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1.1 Summary
All final conclusions of a Bayesian statistical analysis are contained in the joint
posterior distribution of the set of parameters included in the assumed model,
but it is often necessary to summarize its contents for a correct assimilation
of its inferential implications. In particular, the comparative analysis of the
results obtained with two different strategies applied to the same problem
typically focuses on the study of the difference or on the rate of the more
relevant parametric functions of the problem, with particular attention to the
compatibility of the data with the possibility that the difference might be zero,
or that the ratio might be one, a conventional example of precise hypothesis
testing.
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The use of Bayesian decision theory with continuous loss functions allows
an integrated solution to the problems of estimation and hypothesis testing,
where the same prior distribution may be used in both cases, and where
that common prior may ever be improper [6]. A particular continuous loss
function, the intrinsic logarithmic loss, is recommended for general use. In
this Chapter, that methodology is shortly summarized and then applied to
an important problem, the comparison of the parameters associated to two
independent binomial populations. This is a relatively elementary problem
over which there is however no consensus as shown—for example—by the
noticeable polemic in the media on the scientific consequences of the 2009
Thailand trial to assess the possible efficacy of the RV144 vaccine against
human immunodeficiency.

1.2 Introduction
From a Bayesian viewpoint, the final outcome of any problem of inference
is the posterior distribution of the vector of interest. Thus, given a proba-
bility modelMz = {p(z |ω), z ∈ Z,ω ∈ Ω} which is assumed to describe the
mechanism which has generated the available data z, all that can be said about
any function θ(ω) ∈ Θ of the parameter vector ω is contained in its poste-
rior distribution p(θ | z). This is computed using standard probability theory
techniques form the posterior distribution p(ω | z) ∝ p(z |ω) p(ω) obtained
by Bayes theorem from the assumed prior p(ω). To facilitate the assimila-
tion of the inferential contents of p(θ | z), one often tries to summarize the
information contained in this posterior by

1. providing θ values which, in the light of the data, are likely to be
close to its true value (estimation), and

2. measuring the compatibility of the data with one or more possi-
ble values θ0 ∈ Θ of the vector of interest which might have been
suggested by the research context (hypothesis testing).

One would expect that the same prior p(ω), whatever its basis, could be used
to derive both types of summaries. However, since the pioneering work by
Jeffreys [13], Bayesian methods have often made use of two radically different
types of prior, some for estimation and some for hypothesis testing. It is argued
that this is certainly not necessary, and probably not convenient, and that a
coherent solution to both problems using the same prior is possible within the
standard framework of Bayesian decision theory.

Section 1.3 specifies a decision theoretic formulation for point estimation,
region estimation and precise hypothesis testing, emphasizes that the results
are highly dependent on the choices of both the loss function and the prior



Comparing Proportions: A Modern Solution to a Classical Problem 9

distribution, and reviews a set of desiderata for loss functions to be used in
stylized non context-specific problems of inference.

Section 1.4 proposes the use of the average log-likelihood ratio against the
null, abbreviated to intrinsic logarithmic loss, as a self-calibrated information-
based continuous loss function, which is suggested for general use in precise
hypothesis testing.

Section 1.5 applies that methodology to the problem of comparing the
parameters of two independent binomial populations, providing a coherent set
of solutions—using the same prior—to both the problem of estimating their
ratio, and the problem of testing whether or not data are compatible with
the hypothesis that both parameters are equal. This is illustrated with the
analysis of results published in the literature on the 2009 RV144 HIV vaccine
efficacy trial held in Thailand.

1.3 Integrated Bayesian analysis
1.3.1 Bayesian inference summaries
Let z be the available data which are assumed to have been generated as
one random observation from model Mz = {p(z |ω), z ∈ Z,ω ∈ Ω}. Often,
but not always, data will consist of a random sample z = {x1, . . . ,xn}
from some distribution q(x |ω), x ∈ X ; then, p(z |ω) =

∏n
i=1 q(xi |ω), and

Z = Xn. Let θ(ω) be the vector of interest. Without loss of generality, the
model may explicitly be expressed in terms of the quantity of interest θ, so
thatMz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}, where λ is some appropriately
chosen nuisance parameter vector. Let p(θ,λ) = p(λ |θ) p(θ) be the assumed
prior, and let p(θ | z) be the corresponding marginal posterior distribution
of θ. Appreciation of the inferential contents of p(θ | z) may be enhanced by
providing both point and region estimates of the vector of interest θ, and by
declaring whether or not some context suggested specific value θ0 (or maybe
a set of values Θ0), is (are) compatible with the observed data z. A large
number of Bayesian estimation and hypothesis testing procedures have been
proposed in the literature. It is argued that their construction is better made
within a coherent decision theoretical framework, making use of the same prior
distribution in all cases.

