expected losghe optimal action minimizes the expected loss

E[a!C]:/G)K(a,H)W(MC)dH, ac A

(alternatively, one maynaximize expected utility
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e Intrinsic loss functions: Intrinsic discrepancy

1 The loss function is typicallgontext dependent

7 In mathematical statisticetrinsic loss functions are used to measure
the distance between between statistical models.

They measure thdivergence between the modélg (x| 01),x € X'}
and{ps(x | 09),x € X} as somenon-negativdfunction of the form
¢{p1, po} which is zero if (and only if) the two distributions are equal
almost everywhere.

0 Theintrinsic discrepancyetween two statistical models is simply the
Intrinsic discrepancy between their sampling distributioss,

0{p1,p2} = 0{61,02}
= min{/ pl(w|91)logp1(m‘91) da:,/ pg(:ﬂ]@g)logm(mwz) dm}
1

p2(z | 02) Xy pi(z|61)

1 The intrinsic discrepancy is anformation-based, symmetric, invariant
Intrinsic loss
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3.2 Point and Region Estimation

e Point estimation as a decision problem

[ Given statistical mode{p(z |w),z € X,w € O}, quantity of interest

0 = 0(w) € O©. A point estimato® = 6(x) of 8 is some function of
the data to be regarded as a proxy for the unknown valée of

1 To choose a point estimate f@ris adecision problemwhere the action
space isd = O.
" Given aloss functior¢(8, 8), the posterior expected loss is

~

06| x] = / 0(6,0) (0| x)do,
)
The correspondingayes estimatois the function of the data,

0* = 0*(x) = arg inf ([0,
6cO
which minimizes that expectation.
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e Conventional estimators

]

The posterior meamand theposterior modeare the Bayes estimators
which respectively correspond tgaadratican azero-ondoss functions.

o If £(0,0) = (6 —0)'(0 — ), then, assuming that the mean exists, the
Bayes estimator is thgosterior mearn®'|0 | x].

o If the loss function is a zero-one function, so tifée#, 8) = 0 if 6

belongs to a ball of radius centered i and/(0,0) = 1 otherwise
then, assuming that a unigue mode exists, the Bayes estimator converge
to theposterior modeMo|@ | x| as the ball radius tends to zero.

If 8 1s univariate and continuoysnd the loss function imeatr,
0(6.0) = {‘W‘?) e
co(0—0) If 0<6

then the Bayes estimator is thesterior quantileof ordercy /(¢ + ¢9),
so that Pl9 < 6%] = ¢o/(c1 + ¢9).

In particular, ifc;y = ¢9, the Bayes estimator is tip®sterior median

1 Any 6 value may be optimalit all depends on the loss function
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e [ntrinsic point estimation

1 Given the statistical moddlp(x |0),x € X,0 € O} the intrinsic dis-
crepancyd (61, 89) between two parameter valu@s and#, is the in-
trinsic discrepancy{p(x|01),p(x|609)} between the corresponding
probability models.

This is symmetric, non-negative (and zerodif = 05), invariant under
reparametrization and invariant under bijectiong:of

1 The intrinsic estimator is theeferenceBayes estimator which
corresponds to the loss defined by thiginsic discrepancy

e The expected loss with respect to the reference posterior distribution

d(é\w):/@c?{é,@}ﬂ*(elw) deo

Is an objective measure, ininformation units, oféxgectedliscrepancy
between the model(x | 8) and the true (unknown) mode(x | 8).

e Theintrinsic estimato®* = 8*(x) is the value which minimizes such
expected discrepancy,
6* = arg inf d(0|x).
6cO



61
e Example: Intrinsic estimation of the Binomial parameter

1 Dataz = {z1,...,xp}, random fromp(z | 0) = 6%(1 — 9)1 =%

r=Yaz;. Intrinsic dlscrepancﬁ(e 0) _9 n min{k(6 |6),k(0]6)},
1
k(01 ]62) = 09 10gq (1 —62)log —1_9§ . T(0) = Be(d] 3, 3)
(0| r,n) = Be(@\r—l—%,n—r—l—%).
i Expected reference discrepancy 28 “(010,12)
™ :
d(6,r,n) f() (O|r,n)do 40
] Intrinsic estlmator 3 28
0*(r,n) = arg min,_5_4 d(d,r,n) 10 0
From invariance, for any bijection 005 01 015 02
¢ = ¢(0), " = ¢(67). 01
1 Analytic approximation o8
+1 3 0.06¢
0% (r,n) ~ ;+2§3, n > 2 0.04|
(] n = 12, r = O, 9*(07 12) — 0026 o0z

