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SUMMARY

It is argued that hypothesis testing problems are best considered as decision problems concerning the
choice of a useful probability model. Decision theory, information measures and reference analysis,
are combined to propose a non-subjective Bayesian approach to nested hypothesis testing, the Bayesian
Reference Criterion (BRC). The results are compared both with frequentist based procedures, and with
the use of Bayes factors. The theory is illustrated with stylized examples, where alternative approaches
may easily be compared.
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1. MOTIVATION
Let M1 denote a probability model, px(. | θ),x ∈ X , which is currently assumed to provide
an appropriate description of the probabilistic behaviour of an observable vector x in terms of
some relevant quantity θ ∈ Θ and, on this basis, let us consider whether the null model M0
labeled by a particular value θ = θ0 may —or may not— be judged to be compatible with
an observed value of x; the value θ0 may have the support of a scientific theory (but some
unknown experimental bias may be present), or it may just label a model which is easier to use,
or simpler to interpret. For instance, one might have collected a set x = {x1, . . . , xn} of n
dichotomous observations with r =

∑
xj successes assumed to be a subset of an exchangeable

sequence; it then follows from de Finetti’s representation theorem (see e.g., Lindley and Phillips,
1976) that x is a random sample of n Bernoulli observations with some parameter θ, and we
may wish to judge whether, given the exchangeability assumption, the particular value θ = θ0
(maybe suggested by a scientific theory, maybe a number with political significance, or maybe
just a simple approximation to a historical relative frequency) is compatible with the observed
data (r, n).

Any Bayesian solution to the problem posed will obviously require a prior distribution p(θ)
over Θ, and the result may well be very sensitive to the particular choice of such prior; note
that, in principle, there is no reason to assume that the prior should necessarily be concentrated
around a particular θ0; indeed, for a judgement on the compatibility of a particular parameter
value with the observed data to be useful for scientific communication, this should only depend
on the assumed model and the observed data, and this requires some form of non-subjective
prior specification for θ which could be argued to be ‘neutral’; a sharply concentrated prior
around a particular θ0 would hardly qualify.
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The conventional Bayesian approach to compare a ‘null’ model M0 versus an alternative
model M1, on the basis of some data x, is to compute the corresponding Bayes factor B01(x);
indeed, the ratio Pr(M0 |x)/Pr(M1 |x) of the posterior probabilities associated to each model
may be written asB01(x) Pr(M0)/Pr(M1), whereB01(x) = p(x |M0)/p(x |M1), and there-
fore, the Bayes factorB01(x) seemingly encapsulates all the data have to say about the problem.
Bayes factors have been the basis of most work on Bayesian hypothesis testing, and the relevant
literature is huge, dating back to Jeffreys (1939); Kass and Raftery (1995) have provided an
excellent review. If M0 is a particular case of M1, and M0 is of smaller dimension than M1,
then the use of Bayes factors implicitly assumes that a strictly positive probability Pr(M0) has
been assigned to a set of zero Lebesgue measure under the larger model M1 (which is assumed
to be appropriate). The posterior probability Pr(M0 |x) obtained from this singular prior may
be shown to provide an approximation to the posterior probability associated to a small neigh-
bourhood θ0 ± ε of the null value obtained from a regular prior sharply concentrated around θ0
(Berger and Delampady, 1987). However, for any fixed ε, this approximation always breaks
down for sufficiently large samples; moreover, as mentioned above, it does not seem reasonable
to require a sharply concentrated prior around θ0 just to check the compatibility of θ0 with the
observed data.

Foundational issues aside, the use of singular priors may demonstrably have unpleasant
consequences. The simplest illustration is provided by Lindley’s famous paradox.

Lindley’s paradox. Let x = {x1, . . . , xn} be a random sample from a normal distribution
N(x |µ, σ), with known variance σ2 (model M1), and let M0 be the particular case which
corresponds to µ = µ0. The sample mean x is then sufficient and, if the prior distribution of µ is
assumed to be p(µ) = N(µ |µ0, σ1), then the Bayes factor B01(x, µ0) in favour of the simpler
model M0 is easily found to be

B01(x, µ0) = B01(z, n, λ) =
(
1 +

n

λ

)1/2
exp

[
− 1

2
n

n+ λ
z2

]
,

in terms of the conventional statistic z = z(x, µ0) = (x−µ0)/(σ/
√
n), the sample size n, and

the ratio λ = σ2/σ2
1 of the model variance to the prior variance. The following disturbing facts

may then be established:
(i) As pointed out by Lindley (1957), for any fixed prior and fixed z(x, µ0), the Bayes factor

B01(z, n, λ) increases as
√
n with the sample size, so that ‘evidence’ in favour of the

simpler model M0 may become overwhelming as the sample size increases, even for data
sets extremely implausible underM0, such as those (x, n) leading to large |z| values, which
are however quite likely under alternative µ values, namely under those close to x. The
same phenomenon is observed for any other reasonable choice of the prior p(µ), including
the conventional non-subjective (proper) Cauchy prior suggested by Jeffreys (1961, p. 274).
We argue that this is an undesirable behaviour, inconsistent with accepted scientific practice;
it may be avoided if posterior probabilities (rather than Bayes factors) are used and the prior
probability of the null model is made to depend on the sample size n (Bernardo, 1980;
Smith and Spiegelhalter, 1980), but this may well be regarded as a rather artificial solution.

(ii) As pointed out by Bartlett (1957), for any fixed data, and hence any fixed (z, n), the Bayes
factorB01(z, n, λ) tends to infinity asσ1 increases (and henceλ goes to 0), so that ‘evidence’
in favour of M0 becomes overwhelming as the prior variance of µ gets large, a situation
often thought to describe ‘vague prior knowledge’ about µ. In particular, this is true for
data (x, n) such that |z| is large enough to cause the ‘null’ model M0 to be rejected at
any arbitrarily prespecified level using a conventional frequentist test. Again, qualitatively
similar results are obtained for any other reasonable choice for the family of priors p(µ); the
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Bayes factor exhibits an extreme lack of robustness with respect to the choice of the prior,
and tends to infinity as the prior variance of the mean increases. In particular, no improper
prior for µ may be used.

For further discussion of Lindley’s paradox, see Smith (1965), Shafer (1982), Berger and
Delampady (1987), Berger and Sellke (1987), Consonni and Veronese (1987), Moreno and
Cano (1989), Berger and Mortera (1991) and Robert (1993).

Lindley’s paradox already suggests that it may not be wise to use Bayes factors in nested
hypothesis testing, but there is one further complication. Indeed, it is often argued that, at least
in scientific contexts, prior specification should preferably be non-subjective, in the sense that
the results obtained should only depend on the data and the models considered. It is also argued
that, even when prior information is publicly available, a ‘reference’ non-subjective solution
is necessary to gauge the actual importance of the prior in the final solution. Unfortunately,
however, it is well known that one cannot directly use standard ‘non-informative’ priors in nested
hypothesis testing because —contrary to the situation in estimation problems— the arbitrary
constants which appear in the typically improper ‘non-informative’ priors do not cancel out
and, as a consequence, the resulting Bayes factors are undetermined. The literature contains
many attempts to circumvent this difficulty, thus providing some form of non-subjective Bayes
factors. Some involve partitions of the sample into a ‘training sample’ to obtain a proper posterior
and an ‘effective sample’ used to compute the Bayes factor, as in Lempers (1971, Ch. 6), or
Berger and Pericchi (1995, 1996) with intrinsic Bayes factors; others propose alternative, ad hoc
devices to ‘fix’ the arbitrary constants, as in Spiegelhalter and Smith (1982), O’Hagan (1995)
with fractional Bayes factors, and Robert and Caron (1996) with neutral Bayes factors; Aitkin
(1991) suggested a non-coherent sample reuse. All these are indeed automatic, non-subjective
‘Bayes’ factors, which often provide useful large sample approximations; for instance, the
geometric intrinsic factor of Berger and Pericchi (1996) may be seen as an asymptotic Monte
Carlo approximation to a real Bayes factor (Bernardo and Smith, 1994, p. 423). However, the
behaviour of these proposals for small samples may be unsatisfactory and, more importantly,
these ‘Bayes’ factors are generally not Bayesian, in that they typically do not correspond to a
Bayesian analysis for any prior (proper or improper). This may have undesirable consequences;
for example, as one would expect from the mathematical consistency which drives Bayesian
inference, for all models M1, M2, M3, all (proper) priors on their parameters, and any data x,
one must have B12(x) = B−1

21 (x) and B12(x)B23(x) = B13(x), but those minimal coherence
requirements are often not honored by the proposals mentioned above; for details, see O’Hagan
(1997).

One is thus lead to wonder whether the conventional (Bayes factor) formulation of Bayesian
hypothesis testing may always be appropriate. In this paper, it is argued that nested hypothesis
testing problems are better described as specific decision problems about the choice of a useful
model and that, when formulated within the framework of decision theory, they do have a natural,
fully Bayesian, coherent solution. Moreover, within such a formulation, reference analysis
(Bernardo, 1979b; Berger and Bernardo, 1989, 1992) may successfully be used to provide
a non-subjective Bayesian solution, which is consistent with accepted scientific practice. In
Section 2, nested hypothesis testing is formally described as a precise decision problem, where
the terminal utility function takes the form of a proper scoring rule. In Section 3, reference
analysis and accepted scientific practice in a canonical situation, are respectively used to motivate
the choice of the prior distribution and the choice of the utility threshold; as a consequence,
a precise procedure for nested hypothesis testing, the Bayesian Reference Criterion (BRC), is
formally proposed. In Section 4, the behaviour of BRC is explored in simple stylized examples,
where alternative approaches may easily be compared.
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2. NESTED HYPOTHESIS TESTING AS A DECISION PROBLEM
Let x ∈ X be some available data, whose probabilistic behaviour is assumed to be appropri-
ately described by the probability model px(. | θ, ω), θ ∈ Θ, ω ∈ Ω, and suppose that it is
desired to ‘test’ whether or not those data are compatible with the ‘null value’ θ = θ0, that is,
whether, assuming that px(. | θ, ω) is appropriate, one could actually use a model of the form
px(. | θ0, ω0), for some ω0 = ω0(θ0, θ, ω) ∈ Ω to be specified. Typically, the dataxwill consist
of a random sample {x1, . . . , xn} from some model px(. | θ, ω), but we will not need to make
such an assumption. The problem proposed may formally be described as a decision problem
with only two alternative strategies, namely{

a0 = for some ω0(θ0, θ, ω) ∈ Ω, act as if data were generated from px(. | θ0, ω0),
a1 = keep the assumed model px(. | θ, ω), θ ∈ Θ, ω ∈ Ω.

For coherent behaviour, it is then necessary (i) to specify a utility function u(ai, θ, ω) measuring
the conditional desirability of each of those two possible decisions as a function of the parameter
values (θ, ω), (ii) to specify a prior distribution p(θ, ω) describing available prior information
about those unknown parameters, and (iii) to choose that decision ai which maximizes the
corresponding posterior expected utility u(ai |x).