Let `{θ0, (θ,λ)} describe, as a function of the (unknown) parameter values
(θ,λ) which have generated the available data, the loss to be suffered if,
working with modelMz, the value θ0 were used as a proxy for the unknown
value of θ. As summarized below, point estimation, region estimation and
hypothesis are all appropriately described as specific decision problems using
a common prior distribution and a common loss structure. The results may
dramatically depend on the particular choices made for both the prior and
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the loss function but, given the available data z, they all only depend on z
through the corresponding posterior expected loss,

`(θ0 | z) =
∫
Θ

∫
Λ

`{θ0, (θ,λ)} p(θ,λ | z) dθdλ.

As a function of θ0 ∈ Θ, the expected loss `(θ0 | z) provides a directmeasure of
the relative unacceptability of all possible values of the quantity of interest in
the light of the information provided by the data. Together with the marginal
posterior distribution p(θ | z), this provides the basis for an integrated coherent
Bayesian analysis of the inferential content of the data z with respect to the
quantity of interest θ.

1.3.1.1 Point estimation

To choose a point estimate for θ may be seen as a decision problem where the
action space is the class Θ of all possible θ values. Foundations of decision
theory dictate that the best estimator is that which minimizes the expected
loss; this is called the Bayes estimator which corresponds to this particular
loss:

θ∗(z) = arg inf
θ0∈Θ

`(θ0 | z).

Conventional examples of loss functions include the ubiquitous quadratic loss
`{θ0, (θ,λ)} = (θ0−θ)t(θ0−θ), which yields the posterior expectation as the
Bayes estimator, and the zero-one loss on a neighborhood of the true value,
which yields the posterior mode as a limiting result.

1.3.1.2 Region estimation

Bayesian region estimation is easily achieved by quoting posterior credible
regions. To choose a q-credible region for θ may be seen as a decision problem
where the action space is the class of subsets of Θ with posterior probability q.
Foundations dictate that the best region is that which contains those θ values
with minimum expected loss. A Bayes q-credible region Θ∗q(z) ⊂ Θ is a q-
credible region where any value within the region has a smaller posterior
expected loss than any value outside the region, so that

∀θi ∈ Θ∗q(z), ∀θj /∈ Θ∗q(z), `(θi | z) ≤ `(θj | z).

The concept of a Bayes credible region was introduced by Bernardo in [4]
under the name of lower posterior loss (LPL) credible regions.

The quadratic loss function yields credible regions which contain those
values of θ closest to the posterior expectation in the Euclidean distance sense.
A zero-one loss function leads to highest posterior density (HPD) credible
regions.
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1.3.1.3 Precise hypothesis testing

Consider a value θ0 of the vector of interest which deserves special consi-
deration, either because assuming θ = θ0 would noticeably simplify the model,
or because there are additional context specific arguments suggesting that
θ = θ0. Intuitively, the value θ0 should be judged to be compatible with the
observed data z if its posterior density p(θ0 | z) is relatively high. However, a
more precise form of conclusion is typically required.

Formally, testing the hypothesis H0 ≡ {θ = θ0} may be described as
a decision problem where the action space A = {a0, a1} contains only two
elements: to accept (a0) or to reject (a1) the hypothesis under scrutiny.
Foundations require to specify a loss function `h{ai, (θ,λ)} measuring the
consequences of accepting or rejecting H0 as a function of the actual pa-
rameter values. By assumption, a0 means to act as if H0 were true, that
is to work with the submodel M0 = {p(z |θ0,λ0), z ∈ Z,λ0 ∈ Λ}, while a1
means to reject this simplification and to keep working with the full
modelMz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}. Alternatively, an already es-
tablished modelM0 may have been embedded into a more general modelMz,
constructed to include promising departures from θ = θ0, and it is required
to verify whether presently available data z are compatible with θ = θ0,
or whether the extension to θ ∈ Θ is really necessary. The optimal action
will be to reject the hypothesis if (and only if) the expected posterior loss of
accepting (a0) is larger than that of rejecting (a1), so that∫

Θ

∫
Λ

[`h{a0, (θ,λ)} − `h{a1, (θ,λ)}] p(θ,λ | z) dθdλ > 0.

Hence, only the difference ∆`h{θ0, (θ,λ)} = `h{a0, (θ,λ)} − `h{a1, (θ,λ)},
which measures the marginal advantage of rejecting H0 ≡ {θ = θ0} as a
function of the parameter values, must be specified. The hypothesis H0 should
be rejected whenever the expected marginal advantage of rejecting is positive.
Without loss of generality, the function ∆`h may be written in the form

