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SUMMARY

It is argued that hypothesis testing problems are best considered as decision problems concerning the
choice of a useful probability model. Decision theory, information measures and reference analysis,
are combined to propose a non-subjective Bayesian approach to nested hypothesis testing, the Bayesian
Reference Criterion (BRC). The results are compared both with frequentist based procedures, and with
the use of Bayes factors. The theory isillustrated with stylized examples, where alternative approaches
may easily be compared.
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1. MOTIVATION

Let M; denote a probability model, px(.|0),x € X, which is currently assumed to provide
an appropriate description of the probabilistic behaviour of an observable vector x in terms of
some relevant quantity ¢ € © and, on this basis, let us consider whether the null model M
labeled by a particular value 8 = 6y may —or may not— be judged to be compatible with
an observed value of x; the value 6y may have the support of a scientific theory (but some
unknown experimental bias may be present), or it may just label amodel which iseasier to use,
or simpler to interpret. For instance, one might have collected aset « = {z1,...,z,} of n
dichotomous observationswith » = 3~ z; successes assumed to be a subset of an exchangeable
sequence; it then followsfrom de Finetti’ srepresentation theorem (seee.g., Lindley and Phillips,
1976) that « is arandom sample of n Bernoulli observations with some parameter ¢, and we
may wish to judge whether, given the exchangeability assumption, the particular value 6 = 6,
(maybe suggested by a scientific theory, maybe a number with political significance, or maybe
just asimple approximation to a historical relative frequency) is compatible with the observed
data (r,n).

Any Bayesian solution to the problem posed will obviously require aprior distribution p(0)
over ©, and the result may well be very sensitive to the particular choice of such prior; note
that, in principle, there is no reason to assume that the prior should necessarily be concentrated
around a particular 6; indeed, for a judgement on the compatibility of a particular parameter
value with the observed data to be useful for scientific communication, this should only depend
on the assumed model and the observed data, and this requires some form of non-subjective
prior specification for & which could be argued to be ‘neutral’; a sharply concentrated prior
around a particular 6y would hardly qualify.
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The conventional Bayesian approach to compare a ‘null’ model M versus an alternative
model M, on the basis of some data x, is to compute the corresponding Bayes factor By (x);
indeed, theratio Pr(M, | )/ Pr(M; | «) of the posterior probabilities associated to each model
may bewritten as By (x) Pr(My)/ Pr(M ), where By () = p(x | Myp)/p(x | M), and there-
fore, the Bayesfactor By () seemingly encapsulatesall the data haveto say about the problem.
Bayesfactors have been the basis of most work on Bayesian hypothesistesting, and the rel evant
literature is huge, dating back to Jeffreys (1939); Kass and Raftery (1995) have provided an
excellent review. If M is aparticular case of M, and M, is of smaller dimension than M,
then the use of Bayes factorsimplicitly assumes that a strictly positive probability Pr(Mj) has
been assigned to a set of zero Lebesgue measure under the larger model M, (which is assumed
to be appropriate). The posterior probability Pr(M | ) obtained from this singular prior may
be shown to provide an approximation to the posterior probability associated to a small neigh-
bourhood 6y + € of the null value obtained from aregular prior sharply concentrated around 6,
(Berger and Delampady, 1987). However, for any fixed e, this approximation always breaks
down for sufficiently large samples; moreover, as mentioned above, it does not seem reasonable
to require a sharply concentrated prior around 6 just to check the compatibility of 6y with the
observed data.

Foundational issues aside, the use of singular priors may demonstrably have unpleasant
consequences. The ssimplest illustration is provided by Lindley’s famous paradox.

Lindley's paradox. Let x = {z1,...,x,} be arandom sample from a normal distribution
N(z | p, o), with known variance o (model M), and let M, be the particular case which
correspondsto i = . The sample mean T isthen sufficient and, if the prior distribution of . is
assumed to be p(11) = N(u | 10, 01), then the Bayes factor By (, 1) in favour of the simpler
model M, iseasily found to be

ny1/2 1 n o
Boi(x, po) = Boi(z,n,\) = <1 + X> exp [— 2 nIA Z |,
in terms of the conventional statistic z = z(x, o) = (Z — po) /(0 /+/n), the samplesizen, and
theratio A = 02 /0? of the model variance to the prior variance. The following disturbing facts
may then be established:

(i) Aspointed out by Lindley (1957), for any fixed prior and fixed z(x, 110), the Bayes factor
By1(z,n, ) increases as y/n with the sample size, so that ‘evidence’ in favour of the
simpler model M may become overwhelming as the sample size increases, even for data
setsextremely implausible under M, such asthose (z, n) leading to large | z| values, which
are however quite likely under aternative 1 values, namely under those closeto z. The
same phenomenon is observed for any other reasonable choice of the prior p(x), including
the conventional non-subjective (proper) Cauchy prior suggested by Jeffreys (1961, p. 274).
Wearguethat thisisan undesirable behaviour, inconsistent with accepted scientific practice;
it may be avoided if posterior probabilities (rather than Bayesfactors) are used and the prior
probability of the null model is made to depend on the sample size n (Bernardo, 1980;
Smith and Spiegelhalter, 1980), but this may well be regarded as arather artificial solution.

(i) Aspointed out by Bartlett (1957), for any fixed data, and hence any fixed (z, n), the Bayes
factor By (z, n, ) tendstoinfinity aso increases(and hence A goesto 0), sothat ‘ evidence'
in favour of M, becomes overwhelming as the prior variance of . gets large, a situation
often thought to describe *vague prior knowledge' about . In particular, thisis true for
data (z,n) such that |z| is large enough to cause the ‘null’ model M to be rejected at
any arbitrarily prespecified level using a conventional frequentist test. Again, qualitatively
similar results are obtained for any other reasonabl e choice for the family of priorsp(u); the



Nested Hypothesis Testing: The BRC Criterion 103

Bayes factor exhibits an extreme lack of robustness with respect to the choice of the prior,
and tendsto infinity asthe prior variance of the mean increases. In particular, no improper
prior for ;. may be used.

For further discussion of Lindley’s paradox, see Smith (1965), Shafer (1982), Berger and
Delampady (1987), Berger and Sellke (1987), Consonni and Veronese (1987), Moreno and
Cano (1989), Berger and Mortera (1991) and Robert (1993).

Lindley’s paradox already suggests that it may not be wise to use Bayes factors in nested
hypothesis testing, but thereis one further complication. Indeed, it is often argued that, at least
in scientific contexts, prior specification should preferably be non-subjective, in the sense that
the results obtained should only depend on the data and the models considered. It isalso argued
that, even when prior information is publicly available, a ‘reference’ non-subjective solution
IS necessary to gauge the actual importance of the prior in the final solution. Unfortunately,
however, itiswell known that one cannot directly use standard * non-informative’ priorsinnested
hypothesis testing because —contrary to the situation in estimation problems— the arbitrary
constants which appear in the typically improper ‘non-informative’ priors do not cancel out
and, as a consequence, the resulting Bayes factors are undetermined. The literature contains
many attempts to circumvent this difficulty, thus providing some form of non-subjective Bayes
factors. Someinvolvepartitionsof thesampleintoa'training sample’ to obtainaproper posterior
and an ‘effective sample’ used to compute the Bayes factor, asin Lempers (1971, Ch. 6), or
Berger and Pericchi (1995, 1996) with intrinsic Bayesfactors; others propose aternative, ad hoc
devicesto ‘fix’ the arbitrary constants, as in Spiegelhalter and Smith (1982), O’ Hagan (1995)
with fractional Bayes factors, and Robert and Caron (1996) with neutral Bayes factors; Aitkin
(1991) suggested a non-coherent sample reuse. All these are indeed automatic, non-subjective
‘Bayes factors, which often provide useful large sample approximations; for instance, the
geometric intrinsic factor of Berger and Pericchi (1996) may be seen as an asymptotic Monte
Carlo approximation to area Bayes factor (Bernardo and Smith, 1994, p. 423). However, the
behaviour of these proposals for small samples may be unsatisfactory and, more importantly,
these ‘Bayes factors are generally not Bayesian, in that they typically do not correspond to a
Bayesian analysisfor any prior (proper or improper). Thismay have undesirable consequences;
for example, as one would expect from the mathematical consistency which drives Bayesian
inference, for al models M, Ms, M3, al (proper) priors on their parameters, and any data «,
one must have Byz(z) = B,/ (z) and Bia(z) Baz(x) = Biz(a), but those minimal coherence
requirements are often not honored by the proposal's mentioned above; for details, see O’ Hagan
(2997).