Mel6 | x| = 0.018, E[f | | = 0.038
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e Intrinsic region (interval) estimation

1 Theintrinsic ¢g-credible regionR*(q) C O is thatg-credible reference
region which corresponds to minimum expected intrinsic loss:

(I) fR* le)de_q
(i) VO, € R*(q), VO; ¢ R*(q),  d(0;|z) <d(0;]x)
1 Binomial examplesd(0; | x) = d(6; | r,n)

r=0n=12, 2 d(0]0,12) o\ d(6]25,100)
6" = 0.0263; |

r = 295, n = 100, 25| (0] 0,12) 2 |25, 100)
6* = 0.2514; . )




63
3.3 Hypothesis Testing

e Precise hypothesis testing as a decision problem

]

The posteriotr (@ | D) conveys intuitive information on the values @f
which arecompatiblewith the observed data: those with arelatively
high probability density

Often a particular valu@, is suggested for special consideration:
e Becausd@ = 0 would greatly simplify the model
e Because there are context specific arguments suggesting thék,

More generally, one may analyze thesstriction of parameter spac®
to a subse®; which may contain more than one value.

Formally, testing the hypothesi$; = {6 = 6} is adecision problem
with just two possible actions:

e . 1O Hy and work withp(x | 8)).
e a1: toreject Hy and keep the general mogelr | 6).

To proceed, dossfunction ¢(a;,0), 8 € O, describing the possible
conseqguences of both actions, must be specified.
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e Structure of the loss function

1 Given datax, optimal action is to rejecti (actionay) Iff the expected
posterior loss of acceptingg ¢(ag,8) 7(0 | x) d@, is larger than the

expected posterior loss of rejectinfy, £(a1, ) (0 |x)dO, e, iff
Jolt(ag,0) — £(a1,0)]7(0 |x)dd = [ ALO)w(O|x)dO > 0.

Therefore, only the loss differenee/(0) = ¢(aq, 0) — ¢(ay, 0), which
measures thadvantageof rejecting Hy as a function o9, has to be
specified: The hypothesis should be rejected wheneveexbected
advantage of rejecting Is positive.

1 The advantagé/(0) of rejectingH as a function o8 should be of the
form A4(0) = 1(0y,0) — ™, for somel* > 0, where

e [(0(, 0) measures thdiscrepancypetweernp(x | 8p) andp(x | 0),

e [* is a positiveutility constantwhich measures the advantage working
with the simpler model when it is true.

1 The Bayes criterion will then beRejectH if (and only If)
Jol(8,0)n(0]x)d0 > 1*, thatis if (and only if)
theexpected discrepanbetweerp(x | 8g) andp(x | 0) is too large
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e Bayesian Reference Criterion

1 An good choice for the functiol{0), @) is theintrinsic discrepancy
0(80,8) = min k(60 | 0), k(6 69)},
wherek (0 |0) = [y p(z|0)log{p(z|6)/p(x|00)}dx.

If € = {xq,..., 2y} € X" is arandom sample from(x | 8), then
0
k(0g|0) =n [ p(x|0)log (( "00)) dx.

1 For objective results, exclusively based on model assumptions and data,
thereferenceposterior distributionr™ (0 | ) should be used.

1 Hence,reject if (and only if) the expected reference posterior intrinsic
discrepanc;d(@o | ) is too large

d(@g|x) = Jg 0(00,0) (0| xz)dO > d*, for somed™ > 0.
This is theBayesian reference criterion (BRC)

1 Thereference test statistié¢(0g | =) is nonnegative, it is invariant both
under reparametrization and under sufficient transformation of the data,
and it is a measure, in natural information units (nits) of the expected
discrepancy betwees(x | 6y) and the true model.
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e Calibration of the BRC

1 The reference test statistikc@ | =) is the posterior expected value of
the intrinsic discrepancy betweefx | 8y) andp(x | ).

e A reference test statistic valuBf8y | ) ~ 1 suggests that data are
clearly compatible with the Hypotheis th@t= 0.

e Atest statistic valud(8 | x) log(10) = 2.303 nits implies that, given
datax, theaveragevalue of the likelihood rati@gainstthe hypothesis,
p(x|0)/p(x]|0p), is expected to be aboid: mild evidencagains®,,.

e Similarly, d(0g|x) =~ log(100) = 4.605 (expected likelihood ra-
tio againstf, about100), indicatesstrong evidenceagainstf,, and
log(1000) = 6.908, conclusive evidencagains,.