∆`h{θ0, (θ,λ)} = `{θ0, (θ,λ)} − `0

where (precisely as in estimation), `{θ0, (θ,λ)} describes, as a function of the
parameter values which have generated the data, the non-negative loss to be
suffered if θ0 were used as a proxy for θ. Since `{θ0, (θ0,λ)} = 0, so that
∆`h{θ0, (θ0,λ)} = −`0, the constant `0 > 0 describes (in the same loss units)
the context-dependent non-negative marginal advantage of accepting θ = θ0
when it is true. With this formulation, the optimal action is to reject θ = θ0
whenever the expected value of `{θ0, (θ,λ)} − `0 is positive, i.e., whenever
`(θ0 | z), the posterior expectation of `{θ0, (θ,λ)}, is larger than `0. Thus
the solution is found in terms of the same expected loss function that was
needed for estimation. The Bayes test criterion to decide on the compatibility
of θ = θ0 with available data z is to reject H0 ≡ {θ = θ0} if (and only if),
`(θ0 | z) > `0, where `0 is a context dependent positive constant.
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Using the quadratic loss function leads to rejecting a θ0 value whenever its
Euclidean distance to the posterior expectation of θ is sufficiently large. The
use of the (rather naive) zero-one loss function, `{θ0, (θ,λ)} = 0 if θ = θ0,
and `{θ0, (θ,λ)} = 1 otherwise, so that the loss advantage of rejecting θ0
is a constant whenever θ 6= θ0 and zero otherwise, leads to rejecting H0
if (and only if) Pr(θ = θ0 | z) < p0 for some context-dependent p0. Notice
however that, using this particular loss function requires the prior probability
Pr(θ = θ0) to be strictly positive; if θ is a continuous parameter this forces
the use of a non-regular “sharp” prior, concentrating a positive probability
mass at θ0, which would typically not be appropriate for estimation and will
obviously depend on the particular θ0 value to test. Foundations would suggest
however that the same prior—which is supposed to describe the available
knowledge about the parameter values—should be used for any aspect of the
Bayesian analysis of the problem.

The threshold constant `0—which is used to decide whether or not the
expected loss `(θ0 | z) is too large—is part of the specification of the deci-
sion problem, and should be context-dependent. However, as demonstrated
below, a judicious choice of the loss function leads to self-calibrated expected
losses, where the relevant threshold constant has an immediate, operational
interpretation.

1.3.2 Continuous invariant loss functions
The formulation above is totally general, and may be used with any loss func-
tion `{θ0, (θ,λ)}—which measures the loss to be suffered if a value θ0 where
used as a proxy for the true value θ—and any prior p(θ,λ)—which describes
the available knowledge about the parameter values—to provide solutions for
both estimation and hypothesis testing. If both the loss function and the prior
distribution are continuous, precisely the same loss and the same prior may
be used to obtain a coherent, integrated set of solutions for both estimation
and testing, which may all be derived from the joint use of the corresponding
posterior density p(θ | z), and the posterior expected loss function `(θ0 | z).
Moreover the prior used may well be improper, as will typically be the case
when an ‘objective’ analysis is required.

For most conventional loss functions, Bayes estimators are not invariant
under one to one transformations. For example, the Bayes estimator of a
variance under quadratic loss (its posterior expectation), is not the square
of the Bayes estimator of the standard deviation. This is rather difficult to
justify when, as it is the case in pure inference problems, one merely wishes
to report an estimate of some quantity of interest.

Similarly, Bayes credible regions are generally not invariant under one to
one transformations. Thus, HPD regions in one parameterization—obtained
from a zero-one loss function—will not transform to HPD regions in another.

Rather more dramatically, Bayes test criteria are generally not invariant
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under one-to-one transformations so that, if φ(θ) is a one-to-one transforma-
tion of θ, rejecting θ = θ0 does not generally imply rejecting the—logically
equivalent—proposition φ(θ) = φ(θ0).

Invariant Bayes point estimators, credible regions and test procedures may
all be easily obtained by using invariant loss functions, so that

`{θ0, (θ,λ)} = `{φ(θ0), (φ(θ),ψ(λ)}

for any one-to-one transformations φ(θ) and ψ(λ) of θ and λ, rather than
conventional (non-invariant) loss functions such as the quadratic or the zero-
one loss functions. A particularly interesting family of invariant loss functions
is described below.

Conditional on model Mz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}, the re-
quired loss function `{θ0, (θ,λ)} should describe, in terms of the unknown
parameter values (θ,λ) which are assumed to have generated the data, the
loss to be suffered if, in work with modelMz, the value θ0 were used as a proxy
for θ. It may naively appear that what is needed is just some measure of the
discrepancy between θ0 and θ. However, since all parameterizations are arbi-
trary, what is really required is some measure of the discrepancy between the
models labelled by θ and by θ0. By construction, such a discrepancy measure
will be independent of the particular parameterization used. C. P. Robert [17]
coined the word intrinsic to refer to these model-based loss functions; by con-
struction, they are always invariant under one-to-one reparameterizations.

1.3.3 The intrinsic logarithmic loss
A particular intrinsic loss function with very attractive properties, the
logarithmic intrinsic loss, is now introduced.