It is known (Bernardo, 1979a, Bernardo and Smith 1994, Sec. 2.7 and 3.4) that ‘pure’
scientific inference about some random quantity φ may formally be described as a decision
problem where the decision space is the class {qφ(.)} of strictly positive probability densities
of φ with respect to some dominating measure, and where the utility function is a logarithmic
(proper) score function of the form u(qφ(.),φ) = α log qφ(φ) + β(φ). Using model qx(.) to
describe the behaviour of xmay be seen as an inference statement about the random quantity x;
thus, the utility of using some model qx(.) with datax could reasonably be assumed to be of the
form u(qx(.),x) = α log qx(x)+β(x) and therefore, before the data x are actually observed,
the expected utility of using some parametric model qx(. | θ, ω), with data actually generated
from px(· | θ, ω), will be of the form

u[qx(. | θ, ω), θ, ω] = α

∫
px(x | θ, ω) log[ qx(x | θ, ω)] dx+ β(θ, ω), α > 0, (1)

for some function β(θ, ω) =
∫
β(x) px(x | θ, ω) dx, which will turn out to be irrelevant.

Moreover, there must be a definite advantage of using the simpler model when it is appropriate
for, otherwise, one would always use the full model, which is assumed to be appropriate. This
may be due, for instance, to the mathematical simplicity ofM0, or to the existence of a scientific
theory which supports the simpler model M0. Using the terminology introduced by Raiffa
and Schlaifer (1961), we will further assume that the utility of using a model Mi, i ∈ {0, 1},
may be additively decomposed into the terminal utility of Mi, which measures its conditional
value to explain the data, and the cost ci to be expected from using Mi, taking into account
its simplicity, scientific implications, or any other considerations; under this assumption, one
must have c1 > c0. Thus, dropping the subindices from the densities to simplify the notation, a
sensible utility structure for the proposed decision problem is

u(a0, θ, ω) = sup
ω0∈Ω

α

∫
p(y | θ, ω) log[p(y | θ0, ω0)] dy + β(θ, ω)− c0,

u(a1, θ, ω) = α

∫
p(y | θ, ω) log[p(y | θ, ω)] dy + β(θ, ω)− c1,

where ω0 = ω0(θ0, θ, ω) specifies the best approximation to the assumed model under the null,
and the (dummy) variable y is used to denote data obtained from the full model px(. | θ, ω). It
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immediately follows that, given data x, the best action is to keep the full model if, and only if,
u(a1 |x) > u(a0 |x). The difference between these expected utilities,

u(a1 |x)− u(a0 |x) = α

∫∫ [
u(a1, θ, ω)− u(a0, θ, ω)

]
p(θ, ω |x) dθdω

= α

∫∫ [
inf
ω0∈Ω

∫
p(y | θ, ω) log

p(y | θ, ω)
p(y | θ0, ω0)

dy + c0 − c1
]
p(θ, ω |x) dθdω,

may therefore be usefully reexpressed as

u(a1 |x)− u(a0 |x) = α d(x)− (c1 − c0), (2)
where

d(x, θ0) =
∫∫
δ(θ0, θ, ω) p(θ, ω |x) dθdω (3)

is the posterior expected value of

δ(θ0, θ, ω) = inf
ω0∈Ω

∫
p(y | θ, ω) log

p(y | θ, ω)
p(y | θ0, ω0)

dy. (4)

The non-negative quantity δ(θ0, θ, ω) has several interesting interpretations. Indeed, it may
simply be described as the expected value (under the assumed model) of the log-likelihood
ratio of the assumed model to its closest approximation under the null; but it also measures the
minimum amount of information which would be necessary to recover M1 from M0 (Kullback
and Leibler, 1951), so that the utility constant α may actually be interpreted as the value of one
unit of information about data generated from px(· | θ, ω).

It follows from (2) that, in the stylized purely inferential situation described by the utility
function (1), the decision criterion must be of the form

Reject the null model M0 if, and only if, d(x, θ0) > g, g = (c1 − c0)/α, (5)
where the utility ratio g is the only number which must be assessed for a complete specification
of the utility structure.

Noting that the logarithmic discrepancy δ(θ0, θ, ω) is non-negative and vanishes if θ = θ0,
one has u(a0 |x,M0) − u(a1 |x,M0) = c1 − c0; thus, since α is the value of one unit of
information, it follows that g is a strictly positive constant which measures, in information
units, the expected utility gain from using the null model M0 when it is true.

Summarizing, we have found that the utility structure of the stylized decision problem
which describes nested hypothesis testing only depends on the unknown parameters through the
corresponding logarithmic discrepancy δ(θ0, θ, ω), which therefore is the quantity of interest.
As a consequence, deciding whether or not the simpler model M0 has to be rejected as an
acceptable proxy for the full model M1 is reduced to the much simpler problem of deciding
whether or not d(x, θ0), the posterior expectation of δ(θ0, θ, ω) is —or is not— too large.

The idea of using some form of the logarithmic discrepancy in model selection has a long
history, pioneered by Good (1950) and Kullback (1959). The use of some posterior expected
value of the logarithmic discrepancy as the basic ‘test’ statistic for Bayesian model selection was
originally proposed by Bernardo (1982, 1985), and further developed by Bernardo and Bayarri
(1985), Ferrándiz (1985), Bayarri (1987), Gutiérrez-Peña (1992), and Rueda (1992), using
conventional non-subjective priors. However, both the appropriate choice of the prior and the
specification of the threshold utility value g—which are crucial for any practical implementation
of the idea— remained open. We now turn to propose a choice for these two elements, which
is consistent with accepted scientific practice.



106 J. M. Bernardo

3. STANDARDISATION: THE BAYESIAN REFERENCE CRITERION

3.1. The Choice of the Prior Distribution
It has been often recognised that in scientific inference there is a pragmatically important
need for a form of non-subjective, model based prior, which has a minimal effect, relative to
the data, on the posterior inference. The use of non-subjective priors has been criticized by
subjectivist Bayesians, who argue that the prior should be an honest expression of the analyst’s
prior knowledge and not a function of the model. However, non-subjective posteriors may be
seen as an important element of the sensitivity analysis to assess the changes in the posterior of
interest induced by changes in the prior which should be part of any good subjective Bayesian
analysis: a non-subjective posterior tries to give an answer to the question of what could be said
about the quantity of interest, if one’s prior knowledge about that quantity were dominated by
the data. In the long quest for these “baseline” non-subjective posterior distributions, a number
of requirements have emerged which may reasonably be regarded as necessary properties of the
proposed algorithm. These include invariance, consistent marginalization, consistent sampling
properties, general applicability and limiting admissibility. The reference analysis algorithm,
introduced by Bernardo (1979b) and further developed by Berger and Bernardo (1989, 1992)
is, to the best of our knowledge, the only available method to derive non-subjective posterior
distributions which satisfy all these desiderata; and it is found that, within a given model, the
appropriate joint reference prior depends on the quantity of interest. For a recent discussion
of the many polemic issues involved in this topic, see Bernardo (1997). For an introduction to
reference analysis, see Bernardo and Smith (1994, Ch. 5), or Bernardo and Ramón (1998).

The solution to any decision problem, conditional on data x for which a probability model
px(· | θ, ω) has been assumed, only depends on x through the posterior expectation of some
function of the parameters, which defines the quantity of interest in that decision problem. In
our formulation of nested hypothesis testing, the decision criterion only depends on the data
through the expected value of the non-negative function δ = δ(θ0, θ, ω), which is therefore the
relevant quantity of interest. Thus, we propose to use the reference priorπδ(θ, ω) of (θ, ω) which
corresponds to the quantity of interest δ = δ(θ0, θ, ω). Consequently, to decide whether or not
M0 is an acceptable proxy to M1, we propose to evaluate the reference posterior expectation of
the logarithmic discrepancy δ(θ0, θ, ω),

dr(x, θ0) =
∫
δ(θ0, θ, ω)πδ(θ, ω |x) dθdω,

where πδ(θ, ω |x) is the posterior distribution which corresponds to the reference prior πδ(θ, ω),
and the suffix r in the resulting statistic dr(x, θ0) indicates that expectation is taken with respect
to the reference posterior. The ‘test statistic’, dr(x, θ0) encapsulates all relevant information
from the data; thus, the simpler model M0 should be rejected if, and only if, dr(x, θ0) ≥ g, that
is if, and only if, the reference expected posterior discrepancy is larger than a utility constant g,
which measures (in information units) the expected utility gain from using the null model when
it is true.

We note that dr(x, θ0) remains invariant if a sufficient statistic s = s(x) is used instead of
the full data; indeed, if x = {s, r}, one could write δ(θ0, θ, ω) as∫∫

p(s | θ, ω) p(r | s) log
p(s | θ, ω) p(r | s)
p(s | θ0, ω0) p(r | s)

dr ds =
∫
p(s | θ, ω) log

p(s | θ, ω)
p(s | θ0, ω0)

ds

and, a fortiori, its expected value will remain invariant. Moreover, dr(x, θ0) also remains
invariant under one-to-one transformations of the parameters; indeed,

dr(x, θ0) =
∫∫
δ(θ0, θ, ω)πδ(θ, ω |x) dθdω =

∫∫
δ
(
φ(θ0), φ(θ), ω(ω)

)
πδ(φ, ω |x) dφdω.
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We notice that if the data consist of a random sample x = {x1, . . . , xn} of size n from some
underlying model px(· | θ, ω), then the logarithmic discrepancy simply becomes

δ(θ0, θ, ω) = inf
ω0∈Ω

∫
px(y | θ, ω) log

px(y | θ, ω)
px(y | θ0, ω0)

dy

= n inf
ω0∈Ω

∫
px(y | θ, ω) log

px(y | θ, ω)
px(y | θ0, ω0)

dy.

Observe, however, that this exchangeability assumption is not necessary to implement the
methodology we are proposing.

Reference analysis has suggested a precise choice for the prior. To complete the specification
of the decision problem, we now turn to consider the choice of the utility constant g.

3.2. Calibration of the Utility Function

Measuring is comparing with a standard. An operational definition of any form of quantifi-
cation requires a standard unit of measurement, such as the metre for measuring lengths, or the
standard events to measure probabilities. To define an appropriate utility threshold for model
evaluation, we will use as our ‘unit’ a canonical example in standard scientific practice.

Under approximate normality, there seems to be a general agreement among scientists about
the use of two standard error deviations as a signal of mild evidence against the null and three
standard error deviations as a signal of significant evidence (see e.g., Jaynes, 1980, p. 634, or
Jeffreys 1980, p. 453). For a formal robust Bayesian justification of this practice, see Berger
and Sellke (1987) and Berger and Delampady (1987).

In the situation already discussed, when it is desired to test the hypothesis µ = µ0 given n
normal observations x = {x1, . . . , xn}, with unknown mean µ but known standard deviation σ,
accepted scientific practice reduces to computing z = z(x, µ0) = (x − µ0)/(σ/

√
n) and

rejecting the null if |z| > c, where c is typically chosen to be around 2 or 3. In frequentist terms,
this corresponds, for c = 1.96 or c = 3.00, to rejecting the null when it is appropriate with
probability not larger than 0.05 or 0.0027, respectively. In Bayesian terms, this corresponds
to using the conventional uniform prior for estimating µ, and rejecting the null when µ0 does
not belong to the corresponding HPD intervals with posterior probabilities 0.95 or 0.9973,
respectively; note that this Bayesian procedure does not use a singular prior and, hence, avoids
Lindley’s paradox. Precisely the same results are also obtained in this problem from the fiducial,
the likelihood or the pivotal viewpoints. Thus, on this canonical example, there appears to be
a basically universal consensus on what an appropriate procedure should be doing, with the
remarkable exception of Bayes factors based on singular priors.