Oneisthuslead to wonder whether the conventional (Bayesfactor) formulation of Bayesian
hypothesis testing may always be appropriate. In this paper, it is argued that nested hypothesis
testing problems are better described as specific decision problems about the choice of a useful
model and that, when formul ated within theframework of decisiontheory, they do haveanatural,
fully Bayesian, coherent solution. Moreover, within such a formulation, reference analysis
(Bernardo, 1979b; Berger and Bernardo, 1989, 1992) may successfully be used to provide
a non-subjective Bayesian solution, which is consistent with accepted scientific practice. In
Section 2, nested hypothesistesting isformally described as a precise decision problem, where
the terminal utility function takes the form of a proper scoring rule. In Section 3, reference
analysisand accepted scientific practicein acanonical situation, arerespectively used to motivate
the choice of the prior distribution and the choice of the utility threshold; as a consequence,
a precise procedure for nested hypothesis testing, the Bayesian Reference Criterion (BRC), is
formally proposed. In Section 4, the behaviour of BRC isexplored in simple stylized examples,
where alternative approaches may easily be compared.
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2. NESTED HYPOTHESIS TESTING AS A DECISION PROBLEM

Let x € X be some available data, whose probabilistic behaviour is assumed to be appropri-
ately described by the probability model pg(.|0,w), 8 € ©, w € Q, and suppose that it is
desired to ‘test’ whether or not those data are compatible with the ‘null value' 6 = 6y, that is,
whether, assuming that pz(. | 0, w) is appropriate, one could actually use a model of the form
pa (- | 6o, wp), for somewy = wp(by, 0, w) € Q to be specified. Typically, thedatax will consist
of arandom sample {1, ..., z,} from some model p,(.|6,w), but we will not need to make
such an assumption. The problem proposed may formally be described as a decision problem
with only two aternative strategies, namely

ap = for some wy (6o, 0, w) € €, act asif datawere generated from px(. | 6o, wo),
a; = keep the assumed model pz(.|0,w), 0€©, we.

For coherent behaviour, it isthen necessary (i) to specify autility function w(a;, 6, w) measuring
the conditional desirability of each of those two possible decisionsasafunction of the parameter
values (0, w), (ii) to specify a prior distribution p(6, w) describing available prior information
about those unknown parameters, and (iii) to choose that decision a; which maximizes the
corresponding posterior expected utility w(a; | x).

It is known (Bernardo, 1979a, Bernardo and Smith 1994, Sec. 2.7 and 3.4) that ‘pure
scientific inference about some random quantity ¢ may formally be described as a decision
problem where the decision space is the class {q¢(.)} of strictly positive probability densities

of ¢ with respect to some dominating measure, and where the utility function is a logarithmic
(proper) score function of the form u(q¢(.), ¢) = alog q¢(¢) + (). Using moddl ¢z (.) to
describe the behaviour of = may be seen as an inference statement about the random quantity x;
thus, the utility of using somemodel ¢ (.) with datax could reasonably be assumed to be of the
formu(gx(.), ) = alog gz (x) + B(x) and therefore, before the data « are actually observed,
the expected utility of using some parametric model ¢z (.| 6, w), with data actually generated
from pg (- | 0, w), will be of the form

ulge (- |0, w),0,w] = a/pw(a: |0, w)loglqe(x|0,w)]dx + B(0,w), « >0, (1)

for some function 8(0,w) = [ B(z)px(x|0,w)dx, which will turn out to be irrelevant.
Moreover, there must be a definite advantage of using the simpler model when it is appropriate
for, otherwise, one would aways use the full model, which is assumed to be appropriate. This
may be due, for instance, to the mathematical ssmplicity of M, or to the existence of ascientific
theory which supports the simpler model M. Using the terminology introduced by Raiffa
and Schlaifer (1961), we will further assume that the utility of using amodel M;, i € {0, 1},
may be additively decomposed into the terminal utility of A7;, which measures its conditional
value to explain the data, and the cost ¢; to be expected from using M;, taking into account
its simplicity, scientific implications, or any other considerations; under this assumption, one
must have ¢; > ¢(. Thus, dropping the subindices from the densitiesto simplify the notation, a
sensible utility structure for the proposed decision problem is

u(ag, 0, w) = SU_%CY /p(y 16, w)log[p(y |y, wo)] dy + (6, w) — co,
on

u(ar,0,w) = a / p(y |6, w)loglp(y | 6,w)) dy + B(6,w) — 1,

where wy = wy (6o, 0, w) specifies the best approximation to the assumed model under the null,
and the (dummy) variable y is used to denote data obtained from the full model px (.| 6,w). It