Let Mz = {p(z |θ,λ), z ∈ Z} be the model which is assumed to have
generated the available data z ∈ Z, where θ ∈ Θ and λ ∈ Λ are both
unknown, and consider any other model M0 = {p(z |ω0), z ∈ Z}, for some
ω0 ∈ Ω0, with the same or larger support. The Kullback-Leibler [16] directed
divergence of the probability density p(z |ω0) from the probability density
p(z |θ,λ),

κ{pz(· |ω0) | pz(· |θ,λ)} =
∫

Z
p(z |θ,λ) log p(z |θ,λ)

p(z |ω0)
dz,

is the average (under repeated sampling) log-likelihood ratio against the alter-
native model p(z |ω0). This is known to be nonnegative, and zero if, and only
if, p(z |ω0) = p(z |θ,λ) almost everywhere, and it is invariant under one-to-
one transformations of either the data z or the parameters θ, λ and ω0. It
is also additive, in the sense that if z = {x1, . . . , xn} is assumed to a random
sample from some model, then

κ{pz(· |ω0) | pz(· |θ,λ)} = nκ{px(· |ω0) | px(· |θ,λ)}.
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And it is invariant under reduction to sufficient statistics in the sense that, if
t ∈ T is a sufficient statistic for bothMz andM0, then

κ{pz(· |ω0) | pz(· |θ,λ)} = κ{pt(· |ω0) | pt(· |θ,λ)}.

Definition 1 Intrinsic logarithmic loss function. Let z be the available
data, let Mz = {p(z |θ,λ), z ∈ Z} be the model from which the data are
assumed to have been generated, and let H0 be the hypothesis that the data
have actually been generated from a member of the family

M0 = {p(z |ω0),ω0 ∈ Ω0, z ∈ Z0}, Z ⊆ Z0

The intrinsic logarithmic loss function from assuming H0 is the minimum
average under sampling of the log-likelihood ratio against an element ofM0,

δ{H0 |θ,λ,Mz} = inf
ω0∈Ω0

κ{pz(· |ω0) | pz(· |θ,λ)}.

Notice the complete generality of this definition. It may be used with
either discrete or continuous data models (in the discrete case, the integrals
will obviously be sums), and with either discrete or continuous parameter
spaces, of any dimensionality.

The particular case which obtains when H0 ≡ {θ = θ0}, so that

δ{H0 |θ,λ,Mz} = δz{θ0 |θ,λ} = inf
λ0∈Λ0

∫
Z
p(z |θ,λ) log p(z |θ,λ)

p(z |θ0,λ0)
dz,

is an appropriate loss function for both point and region estimation of θ,
and for testing whether or not a particular θ0 value is compatible with the
observed data.

The intrinsic logarithmic loss function δ{H0 |θ,λ,Mz} formalizes the use
of log-likelihood ratios against the null to define a general loss function. With
this loss structure, a precise hypothesis H0 will be rejected if, and only if

d(H0 | z) =
∫
Θ

∫
Λ

δ{H0 |θ,λ,Mz} p(θ,λ | z) dθ dλ > `0,

that is if, and only if, the posterior expectation of the average log-likelihood
ratio loss—which estimates the minimum log-likelihood ratio against H0—is
larger than a suitably chosen constant `0. In particular, if `0 = log[R], then H0
would be rejected whenever, given the observed data, the minimum average
likelihood ratio against H0, may be expected to be larger than about R.
Conventional choices for `0 are {log 20, log 100, log 1000} ≈ {3.0, 4.6, 6.9}.

In a multivariate normal model with known covariance matrix the intrinsic
logarithmic loss is proportional to the Mahalanobis distance. Thus, if z is a
random sample of size n from a k-variate normal distribution N(x |µ,Σ),

δz{µ0 |µ,Σ} = n

2
(µ0 − µ)tΣ−1(µ0 − µ),
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which is n/2 times the Mahalanobis distance between µ0 and µ. This result
may be used to obtain large-sample approximations to the intrinsic logarith-
mic loss. In particular, if z is a random sample of size n from the single
parameter model p(x | θ), and θ̃n = θ̃n(z) is an asymptotically sufficient con-
sistent estimator of θ whose sampling distribution is asymptotically normal
with standard deviation s(θ)/

√
n, then, for large values of n,

δz{θ0 | θ,Mz} ≈
n

2
[φ(θ0)− φ(θ)]2,

where φ(θ) =
∫ θ
s(y)−1dy is the corresponding variance stabilization trans-

formation.

1.4 Intrinsic reference analysis
The decision-theoretic procedures described above to derive summaries for
Bayesian inference are totally general, so that they may be used with any
loss function and any prior distribution. The advantages of using the intrinsic
logarithmic loss have been described above: it is invariant under both repa-
rameterization and reduction to sufficient statistics, and—most important—it
has a simple operational interpretation in terms of average log-likelihood ra-
tios against the null, so it is self-calibrated in terms of simple log-likelihood
ratios.

1.4.1 Intrinsic reference estimation and testing
Foundations indicate that the prior distribution should describe available prior
knowledge. In many situations however, either the available prior information
is too vague to warrant the effort required to formalize it, or it is too subjective
to be useful in scientific communication. An “objective” procedure, where the
prior function is intended to describe a situation where there is no relevant
information about the quantity of interest, is therefore often required. Ob-
jectivity is an emotionally charged word, and it should be explicitly qualified
whenever it is used. No statistical analysis is really objective, since both the
experimental design and the model assumed have very strong subjective in-
puts. However, frequentist procedures are often branded as “objective” just
because their conclusions are only conditional on the model assumed and the
data obtained. Bayesian methods where the prior function is directly derived
from the assumed model are objective is this limited, but precise sense. There
is a vast literature devoted to the formulation of objective priors. Reference
analysis, introduced by Bernardo in [3], and further developed in [1], [2], [10],
[11] and references therein, is probably the most popular approach for deriving
objective priors.
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Reference priors may be numerically obtained (see [10] for details) but,
under appropriate regularity conditions, explicit formulae for the reference
priors are readily available (see [2] and [9] for details). In particular, if the
posterior distribution of θ given a random sample of size n from p(x | θ) is
asymptotically normal with standard deviation s(θ̃n)/