Consider now, for this canonical example, the logarithmic discrepancy of the null model
M0 ≡ N(x |µ0, σ) from the full model M1 ≡ N(x |µ, σ) which, assuming σ known, is

δ(µ0, µ, σ) = n

∫ ∞
−∞

N(x |µ, σ) log
N(x |µ, σ)
N(x |µ0, σ)

dx =
n

2

(
µ− µ0

σ

)2

. (6)

Here, µ is the only unknown quantity and, as one might expect, the reference prior of µ when
δ = n(µ − µ0)2/σ2 is the quantity of interest is the conventional uniform prior πδ(µ) = 1.
Hence, the corresponding posterior distribution of µ is πδ(µ |x, σ) = N(µ |x, σ/√n), where
x is the sample mean, and the reference expected posterior discrepancy is

dr(x, µ0) =
∫ ∞
−∞

n

2

(
µ− µ0

σ

)2

N(µ |x, σ/
√
n) dµ = 1

2

[
1 + n

(x− µ0

σ

)2]
= 1

2(1 + z2),
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a one-to-one function of the ‘consensus’ test statistic |z| = |x − µ0|/(σ/
√
n). Hence, the

decision criterion becomes

Reject µ = µ0 if, and only if, dr(x, µ0) = 1
2[1 + z2] > g, (7)

for some appropriately chosen utility constant g. As described before, accepted practice in
this example suggests rejecting the null if |z| > c for some c, usually chosen to be around 2
or 3; it follows from (7) that |z| > 2 when dr > 2.5 and |z| > 3 when dr > 5. Moreover,
since the sampling distribution of z = z(x, µ0) is normal, centered at (µ − µ0)/(σ/

√
n) and

with standard deviation equal to one, the sampling distribution of z2 is the non-central χ2 with
one degree of freedom and non-centrality parameter 2δ, where δ = δ(µ0, µ, σ) is given by (6)
and, therefore, E[z2 | δ] = 1 + 2δ. It follows that when M0 is true, and thus δ = 0, one has
E[z2 |M0] = 1. Furthermore, if M0 is not true, then δ is strictly positive and increases linearly
with n; thus, the expected value of z2 will then tend to infinity as the sample size increases.
Since dr(x, µ0) is a one-to-one function of z2 this ensures a sensible large sample behaviour of
the proposed procedure in the sense that

Ex | µ,σ[dr(x, µ0) |M0] = 1, lim
n→∞

Ex | µ,σ[dr(x, µ0) |M1 ∩M0] =∞.

These results complete our motivation for the decision criterion being proposed.

3.3. The Bayesian Reference Criterion

The Bayesian Reference Criterion (BRC). To decide whether or not some data x are
compatible with the (null) hypothesis θ = θ0, assuming that the data have been generated
from the model px(· | θ, ω), θ ∈ Θ, ω ∈ Ω:

(i) compute the logarithmic discrepancy,

δ(θ0, θ, ω) = inf
ω0∈Ω

∫
px(y | θ, ω) log

px(y | θ, ω)
px(y | θ0, ω0)

dy,

between the assumed model and its closest approximation under the null.

(ii) derive the corresponding reference posterior expectation

dr(x, θ0) =
∫∫
δ(θ0, θ, ω)πδ(θ, ω |x) dθdω;

(iii) for some d∗, reject the hypothesis θ = θ0 if, and only if, dr(x, θ0) > d∗, where values
such as d∗ = 2.5 (mild evidence against θ0) or d∗ = 5 (significant evidence against θ0)
may conveniently be chosen for scientific communication.

The choice of d∗ is formally determined by the utility gain which may be expected by using
the null model when it is true; the larger that gain, the larger d∗. The analysis above suggests
that a value dr(x, θ0) close to 1 may be expected if M0 is true, and scientific practice suggests
that dr-values over 2.5 should raise some doubts on the use of M0, and that dr-values over
5 should typically be regarded as significant evidence against the suitability of using M0 as a
proxy to M1.

If x = {x1, . . . , xn} is a sufficiently large random sample from a regular model p(x | θ, ω),
the posterior distribution of (θ, ω)will concentrate on their maximum likelihood estimates (θ̂, ω̂),
and thus the expected posterior discrepancy, dr(x, θ0), will be close to δ(θ0, θ̂, ω̂), the logarith-
mic discrepancy between the model identified by (θ̂, ω̂) and its closest approximation under the
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null. Moreover, ifx = {x1, . . . , xn} is a random sample from a model px(x | θ), where θ is one-
dimensional and there are no nuisance parameters, then δ(θ0, θ) will typically be a piecewise
invertible function of θ and hence (see Proposition 1 in the Appendix) the relevant reference
prior will simply be Jeffreys’ prior, that is πδ(θ) ∝ i(θ)1/2, where i(θ) is Fisher’s information
function. Thus, in terms of the natural parametrization, defined as φ = φ(θ) =

∫ θ
i(θ)1/2dθ,

the reference prior πδ(φ) will be uniform. For large sample sizes, the corresponding reference
posterior distribution of φ will then be approximately normal πδ(φ |x) ≈ N(φ | φ̂, 1/√n), and
will only depend on the data through its mle φ̂; moreover, the sampling distribution of φ̂, p(φ̂ |φ)
will also be approximately normal, N(φ̂ |φ, 1/√n). Since the discrepancy function is invariant
under one-to-one reparametrization, and hence δ(φ0, φ) = δ(θ0, θ), one obtains, after some
algebra,

dr(x, θ0) ≈ 1
2

[
1 + z2(θ̂, θ0)

]
, z(θ̂, θ0) =

√
n [φ(θ̂)− φ(θ0)] . (8)

This type of approximation may be extended to multivariate situations, with or without
nuisance parameters; this provides a link to both Akaike’s (1973, 1974) AIC, and Schwarz’s
(1978) BIC criteria. The results will be reported elsewhere.

4. EXAMPLES

4.1. Testing a Normal Mean Value with Known Variance

Let us first reconsider our canonical example. In this case, µ is the only unknown parameter and
the logarithmic discrepancy is δ = nθ2, with θ = (µ− µ0)/σ. It is well known that, when µ is
the quantity of interest, the reference prior is the (improper) uniform prior πµ(µ) = 1; moreover,
givenσ, θ is a one-to-one function ofµ and, hence, from the invariance properties of the reference
algorithm, the reference prior when θ is the quantity of interest is also πθ(µ) = 1; besides, since
θ2 is piecewise invertible, if follows from Proposition 1 in the Appendix that the reference
prior when θ2 is the quantity of interest is still uniform and, since δ is a one-to-one function
of θ2, one finally has that the reference prior when δ is the quantity of interest is indeed the
conventional uniform prior πδ(µ) = 1. It follows that the corresponding posterior distribution
ofµ is πδ(µ |x) = N(µ |x, σ/√n) and thus, as anticipated in Section 3, dr(x, µ0) = (1+z2)/2
a one-to-one function of the ‘consensus’ test statistic |z|, where z =

√
n(µ0 − x)/σ.
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Figure 1. Normal observations (known variance). Behaviour of the test statistic dr(x, µ0) = dr(f, n),
as a function of the standardized distance f = (µ0−x)/σ, for sample sizes n = 1, n = 10 and n = 100.

Figure 1 describes, as a function of f(x) = (µ0−x)/σ and the sample size n, the behaviour
of dr(x, µ0) = dr(f, n). As one would expect, rejection —large dr(x, µ0) values— is indicated
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for progressively smaller values of f as n increases; indeed, as the sample size increases, one
would require the standardized distance between x andµ0 to decrease in order to accept working
as if data had been generated with µ = µ0.

Table 1. Normal observations (known variance). Correspondence between the threshold value d∗ of
the test statistic dr(x, µ0), and ‘type 1’ error probabilities.

d∗ P [dr > d∗ |µ = µ0] d∗ P [dr > d∗ |µ = µ0]

1.85277 0.10000 1.00 0.31731
2.42073 0.05000 2.00 0.08326
3.81745 0.01000 3.00 0.02535
4.43972 0.00500 4.00 0.00815
5.91378 0.00100 5.00 0.00270
6.55783 0.00050 6.00 0.00091
8.06835 0.00010 7.00 0.00031
8.72406 0.00005 8.00 0.00011
10.2557 0.00001 9.00 0.00004

The frequentist behaviour of the proposed test under the null is easily found. Indeed,
if µ = µ0, then the sampling distribution of x is N(x |µ0, σ/

√
n) and therefore, under M0,

z2 ∼ χ2
1 so that, the ‘type 1’ error probabilities Pr[dr(x, µ0) > d∗ |µ = µ0] are given, as a

function of the threshold value d∗, by Pr[χ2
1 > 2d∗ − 1]. In particular, with the choice d∗ = 5

the type 1 error probability is 0.0027 while, with d∗ = 2.42073 it is the ubiquitous 0.05; Table 1
gives other values. As one would surely expect in this ‘consensus’ example, we here obtain, for
all sample sizes, a one-to-one correspondence between d∗-values and frequentist significance
levels. It is easily seen, however, that this exact correspondence is generally not to be expected.

4.2. Testing an Exponential Parameter Value

We now consider a simple non-normal problem with continuous data. Letx = {x1, . . . , xn}, be
a random sample of exponential observations with parameter θ, so thatp(x | θ) = θn exp[−nxθ],
and the sample mean x is sufficient. To test whether or not the value θ = θ0 is compatible with
those observations, we first derive the corresponding logarithmic discrepancy,

δ(θ0, θ) = n
[ ∫ ∞

0
θe−θx log

θe−θx

θ0e−θ0x
dx

]
= n

[θ0

θ
− 1− log

θ0

θ

]
.

This is a piecewise invertible function of θ and it is known, (see e.g., Bernardo and Smith,
1994, p. 438) that the reference posterior distribution of θ is π(θ |x) ∝ θn−1e−nxθ, a Gamma
distribution Ga(θ |n, nx), with a unique mode at θ̃ = (n− 1)/nx, whenever n > 1. Using the
fact that if θ has a Ga(θ |α, β) distribution, then E[log θ] = ψ(α) − log β, where ψ(x) is the
digamma function, the reference posterior expectation of the logarithmic discrepancy is found
to be

dr(x, θ0) = n

[
ψ(n)− log(n− 1) +

θ0

θ̃
− 1− log

θ0

θ̃

]
, n ≥ 2.