Nested Hypothesis Testing: The BRC Criterion 105

immediately follows that, given data «, the best action isto keep the full model if, and only if,
u(ay | x) > u(ag | ). The difference between these expected utilities,

u(ay | x) —ulag|x) = //[u(al, 0,w) — u(ap, 9,w)} p(0,w|x)dodw

. p(y |0, w)
= inf 0,w)log ————dy +cy—c 0,w|x)didw,
//[woeg/p(yl ) S i 1}10( | )

may therefore be usefully reexpressed as
u(ar |z) —ulag | z) = a d(z) — (a1 — ), (2)
where

d(x,6p) ://5(90,9,w)p(9,w|w) dfdw (3)

isthe posterior expected value of

: p(y |0, w)
0(0p,0,w) = mf/ 0,w)log —————dy. 4
(0.00) = inf [ ply|6.)1og TEREL gy (@

The non-negative quantity 6(6y, 8, w) has several interesting interpretations. Indeed, it may
simply be described as the expected value (under the assumed model) of the log-likelihood
ratio of the assumed model to its closest approximation under the null; but it also measures the
minimum amount of information which would be necessary to recover M; from M, (Kullback
and Leibler, 1951), so that the utility constant o may actually be interpreted as the value of one
unit of information about data generated from pg: (- | 0, w).

It follows from (2) that, in the stylized purely inferential situation described by the utility
function (1), the decision criterion must be of the form

Reject the null model M, if, and only if, d(x,0y) > g, g=(c1—co)/a, (H)

wherethe utility ratio g isthe only number which must be assessed for a complete specification
of the utility structure.

Noting that the logarithmic discrepancy 6(6y, 0, w) is hon-negative and vanishesif 6 = 6y,
one has u(ag | x, My) — u(ay |x, My) = ¢1 — cp; thus, since « is the value of one unit of
information, it follows that ¢ is a strictly positive constant which measures, in information
units, the expected utility gain from using the null model M, when it istrue.

Summarizing, we have found that the utility structure of the stylized decision problem
which describes nested hypothesis testing only depends on the unknown parameters through the
corresponding logarithmic discrepancy §(6y, 0, w), which therefore is the quantity of interest.
As a consequence, deciding whether or not the ssimpler model M, has to be rejected as an
acceptable proxy for the full model M; is reduced to the much simpler problem of deciding
whether or not d(x, 6 ), the posterior expectation of §(6y, 6, w) is—or is not— too large.

The idea of using some form of the logarithmic discrepancy in model selection has along
history, pioneered by Good (1950) and Kullback (1959). The use of some posterior expected
value of thelogarithmic discrepancy asthebasic ‘test’ statistic for Bayesian model selectionwas
originally proposed by Bernardo (1982, 1985), and further developed by Bernardo and Bayarri
(1985), Ferrandiz (1985), Bayarri (1987), Gutiérrez-Pefia (1992), and Rueda (1992), using
conventional non-subjective priors. However, both the appropriate choice of the prior and the
specification of thethreshold utility value g —which are crucial for any practical implementation
of the idea— remained open. We now turn to propose a choice for these two elements, which
is consistent with accepted scientific practice.
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3. STANDARDISATION: THE BAY ESIAN REFERENCE CRITERION
3.1. The Choice of the Prior Distribution

It has been often recognised that in scientific inference there is a pragmatically important
need for a form of non-subjective, model based prior, which has a minimal effect, relative to
the data, on the posterior inference. The use of non-subjective priors has been criticized by
subjectivist Bayesians, who argue that the prior should be an honest expression of the analyst’s
prior knowledge and not a function of the model. However, non-subjective posteriors may be
seen as an important element of the sensitivity analysis to assess the changes in the posterior of
interest induced by changes in the prior which should be part of any good subjective Bayesian
analysis. anon-subjective posterior triesto give an answer to the question of what could be said
about the quantity of interest, if one’s prior knowledge about that quantity were dominated by
the data. Inthelong quest for these “baseline” non-subjective posterior distributions, a number
of requirements have emerged which may reasonably be regarded as necessary properties of the
proposed algorithm. These include invariance, consistent marginalization, consistent sampling
properties, general applicability and limiting admissibility. The reference analysis algorithm,
introduced by Bernardo (1979b) and further developed by Berger and Bernardo (1989, 1992)
is, to the best of our knowledge, the only available method to derive non-subjective posterior
distributions which satisfy all these desiderata; and it is found that, within a given model, the
appropriate joint reference prior depends on the quantity of interest. For a recent discussion
of the many polemic issuesinvolved in this topic, see Bernardo (1997). For an introduction to
reference analysis, see Bernardo and Smith (1994, Ch. 5), or Bernardo and Ramén (1998).