√
n, where θ̃n is a con-

sistent estimator of θ, then the reference prior is π(θ) = s(θ)−1. This includes
the well-known one-parameter Jeffreys prior

π(θ) ∝ i(θ)1/2, i(θ) = Ex | θ[−∂2 log p(z | θ)/∂θ2],

as a particular case.

For objective Bayesian solutions to inferential problems the combined use
of the intrinsic logarithmic loss function and the relevant reference prior are
recommended. The corresponding Bayes point estimators, Bayes credible re-
gions and Bayes test criteria are respectively referred to as intrinsic reference
estimators, credible regions or test criteria. The basic ideas were respectively
introduced in [7], [5] and [8].

All inference summaries depend on the data only through the expected
reference intrinsic loss, d(θ0 | z), the expectation of the intrinsic loss with
respect to the appropriate joint reference posterior,

d(θ0 | z) =
∫
Θ

∫
Λ

δ{θ0 |θ,λ,Mz}π(θ,λ | z) dθdλ.

Most other intrinsic loss functions (invariant, continuous loss functions
which measure the discrepancy between the models rather than the discrep-
ancy between their parameters) would yield qualitatively similar results, but
attention will here be confined to the intrinsic logarithmic loss defined above,
for this is often easily derived, and—most important—it is self-calibrated in
terms of easily interpretable log-likelihood ratios against the null.

The following example is intended to illustrate the general procedure:

1.4.2 Example: the normal variance
Let z = {x1, . . . , xn} be a random sample from a normal N(x |µ, σ) distribu-
tion whose variance σ2 is of interest. Since reference analysis is invariant under
one-to-one transformations, one may equivalently work in terms of σ, log σ, of
any other one-to-one transformation of σ. The Kullback-Leibler discrepancy
of p(z |µ0, σ0) from p(z |µ, σ) is given by

κ{Nz(· |µ0, σ0) |Nz(· |µ, σ)} = n

∫
<
N(x |µ, σ) log N(x |µ, σ)

N(x |µ0, σ0)
dx

= n

2

[
log σ

2
0
σ2 + σ2

σ2
0
− 1 + (µ− µ0)2

σ2
0

]
,
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which is minimized when µ0 = µ. Hence, the intrinsic logarithmic loss function
for H0 ≡ {σ = σ0} is

δ{H0 |σ, µ,Mz} = δz{σ0 |σ, µ} = n

2

[
log σ

2
0
σ2 + σ2

σ2
0
− 1
]
.

Since the normal is a location-scale model, the reference prior is the con-
ventional improper prior π(µ, σ) = σ−1. The corresponding reference posterior
density of σ, after a random sample z = {x1, ..., xn} of size n ≥ 2 has been
observed, which is always proper, is

π(σ | z) = π(σ |n, s2) = (ns2)(n−1)/2

2(n−3)/2Γ[(n− 1)/2]
σ−n exp[−ns

2

2σ2 ] ,

where s2 = n−1∑n
j=1(xj − x̄)2 is the MLE of σ2.

The corresponding reference posterior expected loss from using σ0 as a
proxy for σ, given a random sample of size n, is

d(σ0 | z) =
∫ ∞

0
n δz{σ0 |σ, µ}π(σ | z) dσ

= n

2

[
ψ
(n− 1

2
)
− 1 + ns2

(n− 3)σ2
0

+ log
(2σ2

0
ns2

)]
.

By definition, the Bayes point estimator with respect to this loss func-
tion, the intrinsic reference estimator of σ is that value of σ0 which minimizes
d(σ0 | z); this is found to be σ∗(z) =

√
n/(s
√
n− 3). Thus, the intrinsic refer-

ence estimator of the variance is

σ2∗(z) = n s2

n− 3
,

an estimator already suggested by Stein [18], which is always larger than
both the MLE and the conventional unbiased estimator, that respectively
divide the sum of squares ns2 by n and by n − 1; for small samples, the
differences are noticeable. Since intrinsic estimation is consistent under one-
to-one reparametrizations, the intrinsic reference estimator of, say, log σ is
simply log[σ∗(z)].

As an illustration, a random sample z of size n = 10 was simulated from a
normal distribution with µ = 1 and σ = 2, yielding x̄ = 0.951 and s = 1.631.
Intrinsic reference analysis of σ is well summarized by two complementary
functions: (i) the reference posterior density π(σ | z), and (ii) the expected pos-
terior intrinsic logarithmic loss d(σ0 | z) of using σ0 as a proxy for σ. Figure 1.1
represents both π(σ | z) (upper panel) and d(σ0 | z) (lower panel), in the same
horizontal scale.