Note that dr(x, θ0) only depends on the data through the ratio θ0/θ̃ and that the procedure
suggests that no testing of the parameter value is possible in the exponential model with only
one observation. Using Stirling’s approximation for the digamma function, it is easily verified
that, for large sample sizes, the expected posterior discrepancy is approximately given by
dr(x, θ0) ≈ δ(θ0, θ̃), the discrepancy of the model identified by θ0 from the model identified



Nested Hypothesis Testing: The BRC Criterion 111

0 1 2 3 4 5

2.5

5

7.5

2.5

5

7.5

f = θ0/θ̃

n = 2

n = 10

n = 100

Figure 2. Exponential observations. Exact behaviour of the test statistic dr(x, θ0) = dr(r, n), as a
function of the ratio f = θ0/θ̃, for sample sizes n = 2, n = 10 and n = 100.

by θ̃, and also by dr(x, θ0) ≈ 1
2(1 + z2), with z = z(x, θ0) =

√
n log(θ0/θ̃), which is the

approximation given by (8).
Figure 2 describes, for several sample sizes, the exact behaviour of dr(x, θ0), as a function

of the ratio f = θ0/θ̃, and the sample size n. As one would expect, to accept the value θ = θ0,
the ratio f has to be progressively close to 1 as n increases.

Table 2. Exponential times. Correspondence between the threshold valued∗ of the test statisticdr(x, θ0),
and ‘type 1’ error probabilities, P [dr > d∗ |H0], for sample sizes 2, 10, 100 and 1000.

d∗ n = 2 n = 10 n = 100 n = 1000

1.0000 0.71695 0.37004 0.32219 0.31780
2.0000 0.32020 0.10885 0.08552 0.08349
2.4207 0.24502 0.06867 0.05161 0.05016
3.0000 0.17325 0.03726 0.02634 0.02544
4.0000 0.09844 0.01347 0.00857 0.00819
5.0000 0.05723 0.00511 0.00287 0.00272
6.0000 0.03370 0.00190 0.00098 0.00092
7.0000 0.01193 0.00028 0.00012 0.00011
9.0000 0.00714 0.00011 0.00004 0.00004

The exact frequentist behaviour of the proposed test under the null may be obtained from
the fact that if x has an exponential sampling distribution with parameter θ, then x has a Gamma
sampling distribution, Ga(x |n, nθ) and, therefore, y = θ/θ̃ has a Gamma sampling distribution
Ga(y |n, n− 1). Table 2 reproduces the results obtained for several sample sizes. As could be
expected from the asymptotic results described above, the frequentist behaviour observed for
large samples is similar to that obtained for testing a normal mean value, encapsulated in Table 1,
hence providing asymptotic agreement with frequentist hypothesis testing. Note, however, that
there is not anymore a one-to-one correspondence between d∗-values and significance levels;
indeed, our procedure recommends rejecting the null whenever dr > 5, which implies ‘type 1’
error probabilities of 0.0572, 0.0051, 0.0029 and 0.0027 when the sample size is, respectively,
2, 10 100 and 1000; this is in agreement with the popular belief on decreasing the significance
levels as the sample size increases.
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4.3. Testing a Binomial Parameter Value

The proposed procedure is easily applied to discrete data, with none of the problems that
plague frequentist hypothesis testing in that case. As an example, we will now consider the
binomial case. Thus, let x = {x1, . . . , xn}, be a random sample of n Bernoulli observations
with parameter θ, so that p(x | θ) = θr(1 − θ)n−r, and the number of successes, r =

∑
xj is

sufficient. To test whether or not the value θ = θ0 is compatible with those observations, we
have to derive the reference posterior expectation of the corresponding logarithmic discrepancy,

δ(θ0, θ) = n
[
θ log

θ

θ0
+ (1− θ) log

1− θ
1− θ0

]
.

This is a piecewise invertible function of θ, and it is known (see e.g., Bernardo and Smith, 1994,
p. 436), that the reference posterior of θ is a Beta distribution Be(θ | r + 1/2, n − r + 1/2),
whose expected value is θ = (r + 1/2)/(n + 1). Using the fact that, if θ has a Be(θ |α, β)
distribution, then E[θ log θ] = α(α+ β)−1[ψ(α+ 1)− ψ(α+ β + 1)], one finds

dr(x, θ0) =
∫
δ(θ0, θ)πδ(θ |x) dθ = dr(θ, n) = nθ

[
ψ

(
1 + (n+ 1)θ

)
− log θ0

]

+ n(1− θ)
[
ψ

(
1 + (n+ 1)(1− θ)

)
− log(1− θ0)

]
− nψ(n+ 2).

Figure 3 describes, as a function of the discrete variable θ, and the sample size n, the exact
behaviour of dr(x, θ0), for θ0 = 1/5, and several sample sizes. As one would expect, no
parameter value may be rejected with only a few observations; moreover, rejection is indicated
for values of θ increasingly close to θ0 as n increases; indeed, as the sample size becomes larger,
one would require θ to be progressively close to θ0 in order to accept the value θ = θ0; for
example, with n = 5, θ0 = 1/5 is only rejected (dr > 5) if r = 5 while, with n = 10, it is
rejected whenever r ≥ 7.

0 0.2 0.4 0.6 0.8 1

2.5

5

7.5

2.5

5

7.5

θ

n = 1

n = 5

n = 10

n = 100

n = 1000

Figure 3. Bernoulli counts. Exact behaviour of the test statistic dr(x, θ0) = dr(θ, n), for θ0 = 1/5, as
a function of the reference expected posterior value of the parameter, θ = (r + 1

2)/(n+ 1), for sample
sizes n = 1, n = 5, n = 10, n = 100 and n = 1000.

The particular case where r = n (all successes) and θ0 = 1/2 may be specially illuminating.
In that situation, it is found that the null value should be questioned (dr > 2.5) for all n > 5 and
definitely rejected (dr > 5) for all n > 9; thus, a scientist analysing an experiment to test for
ESP powers on the sole strength of the data should require about 6 consecutive perfect answers
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before questioning the hypothesis of random guessing, and about 10 consecutive perfect answers
before definitely rejecting such a hypothesis.

Using Stirling’s approximation, it is found that, for large sample sizes, the function dr(x, θ0)
is well approximated by δ(θ0, θ), the logarithmic discrepancy between the models identified
by θ0 and by θ, and also by 1

2(1 + z2), with z = z(x, θ0) =
√
n [φ(θ) − φ(θ0)], where

φ(θ) = 2ArcSin(
√
θ), which is the approximation given by (8).

Table 3. Bernoulli counts. Correspondence between the threshold value d∗ of the test statistic dr(θ, n),
and ‘type 1’ error probabilities, P [dr > d∗ |H0], for sample sizes 5, 10, 100 and 1000.

d∗ n = 5 n = 10 n = 100 n = 1000

1.0000 0.05792 0.22825 0.31759 0.32300
2.0000 0.05792 0.03279 0.10274 0.08904
2.4207 0.00672 0.03279 0.05948 0.05264
3.0000 0.00672 0.00637 0.02382 0.02417
4.0000 0.00032 0.00637 0.00546 0.00806
5.0000 0.00032 0.00086 0.00241 0.00263
6.0000 0.00032 0.00008 0.00061 0.00089
7.0000 0.00000 0.00008 0.00023 0.00031
8.0000 0.00000 0.00008 0.00008 0.00010
9.0000 0.00000 0.00000 0.00004 0.00004

The exact frequentist behaviour of the proposed test under the null may be computed from
the null model p(x | θ0) = θx0 (1− θ0)1−x, x ∈ {0, 1}. Table 3 reproduces the results obtained
with θ0 = 1/5 for several sample sizes. Note —and this is of course a crucial shortcoming of
frequentist measures— that in discrete data problems confidence levels are barely meaningful
for small sample sizes. As one would expect from the asymptotic results described before,
the behaviour of BRC for large samples is similar again to that obtained for testing a normal
mean value with known variance; however as indicated in Table 3, differences may be huge for
the small sample sizes which are often found, for example, in drug testing, or in the quality
assessment of expensive items.

4.4. Testing a Normal Mean Value with Unknown Variance

We finally consider an example with nuisance parameters, which is probably the most common
example of nested hypothesis testing in scientific practice. Let x = {x1, . . . , xn}, be a random
sample of n real valued observations, and suppose that it is desired to check whether or not they
could be described as a random sample from some normal distribution with mean µ0, assuming
that they may be described as a random sample from some normal distribution.

The logarithmic discrepancy between the assumed model and its closest approximation
under the null is

δ(θ0, µ, σ) = inf
σ0∈[0,∞]

n

∫
N(x |µ, σ) log

N(x |µ, σ)
N(x |µ0, σ0)

dx

= inf
σ2
0∈[0,∞]

n

2

[
log

σ2
0
σ2 − 1 +

σ2

σ2
0

+
(µ− µ0)2

σ2
0

]
.

The infimum is attained at σ2
0 = σ2

0(µ0, µ, σ) = σ2 + (µ− µ0)2 and, substituting, one has

δ(θ0, µ, σ) =
n

2

[
log

(
1 +

(µ− µ0

σ

)2)]
=
n

2
log (1 + θ2),
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where θ = (µ− µ0)/σ. It follows that the required test statistic is

dr(x, µ0) =
∫ ∞
−∞

n
2 log (1 + θ2) πδ(θ |x) dθ, (9)

where πδ(θ |x) is the reference posterior of θ when δ is the quantity of interest. In this problem,
(µ, σ) are unknown parameters, the quantity of interest, δ = n

2 log(1 + θ2), is a piecewise
invertible function of θ, and the pair (θ, σ) is a one-to-one transformation of the pair (µ, σ). In
Proposition 2 of the Appendix, we prove that, in a normal model, the joint reference prior for
(θ, σ) when θ is the parameter of interest is πθ(θ, σ) ∝ (1 + 1

2 θ
2)−1/2σ−1; moreover, since

δ = n
2 log(1 + θ2) is a piecewise invertible function of θ, it follows from Proposition 1 in that

Appendix that this is also the reference prior when δ is the quantity of interest. Hence, using
Bayes’ theorem and integrating out the nuisance parameter σ, one has

πδ(θ |x) ∝
(

1 +
θ2

2

)−1/2

exp
[
− nθ2

2

]
I
[
n,

( n

n− 1 + t2

)1/2
t θ

]
, (10)

where t = t(x, µ0) =
√
n(x − µ0)/s, with s2 =

∑
(xj − x)2/(n − 1), is the conventional t

statistic and, in terms of the 1F1 hypergeometric function,

I[n, γ] =
∫ ∞

0
ωn−1 exp[−1

2w
2 + γ ω] dω

= 2(n−3)/2
[√

2 Γ(
n

2
)1F1(

n

2
,
1
2
,
α2

2
) + 2αΓ(

n+ 1
2

)1F1(
n+ 1

2
,
3
2
,
α2

2
)
]
.

It may be verified that the reference posterior (10) is proper whenever n ≥ 2. The function
I[n, γ] may also be recursively evaluated in terms of the standard normal cumulative distribution
function Φ.
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Figure 4. Normal observations. Exact behaviour of the test statistic dr(x, µ0) = dr(t, n), as a function
of the conventional t statistic, for sample sizes 2, 5, 10 and 30, and its limiting behaviour as n → ∞
(solid line).