The solution to any decision problem, conditional on data « for which a probability model
px(-|6,w) has been assumed, only depends on x through the posterior expectation of some
function of the parameters, which defines the quantity of interest in that decision problem. In
our formulation of nested hypothesis testing, the decision criterion only depends on the data
through the expected value of the non-negative function 6 = 6(6y, 0, w), which is therefore the
relevant quantity of interest. Thus, we proposeto usethereferenceprior 75(6, w) of (6, w) which
corresponds to the quantity of interest § = 6(6y, 6, w). Consequently, to decide whether or not
M isan acceptable proxy to M7, we propose to evaluate the reference posterior expectation of
the logarithmic discrepancy (6o, 6, w)

t9() /5 90, , W Wg@w’w)dedw

where (0, w | x) isthe posterior distribution which correspondsto thereference prior 75(6, w),
and the suffix r in theresulting statistic d, (x, 6y ) indicates that expectation istaken with respect
to the reference posterior. The ‘test statistic’, d,(x, 6y) encapsulates al relevant information
from the data; thus, the simpler model M, should berejected if, and only if, d, (x, 6y) > g, that
isif, and only if, the reference expected posterior discrepancy islarger than a utility constant g,
which measures (in information units) the expected utility gain from using the null model when
itistrue.

We note that d, (x, 6y) remainsinvariant if asufficient statistic s = s(x) is used instead of
the full data; indeed, if ¢ = {s, r}, one could write §(6y, 6, w) as

p(s|0,w)p(r|s) p(s]b,w)
//p(s|9,w)p(r|s)logp(s|007wo) r] )d ds—/p(5|‘97‘*))10gp(8|907w())d

and, a fortiori, its expected value will remain invariant. Moreover, d,(x, ) aso remains
invariant under one-to-one transformations of the parameters; indeed,

z,00) // (60,0, w)m5(0,w | &) dOdw // w(w )) 75(6,w | @) dpdw.
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We notice that if the data consist of arandom sample = {1, ..., z,} of sizen from some
underlying model p. (- | 8, w), then the logarithmic discrepancy simply becomes

. pw(y‘ng)
0(0p,0,w) = mf/ 0,w)log ———=————d
(6o ) wpeN Pa(y|0.) gpx(y|90,wo) Y
px(y|97w>

=n inf 0,w)lo

Observe, however, that this exchangeability assumption is not necessary to implement the
methodol ogy we are proposing.

Referenceanaysishassuggested aprecise choicefor theprior. Tocompletethe specification
of the decision problem, we now turn to consider the choice of the utility constant g.

3.2. Calibration of the Utility Function

Measuring iscomparing with astandard. An operational definition of any form of quantifi-
cation requires a standard unit of measurement, such as the metre for measuring lengths, or the
standard events to measure probabilities. To define an appropriate utility threshold for model
evaluation, we will use as our ‘unit’ acanonical example in standard scientific practice.

Under approximate normality, there seemsto be ageneral agreement among sci entists about
the use of two standard error deviations as asignal of mild evidence against the null and three
standard error deviations as a signal of significant evidence (see e.g., Jaynes, 1980, p. 634, or
Jeffreys 1980, p. 453). For aformal robust Bayesian justification of this practice, see Berger
and Sellke (1987) and Berger and Delampady (1987).