The expected intrinsic logarithmic loss d(σ0 | z) is minimized at the
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FIGURE 1.1
Intrinsic reference analysis for the standard deviation of a normal distribution,
given a random sample of size n = 5, with s = 1.631.

reference intrinsic estimate, σ∗ = 1.949, represented in both panels by a black
dot. Thus, the intrinsic estimator of the variance is σ∗2 = 3.80, which may
be compared with the MLE s2 = 2.66, or with the conventional unbiased
estimator σ̂2 = 2.96.

To test if a particular σ0 value is supported by the data one simply
checks its expected loss. For example, all σ0 values smaller than 1.29 or larger
than 3.46 have an expected intrinsic logarithmic loss larger than log(20) ≈ 3.0,
and would be rejected if the threshold were set to reject σ0 values with an
expected log-likelihood ratio against the true (unknown) value of σ larger
than log(20), suggesting that the average likelihood under the true model
may be expected to be at least 20 times larger than that under any model
with σ = σ0. The corresponding acceptance region, the interval (1.29, 3.46),
shaded area in the upper panel) has a posterior probability of 0.92. Since all
elements within that region have smaller expected loss than those outside,
this is a intrinsic reference 0.92-credible region. By definition, this region is
invariant under transformations; thus, the 0.92 reference intrinsic region for σ2
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is simply (1.292, 3.462). Notice, that these regions are not HPD regions. The
intrinsic reference 0.95-credible interval is (1.24, 3.74).

The expected logarithmic intrinsic loss of using σ0 = 5 as a proxy for σ
is d(5 | z) = 5.86 ≈ log[350], so that the hypothesis H0 ≡ {σ = 5} would
typically be rejected on the grounds that the likelihood ratio against H0 may
be expected to be at least 350.

1.5 Comparing Binomial proportions
Consider two random samples of sizes n1 and n2 from independent bino-
mial populations with parameters θ1 and θ2, respectively yielding r1 and r2
successes. Thus, the data are z = {(r1, n1), (r2, n2)}, the unknown parameter
vector is θ = {θ1, θ2}, and the sampling model is

p(z |θ) = Bi(r1 |n1, θ1)Bi(r2 |n2, θ2) ∝ θr1
1 (1− θ1)n1−r1θr2

2 (1− θ2)n2−r2

Interest focuses in comparing θ1 and θ2 and, more specifically, in deciding
whether or not there is evidence against the hypothesis H0 ≡ {θ1 = θ2} that
the two proportions are actually equal.

1.5.1 Intrinsic logarithmic loss to test equality
The Kullback-Leibler discrepancy of a model p(z |α) with equal parameters
θ1 = θ2 = α, so that p(z |α) = Bi(r1 |n1, α)Bi(r2 |n2, α), from the assumed
model p(z |θ) = Bi(r1 |n1, θ1)Bi(r2 |n2, θ2), is the expected value under the
true model p(z |θ) of the corresponding log-likelihood ratio ratio,

κ{pz(· |α) | pz(· |θ)} = Ez | θ
[
log p(z |θ)

p(z |α)

]
= n1 log(1− θ1) + n2 log(1− θ2)
−[n1(1− θ1) + n2(1− θ2)] log[1− α]

−n1θ1 log α θ1

1− θ1
− n2θ2 log α θ2

1− θ2
,

which is minimized when

α = n1θ1 + n2θ2

n1 + n2
.

The intrinsic logarithmic loss function for H0 ≡ {θ1 = θ2} is

δ{H0 | θ1, θ2, n1, n2} = min
α∈(0,1)

κ{pz(· |α) | pz(· |θ)},
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and substitution of the minimizing value of α yields

δ{H0 | θ1, θ2, n1, n2} = n1 log(1− θ1) + n2 log(1− θ2)

+n1θ1 log[ θ1

1− θ1
] + n2θ2 log[ θ2

1− θ2
]

− (n1θ1 + n2θ2) log[n1θ1 + n2θ2

n1 + n2
]

− (n1(1− θ1) + n2(1− θ2)) log[1− n1θ1 + n2θ2

n1 + n2
],

a non-negative function of (θ1, θ2) which is zero if, and only if, θ1 = θ2 and
reaches a maximum

δmax = (n1 + n2) log(n1 + n2)− n1 logn1 − n2 logn2

when (θ1, θ2) = (0, 1) or (θ1, θ2) = (1, 0), which reduces to 2n log[2] when
n1 = n2 = n.
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FIGURE 1.2
Intrinsic logarithmic loss function for H0 = {θ1 = θ2} when n1 = n2 = 10.

Figure 1.2 represents δ{H0 | θ1, θ2, n1, n2} when n1 = n2 = 10. The func-
tion δ{H0 | θ1, θ2, n1, n2} unambiguously and precisely describes, as a function
of θ1 and θ2, the discrepancy of the hypothesis H0 ≡ {θ1 = θ2} from the model
Bi(r1 |n1, θ1)Bi(r2 |n2, θ2).