Figure 4 describes the exact behaviour of the reference posterior expected discrepancy
dr(x, µ0), numerically computed from (9), as a function of the conventional statistic t, and the
sample size n. For moderate sample sizes, a good approximation to dr is provided by

dr(x, µ0) = dr(t, µ0) ≈ n
2 log(1 + t2

n ) + 1
2

.
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Table 4. Normal observations. Correspondence between the threshold value d∗ of the test statistic
dr(x, µ0), and ‘type 1’ error probabilities, P [d > d∗ |H0], for sample sizes 2, 5, 10, 30, 100 and 1000.

d∗ n = 2 n = 5 n = 10 n = 30 n = 100 n = 1000

1.0000 0.32299 0.23752 0.25310 0.28736 0.30706 0.31623
2.0000 0.14400 0.06540 0.06225 0.07131 0.07884 0.08278
2.4207 0.10471 0.04093 0.03683 0.04191 0.04691 0.04966
3.0000 0.05141 0.02232 0.01850 0.02067 0.02349 0.02514
4.0000 0.00000 0.00841 0.00601 0.00638 0.00740 0.00806
5.0000 0.00000 0.00335 0.00206 0.00205 0.00240 0.00266
6.0000 0.00000 0.00135 0.00074 0.00067 0.00080 0.00090
7.0000 0.00000 0.00045 0.00027 0.00023 0.00027 0.00031
8.0000 0.00000 0.00004 0.00010 0.00008 0.00009 0.00011
9.0000 0.00000 0.00000 0.00004 0.00003 0.00003 0.00004

The limiting function as n increases is found to be 1
2(1 + t2) so that, as one might expect, the

solution converges asymptotically to that obtained for the known variance case.
The exact frequentist behaviour of the proposed test under the null may easily be obtained

from the fact that the sampling distribution of t is standard Student withn−1 degrees of freedom.
Table 4 reproduces the results obtained for several sample sizes. As could be expected from
the asymptotic results described above, the frequentist behaviour observed for large samples
approaches that obtained for testing a normal mean value with known variance. Note that,
although BRC also uses the conventional t statistic, one does not have anymore a correspondence
between d∗-values and significance levels. However, as demonstrated in Table 4, qualitatively
similar results are obtained for moderate and large sample sizes.
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APPENDIX. SOME RESULTS ON REFERENCE DISTRIBUTIONS

Proposition 1. Let p(x | θ), θ ∈ Θ ⊂ �, be a regular one-parameter model. If the quantity
of interest φ = φ(θ) is piecewise invertible, then the corresponding reference prior πφ(θ)
is the same as if θ were the parameter of interest.

Outline of proof. Let φ = φ(θ), with φ(θ) = φi(θ), θ ∈ Θi, where each of the φi(θ)’s is
one-to-one in Θi; thus, θ = {φ, ω}, where ω = i iff θ ∈ Θi. The reference prior πφ(θ) only
depends on the asymptotic posterior of θ which, for sufficiently large samples, will concentrate
on that subset Θi of the parameter space to which the true θ belongs. Since φ(θ) is one-to-one
within Θi, and reference priors are consistent under one-to-one reparametrizations, the stated
result follows. ,

Proposition 2. Consider a normal modelN(x |µ, σ) with both parameters unknown and,
for some µ0 ∈ �, let θ = (µ− µ0)/σ be the quantity of interest. Then, in terms of (θ, σ),
the reference prior is πθ(θ, σ) ∝ (1 + θ2/2)−1/2σ−1.

Proof. In terms of (θ, σ), Fisher’s information matrix H(θ, σ) and its inverse S(θ, σ) are

H(θ, σ) =
(

1 θ/σ
θ/σ (2 + θ2)/σ2

)
, S(θ, σ) = H−1(θ, σ) =

(
1 + θ2/2 −θσ/2
−θσ/2 σ2/2

)
.

The natural compact approximation to the nuisance parameter space is {log σ ∈ [−i, i]}, which
does not depend on θ, and both h22 and s11 factorise as functions of θ and σ; thus, (Bernardo
and Smith, 1994, p. 328)

π(σ | θ) ∝ σ−1, π(θ) ∝ (1 + θ2/2)−1/2

and, hence, πθ(θ, σ) ∝ (1 + θ2/2)−1/2σ−1, as stated. ,

DISCUSSION

GAURI S. DATTA (University of Georgia, USA)

It is my pleasure to discuss a very stimulating paper by Professor Bernardo. He has presented
another interesting article on the development of reference priors that are useful to carry out
objective Bayesian analyses in scientific investigations. The author, with a number of eminent
collaborators, has made many important contributions in default Bayesian analyses through
reference priors in the last two decades since the publication of his pioneering paper on the
subject. While in the majority of his works on reference priors he considered the estimation
aspect of the Bayesian statistical inference, in the present article Professor Bernardo considers
development of reference priors for Bayesian hypothesis testing and model selection.

In many respects Bayesian solutions, especially noninformative Bayesian solutions, to
hypotheses testing are different from those for estimation problems. Unlike Bayesian estimation
problems with improper priors, where the normalising constant for a single model gets cancelled
in the final answer (of course, assuming all required integrals exist), Bayesian testing and model
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selection deal with more than one model, where the normalising constants for different models
are not readily comparable for improper noninformative priors. Thus a noninformative Bayesian
solution to hypotheses testing needs careful attention. Often a hypothesis testing problem
concerns selecting a model nested within a larger model. Bayesian testing of nested hypotheses
through Bayes factors based on improper priors faces many difficulties and sometimes produces
paradoxical results (e.g., Lindley’s paradox).

To circumvent some of the problems associated with Bayes factors there have been several
attempts to suitably modify the Bayes factors. Professor Bernardo in this paper takes a decision
theoretic approach to developing an objective Bayes solution to test for nested hypotheses.
He obtains a noninformative prior via Berger-Bernardo reference prior algorithm by treating
δ(θ0, θ, λ), the expected log-likelihood ratio under the full model, as the parameter of interest.
The Bayesian reference criterion (BRC) that is suggested as a test statistic by the author is given
by the expectation of δ(θ0, θ, λ) under the posterior derived from this reference prior. I will
examine in my discussion the proposed method through three examples.

Example 1. Let f(x; θ) = a(x) exp{θ1u1(x) + θ2u2(x) + c(θ1, θ2)} be the density function
of a two-parameter exponential distribution. Define ηi = Eθ(ui(X)), i = 1, 2. It is known that
the mixed parameterisation (θ1, η2) introduces an orthogonal reparameterisation of (θ1, θ2). We
assume θ2 = −θ1φ

′(η2) for some function φ. Bar-lev and Reiser (1982) showed that c(θ1, θ2)
andη1(θ1, θ2) can be expressed as c(θ1, η2) = θ1χ(η2)−M(θ1) andη1 = φ(η2)+M ′(θ1), where
χ(η2) = η2φ

′(η2)− φ(η2) and M(θ1) is an infinitely differentiable function with M ′′(θ1) > 0
and φ′′(η2) �= 0. To test H0: θ1 = θ10 vs. H1: θ1 �= θ10, it can be checked that δ(θ10, θ1, η2) =
n(θ1 − θ10)M ′(θ1) − n{M(θ1) −M(θ10)} is a function of θ1 alone. Although δ(θ10, θ1, η2)
is not a one-to-one function of θ1, reference analysis as proposed in the paper can be carried
out by following the Berger-Bernardo algorithm, treating θ1 as the parameter of interest and η2
as a nuisance parameter. The information matrix is I(θ1, η2) = Diag(M ′′(θ1),−θ1φ

′′(η2)). It
follows from Berger (1992) or Datta and Ghosh (1995a) that the reference prior for {θ1, η2} is
πδ(θ1, η2) =

√
M ′′(θ1)|φ′′(η2)|, which is also a first-order joint-probability-matching prior for

θ1 and η2 (see Datta 1996 and Sun and Ye 1996).
As a concrete application of Example 1, we consider the testing of a normal variance σ2

when the mean µ is a nuisance parameter. Here

δ(σ2
0, σ

2, µ) =
n

2

[
(
σ2

σ2
0
− 1)− log(

σ2

σ2
0
)
]
,

and

dr(x, σ2
0) =

n

2

[
ψ(
n− 1

2
)− log(

S2

2σ2
0
) +

S2

(n− 3)σ2
0
− 1

]
,

withS2 =
∑n

1 (xi−x̄)2, are very similar to the corresponding quantities defined in Example 4.2.
In general, this does not lead to the UMPU test.

Example 2. Balanced one-way random effects models: Let yij = µ + ai + eij , j = 1, . . . n,
i = 1, . . . , k where ai and eij are independently distributed with ai ∼ N(0, σ2

a) and eij ∼
N(0, σ2

e). Writing θ = σ2
a, λ = (µ, σ2

e), to test H0: σ2
a = 0 vs. H1: σ2

a > 0, the discrepancy
function

δ(θ0, θ, λ) =
k

2

[nσ2
a

σ2
e
− log(1 +

nσ2
a

σ2
e

)
]

is only a function of the ratio of the two variances (here θ0 = 0). Defining σ−2
e = r and

σ2
e(nσ

2
a + σ2

e)
−1 = u, it follows the reference prior for testing H0: σ2

a = 0 is given by
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π(r, u, µ) = (ru)−1. This prior was obtained earlier as a reference and probability-matching
prior by Datta and Ghosh (1995b); see also Datta (1996). It can be checked that for priors of
the form r−b1u−b2 , the BRC is a strictly increasing function of the usual F -statistic, thereby
leading to a test equivalent to the frequentist test.

Marginalisation Paradox: Notwithstanding the successful handling of many difficult problems
in presence of nuisance parameters, the Berger-Bernardo algorithm can produce priors for certain
group orderings of the parameters which fail to avoid marginalisation paradoxes (see Datta and
Ghosh 1995c). We will give an example to show that the BRC also suffers from this pitfall.

Example 3. We consider testing H0: ρ = 0 vs. H1: ρ �= 0 in a bivariate normal distribution
with density N2(µ1, µ2, σ1, σ2, ρ). Writing θ = ρ, λ = (µ1, µ2, σ1, σ2), it can be shown that
δ(θ0, θ, λ) = −n log(1− ρ2)/2, which is only a function of ρ. The two-group reference prior
for {θ, λ} is πδ(µ1, µ2, σ1, σ2, ρ) = σ−2

1 σ−2
2 (1 − ρ2)−1 (see Datta and Ghosh 1995c), which

neither is probability-matching for ρ nor does it avoid the marginalisation paradox. It is also
shown by these authors that further splitting of the last group results in a reference prior given by
{σ1σ2(1− ρ2)}−1 for parameter grouping {ρ, (µ1, µ2), (σ1, σ2)} or {ρ, µ1, µ2, σ1, σ2}, which
is probability-matching for ρ and avoids the paradox.

BRUNERO LISEO (Università di Roma “La Sapienza”, Italy)

Let me start this discussion with a warm Thanks! to the Organizing Committee for putting
on my (and Datta’s) shoulders the responsibility of criticizing our host. We will do our best to
make Valencia 7 still possible!

I will focus my discussion on three main points: (i) the role of probability and Bayes factors
in hypothesis testing, (ii) the construction of the utility function, and (iii) the comparison of
BRC with other approaches.