1 Strong connections between BRC and intrinsic estimation:
e Theintrinsic estimatons the value of? with minimizes the reference
test statistic0™ = arginfg_g d(0| ).

e The regions defined byf; d(0|x) < d*} are invariantreference
posteriorq(d*)-credible regiondor 8. For regular problems and large
samplesg(log(10)) ~ 0.95 andq(log(100)) = 0.995.
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e A canonical example: Testing a value for the Normal mean

1 In the simplest case where the variancéds known,

6(pos 1) = nn— po)?/(20%), 7 (u|z) = N(u|T,0/v/n),
T—
dpg| @) = 5(1+27), 2= 0
Thus rejectingu = pug if d(ug|x) > d* is equivalent to rejecting if
z| > v/2d* — 1 and, hence, to a conventional two-sided frequentist test
with significance levelr = 2(1 — ®(|z|)).

d* H Q
log(10) 1.8987 0.0576 g | B N ]
log(100) 2.8654 0.0042 \ dpo|®) = (1 +27)/2 /
log(1000) 3.5799 0.0003 6

1 The expected value of( g | ) ;
If the hypothesis isrueis 5

T s
J 51+ 2*)N(z|0,1)dz =1 0 —

— 00
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e Fisher’s tasting tea lady

1 Dataz = {z1, ..., 2.}, random fromp(z | ) = 6%(1 — 6)1 =7,
r = Xx;. Intrinsic discrepancy(6y, 6) = n min{k(0y|0), k(6 |6p)},
K(01]02) = B log g% + (1 — 6) log =2 . 7(8|r,n) = Be(® |1+ §,n —r +})
Intrinsic test statistlc
d(fg|r,n) = fO (6 |r,n)do
1 Fisher’s example:c = {10, 10},
Testdy = 1/2, 0™ (x) = 0.9686
d(6p|10,10) = 5.414 = log[224]
Usingd™ = log[100] = 4.61,
the valuefy = 1/2 is rejected

d(6y ] 10, 10)

N

04 05 06 07 08 09 1

R N WP OO N

P < 0.5| ] = 0.00016 2
15 71%(0 |10, 10)
d(*[x) 0 Prf <0 |a] "o
log[10]  0.711 0.00815 75
log[100] 0.547 0.00043 ’e
log[1000] 0.425 0.00003 L *

04 05 06 07 08 09 1
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e Asymptotic approximation

1 For large samples, the posterior approaches| ¥ 3 (nF( )~ 1/2)
whereF'(0) is Fisher’s function. Changing variables the

posterior distribution ofy = ¢(0) = [ F1/2(9) dd = 2arc siny/6) is
approximately normal I | &, n_l/z). Sinced(6, x) is invariant,

A~ 8 . ‘ ‘ ‘ ‘ ‘ ‘
d(6p, @) ~ 5[1 + n{e(6p) — H(6)}7]. g \ NP /
* : £r :
e Testing for a majorityfy = 1/2) ° \ ’ /
z = {720,1500}, 0*(z) = 0.4800 3 \ /
LN
d(0*|x) R=(6,0]) P e R|x] 0.42 0.44 0.46 0.48 0.5 0.52 0.54
log[10]  (0.456, 0.505) 0.9427 30
log[100] (0.443, 0.517) 0.9959 25 7 (0|x)
log[1000] (0.434, 0.526) 0.9997 20
15}
Very mild evidence againgt= 0.5: .
d(0.5 720, 1500) = 1.67 .

Pr(e < 0.5 ‘ 720’ 1500) — 0.9393 0.44 0.46 048 0.5 0.52 0.54
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1 Valencia International Meetings on Bayesian Statistics

Sponsored by the University of Valencia. Held every four years in Spain.
World forums on research and applications of Bayesian analysis.

8th Valencia International Meeting
on Bayesian Statistics

Benidorm (Alicante), June 1st — 6th 2006
www.uv.es/valenciameeting

1 Valencia Mailing List

The Valencia Mailing Listcontains about 2,000 entries of people In-
terested irBayesian Statisticslt sends information about the Valencia
Meetings and other material of interest to the Bayesian community.

If you do not belong to the list and want to be included,
please send your e-mail ttvalenciameeting@uv.es>

1 Jose-Miguel Bernardo contact data
<jose.m.bernardo@uv.es>
www.uv.es/bernardo