1.5.2 Reference posterior distributions
Objective solutions to inferences about the possible differences between θ1
and θ2 require the use of an objective joint prior π(θ1, θ2). In single parameter
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problems, the reference prior is uniquely defined, and it is invariant under
reparameterization. In multiparameter models however, the reference prior
depends on the quantity of interest.

In this problem there are several possible choices for the quantity of in-
terest. A clear option would be the intrinsic logarithmic loss function itself,
for this precisely measures the discrepancy of H0 for the model, and one is
interested in checking whether or not this might be zero. Thus, one could de-
fine φ0(θ1, θ2) = δ{H0 | θ1, θ2, n1, n2} and proceed to derive the reference prior
πφ0(θ1, θ2) when φ0 is the quantity of interest; this is a non trivial exercise,
but it may be done. However other options more easily interpretable by the
user suggest themselves, as the difference φ1(θ1, θ2) = θ1 − θ2, or the ratio
φ2(θ1, θ2) = θ1/θ2.

Indeed, in models with many parameters, there are many situations where
one is simultaneously interested in several functions of them, and it would then
be useful to have a single objective prior which could safely be used to pro-
duce reasonable marginal posteriors for all the quantities of interest. Berger,
Bernardo and Sun propose in [12] a criterium to select an overall joint prior
function which may be considered a good approximate joint reference prior,
in the sense that, for all data sets, it may be expected to produce marginal
posteriors for all the quantities of interest which are not too different from
the relevant reference posteriors. In situations where independent binomial
situations are considered this leads to the use of the corresponding reference
priors for each of the binomial models considered, which are known to be the
relevant (proper) Jeffreys priors, π(θi) = Be(θi | 1

2 ,
1
2 ). In the case discussed

here, this reduces to

π(θ1, θ2) = Be(θ1 | 1
2 ,

1
2 )Be(θ2 | 1

2 ,
1
2 )

= π−2 θ
−1/2
1 (1− θ1)−1/2 θ

−1/2
2 (1− θ2)−1/2,

and this is the overall objective prior suggested to analyze this problem. The
corresponding joint reference posterior is

π(θ1, θ2 | z) = π(θ1, θ2 | r1, r2, n1, n2)
= Be(θ1 | r1 + 1

2 , n1 − r1 + 1
2 )Be(θ2 | r2 + 1

2 , n2 − r2 + 1
2 ),

and the expected logarithmic intrinsic loss is

d(H0 | z) =
∫ 1

0

∫ 1

0
δ{H0 | θ1, θ2, n1, n2}π(θ1, θ2 | r1, r2, n1, n2) dθ1 dθ2,

which may easily be numerically evaluated.

1.5.3 The RV144 HIV vaccine efficacy trial in Thailand
In 2009, the RV144 randomized, double-blind, efficacy trial in Thailand re-
ported that a prime-boost human immunodeficiency virus (HIV) vaccine
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regimen conferred about 30% protection against HIV acquisition, but different
analyses seemed to give conflicting results, and a heated debate followed as
scientists and the broader public struggled with their interpretation; see [15]
for a detailed description of the issues involved. The main result concerned
individuals in the general population in Thailand, mostly at heterosexual risk,
61% of which were men, randomized within the “intention to treat” popula-
tion, excluding subjects found to be HIV positive at the time of randomization.
The press release reported r1 = 51 infected among n1 = 8197 who have taken
the vaccine, to be compared with r2 = 74 infected among n2 = 8198 who have
taken a placebo. Using conventional frequentist testing, the two corresponding
binomial parameters, θ1 and θ2, were said to be significantly different, with
a p-value of 0.04. Morever, the results suggested an estimated vaccine effi-
cacy (one minus the relative hazard rate of HIV in the vaccine versus placebo
group) of

VE(r1, n1, r2, n2) = 1− r1/n1

r2/n2
= 0.31.

An objective Bayesian, intrinsic reference analysis of these data will now be
provided.

FIGURE 1.3
Joint posterior reference density π(θ1, θ2 | r1, r2, n1, n2), when r1 = 51,
n1 = 8197, r2 = 74 and n2 = 8198.

The joint reference posterior distribution for θ1 and θ2 which corre-
sponds to the overall reference prior π(θ1, θ2) = Be(θ1 | 1

2 ,
1
2 )Be(θ2 | 1

2 ,
1
2 ) is

π(θ1, θ2 | r1, r2, n1, n2) = Be(θ1 | 51.5, 8146.5)Be(θ2 | 74.5, 8124.5), represented
in Figure 1.3, which has with a unique mode at (0.0063, 0.0091).

The reference posterior probability that the proportion θ1 of infected
among those vaccinated is actually smaller than the proportion θ2 of infected
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among those take the placebo is simply

Pr[θ1 < θ2 | z] =
∫ 1

0

∫ θ2

0
π(θ1, θ2 | z) dθ1 dθ2 = 0.981,

so there seems to be some—not overwhelming—evidence that indeed, θ1 may
be smaller than θ2.