1. The role of probability and Bayes factors in hypothesis testing. Professor Bernardo says

...it may not be wise to use Bayes Factors in nested hypothesis testing

If one thinks to the immediate consequence of this statement, it is compulsory to say that it
may not be wise to use probability in nested hypothesis testing! My view is somewhat different
and here I will try to illustrate it. Models have different roles in statistics. Cox (1990) and
Lehmann (1990) basically distinguish between empirical and mechanistic models. In the case
of empirical models, we know that no one of them will be true and our aim is simply to select
the model which best describes the phenomenon under study. Models are used as a guide to
action and, in this sense I found the Bernardo’s approach very sensible. However, I consider his
scheme more adapt to analyze situations where different models are competing, as alternative
tools to approximately describe the phenomenon, as, for example, in non-nested situations. In
this case

The question of truth of a mathematical hypothesis does not arise, only that of its use as a calculating
tool. (Bishop Berkeley (1734), taken from Lehmann, 1990.)

On the other hand, there are completely different situations where a ‘precise’ null hypothesis
makes sense (see Berger and Delampady, 1987): in these cases I cannot see any alternative way
to use probability (and Bayes factors) statements on the truthfulness of the null hypothesis. All
in all I challenge Bernardo’s conclusion that the BRC is well suited for nested situations. I
would rather suggest to check its applicability with non-nested models. Of course, in this case,
the mathematics are going to be more involved and the posterior expected utility difference will
lose its interpretation in terms of divergence.
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2. The Construction of the Utility Function. Professor Bernardo starts from a well known and
accepted utility function to be used in pure scientific inference about a random quantity φ,
namely

u(qφ(·), φ) = α log qφ(φ) + β(φ), (1)

which is proper and local (Bernardo and Smith, 1994, Ch 3). To adapt this utility to his problem,
Professor Bernardo proposes the following modification

u(qx(·), θ, ω) = α

∫
px(y | θ, ω) log(qx(y))dy + β(θ, ω). (2)

This is neither a particular case of (1) nor its consequence, and its use as a utility function would
deserve more justification. To me it is not clear whether the first argument of the utility function,
qx(·), is a predictive distribution, free of the parameters, or it is a generic sampling distribution
(belonging to M0 or M1). Note that expression (2) would remain a proper utility function only
in the second case. Then, in its final step towards the transformation of the problem into a
decision one, Professor Bernardo actually introduces a somewhat different utility function. The
utilities of the two possible decisions a0 and a1 are in fact

u(a0, θ, ω) = α sup
ω0∈Ω

∫
px(y | θ, ω) log(p(y | θ0, ω0))dy + β(θ, ω)− c0, (3)

u(a1, θ, ω) = α

∫
px(y | θ, ω) log(p(y | θ, ω))dy + β(θ, ω)− c1. (4)

Some questions arise:

(i) Where do c0 and c1 come from? It is true that we need them, otherwise the larger model,
assumed to be true, will always be preferred. It is also true, as Professor Bernardo stresses,
that the von Neumann-Morgenstern theory is compatible with an additive decomposition of the
utility, but here we do not have a decomposition. We simply have an extra-component cj added
to the utility function. This modification makes it questionable, at least formally, whether the
use of the expected utility is a coherent criterion for choosing among decisions.

(ii) Sampling or predictive distributions? In expressions (3) and (4) utilities of each single
member of the families M0 and M1 are calculated for each single (θ, ω). In a sense, this seems
to be too optimistic since each single sampling distribution is evaluated at the ‘right’ value of
the parameters. It sounds like profiling the problem, by not considering the influence of the
nuisance parameter. In a Bayesian model comparison, would it not be more realistic to use

m0(y) =
∫
p(y | θ0, ω)π(dω) and m1(y) =

∫∫
p(y | θ, ω)π(dθ, dω)

instead of, respectively, p(y | θ0, ω) and p(y | θ, ω)? Of course this approach would imply the
use of a prior distribution inside the utility, as Professor Herman Rubin (see, for example Rubin
and Sethuraman, 1966) has often suggested. Clearly, this proposal needs to also be analyzed in
detail as a utility function but it seems to me more naturally consistent with (2), if not with (1).

This way, granted the use of c0 and c1, formula (4) in the paper would become

δ(θ0, θ, ω) =
∫
p(y | θ, ω) log

m1(y)
m0(y)

dy. (5)

Note that the priors to be used in this context cannot be improper. Is it surprising? No, I think
not. Coherent Bayesian model selection needs proper priors. To see what happens in this case,
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let us consider Example 1 (Lindley’s Paradox). After some algebra, and assuming a conjugate
prior N(µ0, σ

2
1) for µ under the larger model, it turns out that BRC selects M1 if and only if

z2(x) ≥ 2
[
g − log

(
σ/

√
σ2 + nσ2

1

)
− nσ2

1(σ
2 + 2nσ2

1)
2(σ2 + nσ2

1)2

] (
nσ2

1
σ2 + nσ2

1

)−3

(6)

As σ2
1 goes to infinity all the quantities in the left-hand side of (6) remain bounded; the only

exception is

log
(
σ/

√
σ2 + nσ2

1

)
.

This means that the Lindley’s paradox appears again! From the above analysis it is clear that
BRC avoids the paradox simply because the variance of m1(x), σ2/n+ σ2

1 is replaced by the
variance of p(x |µ), which is σ2/n independently of µ.

3. Comparison of BRC with other approaches. From an operational viewpoint, a new tool for
Bayesian model comparison should be compared with the more important existing one, namely
the Bayes factor and its ramifications. Now I will elaborate this point in the simple scenario of
Example 1 (Lindley’s Paradox). It is well known that, using a conjugate prior N(µ0, σ

2
1) on µ

under the larger model, we get a Bayes factor which, as n (or σ2
1) goes to infinity always selects

the simpler model. How can the BRC avoid this behavior and still remain a Bayesian criterion?
BRC selects the larger model if and only if

z2(x, µ0) =
n(x̄− µ0)2

σ2 > 2g − 1. (7)

On the other hand a proper conjugate Bayesian analysis will select the larger model if and only
if m1(x)/m0(x) > 1, that is, when

z2(x, µ0) =
n(x̄− µ0)2

σ2 >
nσ2

1 + σ2

nσ2
1

log
(
nσ2

1 + σ2

σ2

)
. (8)

Note, also, that the “intrinsic” priors arising from the expected arithmetic intrinsic Bayes factor
(Berger and Pericchi, 1996) and from the fractional Bayes factor (O’Hagan, 1995) are special
cases of conjugate priors. By equating thresholds in (7) and (8) one obtains

1 +
nσ2

1
σ2 = exp

{
nσ2

1
nσ2

1 + σ2 (2g − 1)
}

(9)

That means that, for fixedn, there is a one to one relation between g andσ2
1 . Choosing a level g in

terms of utility amounts to choose a conjugate with the appropriate variance. Also, Equation (9)
shows that, as n increases, BRC avoids the paradox by decreasing the prior variance. In a sense
the “intrinsic” prior of the BRC depends on n.

4. Concluding remarks. A general concern that I have with the BRC is that it is difficult to use
a (inference tailored) utility function in a hypotheses testing set-up. The collapse of the action
space into only two points makes it difficult for a utility function to remain proper. Consequently,
the use of the logarithmic discrepancy turns out to be suspect.

Conclusions obtained with BRC are very close to a frequentist test, in the spirit of reference
analysis. Whereas it can be valuable in estimation problems, it is going to be a problem in testing,
especially when testing a precise null hypothesis. Berger and Delampady (1987) develop this
point.
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DENNIS V. LINDLEY (Minehead, UK)

The world that we inhabit is complicated. We know a few things about it, either through our
personal experiences or from those experiences we share with others. Despite this knowledge,
most aspects of our world are uncertain for us. One of the great achievements of mankind
is the demonstration that this uncertainty must be described by quantities that obey the rules
of the probability calculus. I personally learnt this from Harold Jeffreys, but others have
given alternative demonstrations that lead to essentially the same conclusion: the inevitability
of probability. Our knowledge is primary probabilistic. We therefore need to describe our
uncertain world in probabilistic terms. A model refers to part of this description, and data can
assist in determining modifications to a model.

In addition to knowledge about the world, we need to act in face of the uncertainty of that
knowledge. Action, or decision-making, requires an evaluation of our individual preferences.
These are expressed, again in terms of probability, through a utility function. Action is achieved
by maximization of expected utility. Jeffreys did not concern himself with decisions, but these
conclusions easily follow from the demonstration that probability is the appropriate language.

Jeffreys was concerned with uncertainty in science. A key concept in the scientific method
is that of a theory, or hypothesis. Jeffreys pointed out that many theories can be put in the form
that a parameter θ takes a particular value θ0. More generally, it has proved useful to study
situations in which a hypothesis that θ = θ0 is proposed, which is than tested against θ �= θ0.
As in this paper, I confine myself to the one parametric dimension of interest, recognizing that
other nuisance parameter ω may be present. Combining this formulation with the major point
about probability, Jeffreys formulated hypothesis testing as the calculation of the probability
that θ is equal to θ0, rather than to some other value. Hypothesis testing is, in principle, very
simple, merely the calculation of Pr(θ0 |x), for data x. It is part of our total expression of
uncertainty about the world. In this view, it is part of our appreciation of the world, and has no
element of decision-making in it.

Bernardo takes a different view of model choice of hypothesis-testing. Let us look at the
stages in this approach.

(i) It is treated as a decision problem. That is, it is not regarded as just one aspect of our
appreciation of the world, but goes beyond it in contemplating action in that uncertain
world.

(ii) The decision is not about the parameter but about data: “act as if px(· | θ0, ω) were true”.
This is restrictive since theories are general statements, not confined to data sets either
present, x, or to future data sets of the same type y, referred to in the paper.

(iii) The interpretation of hypothesis-testing in decision terms requires a utility function. The
twin requirement that this be both proper and local, means a logarithmic form. Locality
may be queried because values near θ0 play an important role, as will be seen below. This
leads to the logarithmic discrepancy as the quantity whose expectation has to be found.

(iv) The theory of reference priors is then used to obtain the prior appropriate to the logarithmic
discrepancy, from whence the expected utilities can be calculated. The test then becomes
the choice of the better decision according to the expectation criterion.

Having summarized both approaches, let us compare them. One clear distinction is the
complexity of Bernardo’s method in comparison with the simplicity of Jeffreys’s. It requires
four procedures, as against a single calculation of probability. However, this is not necessarily
a serious objection since once the analysis has been performed (and the paper provides several
examples) the resulting test is just as easy to use as Jeffreys’s. The user need not fear the
complexity.
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Another distinction, which I consider more important, is that the decision procedure is
automatic once the sample space and its associate probability structure are given, whereas the
probability approach requires the user to think about additional probabilities. Bernardo suffers
from what I call the Greek-letter syndrome. Nowhere, in constructing the test, does he, or the
user, need to ask what θ means. It is just a Greek letter. Jeffreys had the syndrome to a lesser
degree, because he tried to find automatic priors; for example the Cauchy in the familiar, normal
case discussed in Section 1. A subjective Bayesian, following de Finetti, requires one to think,
not about a Greek letter, but about the feature of the world it attempts to describe.

This leads to a third distinction. Bernardo’s automatic procedure leads to a unique answer,
whereas the subjective approach does not; indeed, testing, unlike estimation, is disturbingly
sensitive to the original probability distribution over values of θ other than θ0. Jeffreys noticed
that his invariant distributions, with their automatic element, produced nonsense with tests. So
do reference priors for θ, but it is a triumph of this paper to suggest, and than to prove, that those
for the logarithmic discrepancy are sensible. This feature alone makes this an important paper:
a beautiful goal for Spain whilst England is confused mid-field.

To explore this contrast further, consider the normal case of Section 1. Since this provides
a good approximation for a wide variety of testing problems with a single parameter of interest,
what happens here is a good guide to most behaviour. Everyone agrees that the analysis depends
on z(x, θ0) = (x − θ0)/(σ/

√
n). Disagreement lies on what to do with z. Bernardo agrees

with the standard practice and rejects the null value θ0 if z2 exceeds a constant c that does not
depend on n or σ. Jeffreys, or a subjectivist, would reject (with possible reservations on the
word ‘reject’) if the probability of θ0 was sufficiently small. If θ, given θ �= θ0, is normal,
centred a θ0, with variance σ2

1 , this leads to rejection if

z2 >
{

log
(
1 +

n

λ

)
+ c′

} n+ λ

n
, λ =

σ2

σ2
1

, (1)

for constant c′. This follows form the first, displayed equation in the paper. Here, λ depends on
the variance of the normal prior and exhibits the sensitivity referred to above. Bernardo says
that (1) results in “undesirable behaviour, clearly inconsistent with accepted scientific practice”.
I disagree; so much the worse for scientific practice.

Consider first the influence of the varianceσ2
1 of the prior, expressed throughλ. Equation (1)

shows that is substantial. Suppose that the experiment yielding x concerns ESP and that θ0 is
the value that would arise were ESP absent. Then it is reasonable to suppose that θ cannot
differ much form θ0 because otherwise good evidence for ESP would have been demonstrated
before. It has not. So σ1 is small, λ is large and it is hard to reject θ0. Contrast this with an
experiment on a drug which is expected to do well in comparison with a placebo. Here the effect
could be large and values of θ, the difference between drug and placebo, substantially different
from θ = θ0 quite reasonable. Hence λ small. Practical considerations like these seem entirely
reasonable to me. We should not look at x in isolation. We should not ignore the meaning of
Greek letters. For Bernardo, the real world does not appear to matter: telepathy, drug testing, it
is all the same to the adherent of reference priors. Indeed he goes so far as to search for analysis
in which the data dominates. That is, data sets are analysed in isolation. This is not how science
works; it is through lots of different types of data that theories came to be accepted. Statisticians
have slowly come to recognize this and introduce the topic of meta-analysis. In other words, I
contend that the sensitivity to the prior, the mid-field confusion, is not a defect but a reasonable
reflection of reality.

Another difference between (1) and z2 > c lies not in the dependence of λ, but on n. For
large n, (1) behaves like

z2 > c′′ + log n, (2)
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so that as n increases it becomes increasingly difficult to reject θ0 in comparison with the
standard z2 > c, though the increase is logarithmic, and therefore slow. This can be defended
using an Occam’s razor type of argument, that values of the parameter other than the null value
should not be introduced without due cause. A better defence, to my mind, is the remark that
if sampling is continued (n increased) until z2 > c, this will certainly happen even if θ �= θ0.
Proof of this uses the law of the iterated logarithm. Introduction of the log n term in (2) prevent
this happening. It is no longer possible to sample to a foregone conclusion (that θ �= θ0). This
results connects with the likelihood principle, which (1) satisfies. It is not clear to me whether
the decision method of this paper does. The appearance of integrals over sample space in the
logarithmic discrepancy suggests it need not. The differences between the two approaches is
most noticeable when n is large and then only when z is small, yet not too small. To express this
differently, p(θ |x, θ �= θ0) is normal with very small variance and mean near to θ0. In those
circumstances, locality may be influential: whatever θ obtains, it is almost surely near to θ0.

Another possible objection to the use of z2 > c might arise in passing from (1) to higher
dimensions. It is well known that, using standard, tail area significance tests, it can happen
that, with (x, y) normal about (θ, φ), a test of θ = 0 can lead to rejection at the same time as
one for φ = 0, whereas the test for θ = φ = 0 can result in acceptance. We will have to wait
for Bernardo to extend his results to the bivariate situation before it can be seen whether his
procedure avoids that difficulty.

I remain unconvinced by the wizardry of this paper. Yet, if we honestly compare the two
models for hypothesis testing, that of the subjective Bayesian with that of this paper, we cannot,
in our present state of knowledge, reject either. The more understanding we gain of this original,
ingenious and stimulating approach, the easier it will be to achieve the ultimate goal; a sensible,
probabilistic description of our uncertain world.

MICHEL MOUCHART (Université Catholique de Louvain, Belgium)

From a Bayesian point of view, whether two models are nested or not should depend
not only on the sampling specification (the data density) but also on the prior specification.
In Example 3.2.1 of Florens and Mouchart (1993) we produce a situation where the prior
specification on the regression coefficient of a given explanatory variable should clearly depend
on the model although, from a frequentist approach, one is nested in the other one. Such an
issue might be kept hidden in a pure reference analysis.

It is quite interesting to realize that the author is developing a class of examples of the
“encompassing principle” : this gives historical support for his work; for more detail, see my
comments to Geweke’s paper in this volume.

TONY O’HAGAN (University of Nottingham, UK)

Professor Bernardo’s paper is interesting and provocative, but I have serious doubts about
the development in Section 2 of the criterion d(x, θ0). In the discussion leading to (1), the
analysis is said to be before observing data x, and is based on the utility of predicting those
future data x, using the same model. In the next displayed equations, x is replaced by y, which
is described as a dummy variable. The next sentence contains the phrase “given data x”, so
now Bernardo is looking at analysis after observing x. What now is the status of y? Just
after (4), he refers to d(x, θ0) as being concerned with the amount of information about future
observations, so apparently y is a future observation which will be made after observing the
data x. Presumably, y could be any future data, a single observation, many observations, or
perhaps even an infinite sequence of future observations. But, remarkably, towards the end of
Section 3.1, it seems that y is x again, because when s = s(x) is sufficient, Bernardo writes
x = {s, r} and then proceeds as if y = {s, r} also. Throughout the rest of the paper it seems
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that y = x also. Now the original definition of d(x, θ0) is nonsense if we strictly interpret the
statement y = x because y is integrated out in (4) and yet appears again in (3) as x. It seems
that y is indeed future data, but with exactly the same number of observations and the same
structure as x. In effect, Bernardo’s criterion relates to predicting a replicate of the data x.
There is no explanation or justification of this curious choice.

Another puzzling claim is that the equations right at the end of Section 3.2 demonstrate
consistency. First, consistency in model choice is usually interpreted as meaning selecting the
true model with probability one (as n→∞). These equations do not guarantee that, and indeed
the behaviour when the null model is true is exactly that of a frequentist fixed-size hypothesis
test: the null is falsely rejected with a probability that does not tend to zero. Further frequentist
thinking is evident in the expectation being conditioned on the parameters, where one would
have wanted a preposterior expectation.

Finally, I object to Bernardo’s description in Section 1 of the fractional Bayes factor as
a method of obtaining a non-subjective Bayes factor. I did not develop it as such, have never
referred to it in that way, and dislike intensely the perversion of Bayesian statistics that is implied
by the adjective ‘non-subjective’.

CHRISTIAN P. ROBERT (CREST-INSEE and Université de Rouen, France)
The BRC approach adopted for model selection is quite convincing, especially in nested

models. The choice of the Kullback-Leibler divergence has been stressed as a non-informative
criterion in Robert (1996), since it encompasses all possible and future uses of the chosen model.
Another advantage of the BRC criterion is that the whole analysis is done in terms of the full
model and does not require to define a prior on each submodel, as pointed out in Goutis and
Robert (1998) and Dupuis and Robert (1997). Moreover, this also allows for improper priors
to be used in a regular Bayesian fashion, while avoiding the “dilution” phenomenon mentioned
in George (1998).

The difficulty I have with the BRC method lies in the choice of a “golden standard” threshold.
In Goutis and Robert (1998) and Dupuis and Robert (1997), we proposed alternatives which
depend on the sampling model, the prior and/or the data at hand. It would seem that d∗ = 5 could
work in a limited set of models like exponential families in dimension one. Higher dimension
models or setups with covariates could require more specific calibration.

Also, how does the BRC method extend to non-nested cases? There are many caveats
related to encompassing pointed out in the econometric literature (see Goutis and Robert, 1997,
for references) and I wonder whether the BRC criterion may suffer from those.

REPLY TO THE DISCUSSION
I am extremely grateful to all discussants for their thought-provoking comments. I will first try
to give specific answers to their queries, and I will then attempt to summarize what I perceive
to be the main conclusions.

1. Reply to Datta. I am very grateful to Datta for providing further examples which illustrate
the behaviour of the BRC criterion. There are however two points in his comments which need
clarification:

(i) In the one-way random effects model, he points out that the BRC statistic is a strictly
increasing function of the usual F -statistic, and concludes that BRC leads to a test equivalent
to the frequentist test. This is not so; the sampling distribution of F depends on the sample size
and, therefore, using a fixed quantile of the corresponding sampling distribution as the cutoff
point is not equivalent to using a fixed utility constant (independent of n) as suggested by BRC.
There would be, however, asymptotic agreement.



126 J. M. Bernardo

(ii) Datta correctly points out that the prior obtained by grouping together the nuisance
parameters in the coefficient of correlation example leads to a prior which is not probability
matching and does not avoid the marginalisation paradox. I should stress however that, although
the reference algorithm may technically be used for any grouping, we explicitly stated (Berger
and Bernardo, 1992, Section 3.3; Bernardo, 1997) that ‘the’ reference prior should be that
sequentially obtained by considering the nuisance parameters one at a time. In the coefficient
of correlation example this leads to the reference prior σ−1

1 σ−1
2 (1− ρ2)−1 which has long been

known to be the reference prior for this problem (Bayarri, 1981); as Datta mentions, this is
probability matching for ρ, and avoids the marginalisation paradox. Priors based on grouping
the nuisance parameters should not be referred to as reference priors.

2. Reply to Liseo. Liseo correctly stresses that there are situations where a ‘precise’ null hypoth-
esis makes sense, but then he adds that he cannot see an alternative probability-based method
to Bayes factors to analyze them. I would argue that the special status of a precise null may be
incorporated through the utility function: the Bayesian analysis of the corresponding decision
problem the naturally requires the derivation of the posterior distribution of the parameters; but
this is done using a regular prior instead of a singular prior. The probability-based mechanism
used to incorporate the information provided by the data is precisely the same, namely Bayes
theorem followed by appropriate marginalization. The point is that, in my view, in nested hy-
pothesis testing problems one should not try to find the posterior probability of the null (which
must be zero if a regular prior is used), but one should either derive the posterior probabilities
associated to interesting regions of the parameter space (which may or may not include the null)
or, more to the point, or one should judge whether or not the null model provides a good enough
explanation of the observed data, using a regular, possibly non-subjective prior.

Liseo has some queries about the definition of the utility function. Actually, only the utility
difference u(a1, θ0, θ, ω) − u(a0, θ0, θ, ω) need be specified to solve the problem, and it is
natural to assume

u(a1, θ0, θ, ω)− u(a0, θ0, θ, ω) = α δ(θ0, θ, ω)− (c1 − c0),
where δ(θ0, θ, ω) is some measure of the ‘distance’ between θ and θ0 as possible ‘explanations’
of the observed data, assuming that px(· | θ, ω) is true, and where c0 − c1 is a measure of the
utility increase of using the null model when it is true. The optimal action will be to reject
working as if θ were equal to θ0 if d(x, θ0), the expected posterior value of δ(θ0, θ, ω), is larger
that the constant g = (c1− c0)/α. Thus, c1 and c0 are just part of the proposed utility function.