The posterior expectation of the intrinsic logarithmic loss corresponding
to the hypothesis H0 = {θ1 = θ2} that both parameters are actually equal is

d(H0 | z) =
∫ 1

0

∫ 1

0
δ{H0 |θ, n1, n2}π(θ1, θ2 | z) dθ1 dθ2 = 2.624 = log[13.8].

Thus, given the data, it is estimated that the average log-likelihood ratio

δ{H0 |θ, n1, n2} = inf
θ0∈H0

Ez | θ

[
log p(z |θ)

p(z |θ0)

]
for the model who has generated to data against any model within H0 is
at least 2.624 = log[13.8]; hence, the observed data may be expected to be
about 14 more likely under the true model than under a model within H0.
This certainly indicates that there is some evidence on the existence of a
difference between the two hazard rates and that the vaccine may well be
effective, but the evidence is far from strong.

Standard probability calculus may be used to derive the reference posterior
distribution of the actual efficacy of the vaccine,

φ(θ1, θ2) = 1− θ1

θ2
,

from the joint reference posterior π(θ1, θ2 | z) to obtain

π(φ | z) =
∫ 1

0
π(θ1, θ2 | z) θ2

∣∣
θ1→θ2(1−φ) dθ2

= n1!n2! (r1 + r2)!
Γ[r1 + 1/2] Γ[r2 + 1/2] Γ[n1− r1 + 1/2]

(1− φ)r1−1/2

× 2F
R
1 [1/2− n1 + r1, 1 + r1 + r2, 3/2 + n2 + r1, 1− φ],

where 2F
R
1 (a, b, c, z) is the regularized 2F1 hypergeometric function.

The posterior density of φ(θ1, θ2) = 1 − (θ1/θ2) which corresponds to
the vaccine trial data is represented in the upper panel of Figure 1.4. The
lower panel represents d(φ0 | z), the reference posterior expectation of the
corresponding intrinsic logarithmic loss,

δ{φ0 |φ, θ2, n1, n2} = inf
θ20∈[0,1]

Ez |φ,θ2

[
log p(z |φ, θ2)

p(z |φ0, θ20)

]
,
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FIGURE 1.4
Reference posterior analysis of the vaccine efficacy 1− (θ1/θ2) for the RV144
vaccine efficacy trial data.

which is given by

d(φ0 | z) =
∫ ∞
−∞

∫ 1

0
δ{φ0 |φ, θ2, n1, n2}π(φ, θ2 | z) dθ2 dφ.

and precisely describes the loss to be expected (in self-calibrated average
log-likelihood ratio terms) if a particular value for the vaccine efficacy φ0
were used as a proxy for the true unknown value of φ. This is minimized at
φ∗ = 0.297 which is therefore the intrinsic reference estimate of the vaccine
efficacy (represented by a solid point in both panels). The values within the
interval (−0.071, 0.544) have all an expected loss smaller than log[20] so they
could possibly be accepted as proxies for φ in that the expected log-likelihood
ratio against them would be smaller than log[20]. Notice that this includes
the value φ0 = 0 of zero efficacy. The region has a reference posterior prob-
ability of 0.97, and thus provides a intrinsic reference 0.97-credible interval
for φ (shaded region in the upper panel). The intrinsic reference 0.95-credible
interval is (−0.009, 0.514), which also contains φ0 = 0.

All these results elaborate on the basic conclusion already provided by the
computation of d(H0 | z) = log[13.8], which clearly indicates a rather week
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evidence against the hypothesis H0 that there is no difference between the two
hazard rates.

There is certainly some suggestion of a vaccine efficacy of about 30%, but
the true value of the efficacy could really be anywhere between about −1% and
50%, so that—against the “firm conclusion” of an existing difference between
the parameters apparently implied by the p = 0.04 frequentist significance—
more information is really necessary before any final answers could possibly
be reached.

1.6 Discussion
As described in Section 1.2, standard Bayesian decision theory provides a
unified framework where the problems posed by point estimation, region
estimation and hypothesis testing, may all be coherently solved within the
same structure. Although the formulation is totally general, there are clear
advantages in the use of a continuous loss function and a continuous prior
(which may well be improper) that, for consistency, should both be the same
in all those problems.

We have argued that one should preferably make use of intrinsic loss func-
tions, for those have the required invariance properties and thus provide so-
lutions which are invariant under reparameterization. Among intrinsic loss
functions, there are important arguments to choose that derived from the
average log-likelihood ratio against the null, the intrinsic logarithmic loss, for
this is self-calibrated and has an immediate interpretation.

The combined use of the intrinsic logarithmic loss function and an overall
reference prior provides the elements for an integrated Bayesian reference anal-
ysis, including both the posterior densities of the quantities of interest, and
the expected logarithmic intrinsic losses associated to any alternative values.
In particular this provides an immediate solution to any precise hypothesis
testing problem in terms of the estimated (expected posterior) average log-
likelihood ratio against the null.

As illustrated by the analysis of the RV144 HIV vaccine efficacy trial in
Thailand, the solutions proposed are not difficult to obtain, they have a simple,
very intuitive interpretation, and have far-reaching consequences, which in
hypothesis testing problems often contradict conventional statistical practice.
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