A particular solution to the problem posed will be found for each choice of the discrepancy
function. For the reasons discussed in the paper, I propose using the logarithmic divergence

δ(θ0, θ, ω) = inf
ω0∈Ω

∫
px(y | θ, ω) log

[
px(y | θ, ω)
px(y | θ0, ω0)

]
dy,

between the assumed model px(· | θ, ω) and its closest approximation under the null, identified
by ω0 = ω0(θ0, θ, ω). This specific choice has two very important properties: (i) it measures
the ‘distance’ between θ and θ0 in terms of how different are the corresponding models, rather
than in terms of the (largely irrelevant), say Euclidean distance between θ and θ0; and (ii) it is
invariant under reparametrization, so testing whether or not θ = θ0 will produce the same result
as testing φ(θ) = φ(θ0) for any one-to-one transformation φ = φ(θ). Liseo gives a powerful
argument against the use of predictives in the definition of δ(θ0, θ, ω), when he shows that this
would bring back Lindley’s paradox.

Anyone unconvinced by either the scoring rule argument used to motivate the use of the
logarithmic discrepancy, or by its attractive properties, may indeed choose another definition
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for δ(θ0, θ, ω). Any such choice (together with some prior on the parameters) will produce a
completely Bayesian, coherent answer to the decision problem posed. I think, however, that the
suggested choice provides a very good candidate for general use.

Liseo correctly points out that, in the context of Example 1, for fixed n there is a one to one
relation between the utility constant g and the prior variance σ1. It is indeed known (Bernardo,
1980; Smith and Spiegelhalter, 1980) that Lindley’s paradox may be avoided using singular
priors if the prior probability of the null is made to depend on the sample size n; however,
as mentioned before, singular priors may only be justified as an approximation to strong prior
subjective beliefs, and a subjective prior may hardly be assumed to depend on the sample size.

3. Reply to Lindley. Lindley is obviously right when he insists on using context dependent
subjective priors in any Bayesian analysis but, as mentioned before, this is certainly compatible
with the use of reference priors. Indeed, if at all possible, reference posteriors should not be
used on their own, but compared with subjective-based posteriors in order to be able to gauge
the actual importance of prior information in the final analysis. Moreover, it is only the context
and the related subjective information, which will allow a proper interpretation of the results.

For example, Jahn et al. (1987) report the result of an experiment in parapsychological
research where an electronic device is used to produce a random sequence of 0’s and 1’s with
theoretical equal probability for each of two outcomes, and a subject attempts to ‘influence’ the
random event generator to obtain a sequence of results with a different distribution; this results in
r = 52, 263, 471 observed 1’s, out of n = 104, 490, 000 performed trials. The hypothesis to be
tested is θ = θ0 = 1/2. The automatic analysis provided by BRC leads to dr(θ0, r, n) = 7.03,
thus suggesting that the true value of θ cannot be assumed to be 1/2, (in sharp contrast with
the corresponding Bayes factor analysis: see Jefferys, 1990), but the interpretation of this fact
(whether this is due to ESP, it is due to some undetected bias, or it indicates the need of a more
refined physics theory), is obviously a context dependent, subjective issue over which the data
cannot provide any information whatsoever.

It should also be mentioned here that restricted reference priors, obtained by maximizing
the missing information within the class of priors compatible with assumed prior knowledge (see
e.g., Bernardo and Smith, 1994, Section 5.4.3) may actually be used as a powerful mechanism
to elicit prior subjective knowledge. Thus, if it is desired to incorporate some knowledge in
the analysis of a precise hypothesis testing situation, (say the mean and variance of θ) then
the (unrestricted) reference prior should be replaced by the restricted reference prior which
corresponds to this assumed knowledge, and the resulting BRC statistic will automatically
incorporate this further assumption. The more information included, the closest the result will
be to a strictly subjective analysis; restricted reference priors provide a continuum of solutions,
ranging from the conventional reference posterior to the posterior which corresponds to any
(regular) subjective prior.

Lindley mentions that with BRC (as with frequentist testing) it is possible to sample to a
foregone conclusion, in the sense that, allowing optional stopping, one can sample until BRC
exceeds g, and this will eventually happen with probability one. This is a mathematical fact, but
has to be seen in perspective. With a regular prior, any data set, however unlikely, has a positive
prior predictive density so that, if one is allowed to sample indefinitely, one would eventually
get to one of these unlikely data sets which suggest the wrong decision; this makes perfect sense
to me.

Finally, Lindley worries about the behaviour of BRC in higher dimensions. Work in progress
with Raúl Rueda (which includes many examples) indicates that this is appropriate, but further
results are definitely needed there.



128 J. M. Bernardo

4. Reply to Mouchart. Mouchart suggests that in some situations the prior should depend on
the model. Indeed, one may well consider situations when the ‘null’ is of the form M0 =
{p(x | θ0, ω), p0(ω)}, and the alternative M1 = {p(x | θ, ω), p(ω | θ)} but, if this is the case,
then the nuisance parameter may simply be integrated out and one is left with a standard situation
of the type p(x | θ0) versus p(x | θ), to which the proposed method may directly be applied.

5. Reply to O’Hagan.
O’Hagan seems to be confused by my use of the dummy integration variable y to define

the logarithmic discrepancy. As mentioned above (in the reply to Liseo), what is required is a
measure of the discrepancy between the model px(· | θ, ω) and its best approximation under the
null, as a possible description of the probabilistic mechanism that has generated the observed
data x; thus, the y in the definition of the discrepancy is simply a possible observation from the
same probabilistic mechanism that has generated x.

O’Hagan points out that with BRC the null is falsely rejected with a probability that does
not tend to zero as n increases. I do not find this disturbing, but rather an expected consequence
of the proposed decision-oriented approach: the choice of the threshold d∗ which controls
such asymptotic ‘error’ probability is a trade-off between missing a possible opportunity for
simplification and early detection of the unsuitability of the null. Since, in my statement of
the problem, one is only trying to check whether or not the null model is a suitable proxy for
the correct model px(· | θ, ω), a ‘false’ rejection only means that one misses an opportunity of
simplifying the model, but the model used will nevertheless be correct. In contrast, if the null is
false, the BRC statistic increases linearly with n so that, for sufficiently large samples, a false
null will always be rejected. Thus, with BRC and sufficiently large samples, one will never be
lead to using a wrong model.

I take note of O’Hagan’s uneasiness of my description of his fractional Bayes factor as a non-
subjective Bayes factor. Fractional Bayes factors are not coherent (and thus, hardly Bayesian)
but, on re-reading his papers I cannot find a single attempt at using subjective prior information
in the examples he considers: in my limited use of the English language, a procedure which
does not use subjective input is non-subjective.

The use of the adjective ‘non-subjective’ to describe attempts to describe the many published
procedures which try to provide a solution to the definition of an ‘origin’ for Bayesian inference
was voted in preference to other proposed alternatives (automatic, conventional, default, fair,
neutral, objective, reference, standard) by those who attended an international workshop on that
topic held at Purdue University in November 1996; I personally prefer the adjective ‘reference’
(introduced by Box and Tiao, 1962, p. 420), but this is now mostly used to refer to the procedures
I introduced in the 70’s. I am afraid that, in spite of O’Hagan’s ‘intense dislike’ for what he
considers nothing less than a ‘perversion’, non-subjective Bayesian methods are here to stay
and, I would add, for many good reasons. I would refer those interested on this important
foundational issue to Bernardo (1997), ensuing discussion, and references therein.

6. Reply to Robert. I appreciate Robert’s s positive attitude towards BRC, and support his
defense of the Kullback-Leibler divergence as a most appropriate intrinsic loss function.

He wonders on the generality of the value d∗ = 5 as an standard for scientific communica-
tions in higher dimension models. I have already mentioned work in progress with Raúl Rueda
which suggests that indeed, this standard may also be used in higher dimensions; however,
further work is necessary.

Robert also asks about the extension of the BRC method to non-nested cases. We have
been looking at non-nested cases using simple encompassing procedures. For instance, if x =
{x1, . . . , xn} is a set of exchangeable observations, and two alternative models,M1 ≡ p1(x |θ)
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and M2 ≡ p2(x |θ), are considered in terms of some common parameter vector θ defined, as
exchangeability requires, as the limit θ = limn→∞ f(x1, . . . , xn) of some function f of the
observations, then BRC may be used with the encompassing model

p(x |θ, φ) = [p1(x |θ)]φ[p2(x |θ)]1−φ, φ ∈ {0, 1},

obtained by incorporating the discrete parameter φ. This effectively allows testing either of
the two models, assuming that one of the two is correct. The derivation of the appropriate
reference prior here is involved, for it requires a very careful analysis of the necessary compact
approximations, but we have worked out some examples (including the ‘canonical’ Exponential
versus Poisson problem) and the results are very encouraging.

7. Conclusions. Many authors have stressed that precise hypothesis testing problems are im-
portant for scientists, but the procedures proposed to give a solution to these problems have
always been subject to polemic. It seems clear from the discussion that some of this polemic
is due to the fact that two different problems are often addressed under the common heading
of precise hypothesis testing. In some situations, a scientist may have reasons to have a prior
distribution on the quantity of interest sharply concentrated around some specific null value; if
this is the case then, after the data have been observed, he will naturally be interested in the
posterior probability that the parameter lies within an small enough interval around the null; if
(and only if) the sample size is not too big, then such probability may be approximated by the
posterior probability which may be deduced from a singular prior with a mass of probability
on the null. On the other hand, in many other situations, the scientist is interested instead in
checking the compatibility of the data with the particular model identified by the null; this is
the problem that BRC tries to address.

Many of us have often advocated the systematic use of decision analysis to provide reason-
able, coherent solutions to any problem, including those often considered as ‘pure inference’
problems. In this paper, I have tried to demonstrate that a decision-oriented analysis of the prob-
lem of checking the compatibility of data with a null model suggests that the special role of the
null should be incorporated in the utility structure, not in the prior distribution. This implies that
regular priors should used to obtain, by maximizing the expected posterior utility, sensible co-
herent criteria for model criticism. An important consequence of this approach is that (possibly
improper) non-subjective priors may indeed be used to facilitate scientific communication.

Naturally, the logarithmic discrepancy is not the only possible loss function; indeed, the
discrepancy functions derived from other proper scoring rules may well be worth exploring. I
believe however, that the attractive properties and the information-theoretical interpretation of
the logarithmic discrepancy makes it a natural first choice. Similarly, the procedure described
may be used with any prior, subjective or not. As a matter of fact a totally subjective testing
procedure may be achieved by computing the subjective posterior expectation of the discrepancy,
and comparing this with a subjective threshold which measures the decision-maker level of
preference for the simple model when it is true. I believe, however, in the convenience of
establishing some standard which may be used for scientific communication, and the combined
use of the appropriate reference prior and a threshold calibrated with a canonical example
provides, I think, such a convenient standard.
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