In the situation already discussed, when it is desired to test the hypothesis ;. = o given n
normal observationsx = {zy, ..., z,}, with unknown mean p but known standard deviation o,
accepted scientific practice reduces to computing z = z(x, o) = (T — po)/(o/y/n) and
rejecting thenull if |z| > ¢, where cistypically chosen to bearound 2 or 3. Infrequentist terms,
this corresponds, for ¢ = 1.96 or ¢ = 3.00, to rejecting the null when it is appropriate with
probability not larger than 0.05 or 0.0027, respectively. In Bayesian terms, this corresponds
to using the conventional uniform prior for estimating 1, and rejecting the null when 1y does
not belong to the corresponding HPD intervals with posterior probabilities 0.95 or 0.9973,
respectively; note that this Bayesian procedure does not use a singular prior and, hence, avoids
Lindley’sparadox. Precisely the sameresultsare aso obtained inthisproblem from thefiducial,
the likelihood or the pivotal viewpoints. Thus, on this canonical example, there appears to be
a basically universal consensus on what an appropriate procedure should be doing, with the
remarkable exception of Bayes factors based on singular priors.

Consider now, for this canonical example, the logarithmic discrepancy of the null model
My = N(z | po, o) from the full model M; = N(z | 1, o) which, assuming o known, is

. N |p, o no(w— o\
Snn) = [ N“‘”’U”"ng :5( . )

(6)

Here, 1 isthe only unknown quantity and, as one might expect, the reference prior of 1 when
§ = n(u — po)?/o? is the quantity of interest is the conventional uniform prior 75(u) = 1.
Hence, the corresponding posterior distribution of p isws(u|x,0) = N(u|Z,0/+/n), where
T isthe sample mean, and the reference expected posterior discrepancy is

d, (2, 1) = /OO n (“ ;“0)2 N(i | T, 0/v/m) dp = %[1 +n<f_“0>2} =11+2?),

oo 2 o
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a one-to-one function of the ‘consensus’ test statistic |z| = | — uo|/(0/+/n). Hence, the
decision criterion becomes

Reject 1 = po if, andonly if, d,(x, o) = 5[1 + 2%] > g, (7)

for some appropriately chosen utility constant g. As described before, accepted practice in
this example suggests rejecting the null if |z| > ¢ for some ¢, usually chosen to be around 2
or 3; it follows from (7) that |z| > 2 when d, > 2.5 and |z| > 3 when d, > 5. Moreover,
since the sampling distribution of z = z(a, uo) is normal, centered at (1 — o)/ (0 //n) and
with standard deviation equal to one, the sampling distribution of 22 is the non-central x? with
one degree of freedom and non-centrality parameter 26, where 6 = §(uo, i1, o) is given by (6)
and, therefore, E[2% |§] = 1 + 24. It follows that when M, is true, and thus § = 0, one has
E[2? | Mo] = 1. Furthermore, if My isnot true, then ¢ is strictly positive and increases linearly
with n; thus, the expected value of 2 will then tend to infinity as the sample size increases.
Sinced,(x, 11o) isaone-to-one function of z? this ensures asensible large sample behaviour of
the proposed procedure in the sense that

Ew|u,o[dr(mmu0) | MO] =1, lim E$|,u,o[d7“(m7:u0) | M0 ﬁo] = Q.

n—aodo

These results complete our motivation for the decision criterion being proposed.
3.3. The Bayesian Reference Criterion

The Bayesian Reference Criterion (BRC). To decide whether or not some data x are
compatible with the (null) hypothesis 6 = 6, assuming that the data have been generated
fromthe model pg(-]0,w), 6 € ©,w € Q:

(i) compute the logarithmic discrepancy,

. px(y|0,w)
5(00.0.w) = inf / 0.w)log L2WLOW) 4
(U ) weQ pm(y’ ) gpa:(yfeo,wo) Yy

between the assumed model and its closest approximation under the null.
(if) derive the corresponding reference posterior expectation

d (z, 0,) ://5(90,0,w) s(0,w | ) dOdw:

(iii) for some d*, reject the hypothesis 6 = 0 if, and only if, d,(x, 6y) > d*, where values
suchasd* = 2.5 (mild evidence against ¢) or d* = 5 (significant evidence against 6)
may conveniently be chosen for scientific communication.

The choice of d* isformally determined by the utility gain which may be expected by using
the null model when it is true; the larger that gain, the larger d*. The analysis above suggests
that avalue d, (x, 6)) closeto 1 may be expected if M istrue, and scientific practice suggests
that d,.-values over 2.5 should raise some doubts on the use of M, and that d,-values over
5 should typically be regarded as significant evidence against the suitability of using M, as a
proxy to M;.

If £ = {x1,...,x,} isasufficiently large random sample from aregular model p(z | 0, w),
theposterior distributionof (6, w) will concentrateon their maximum|ikelihood estimates (4, @),
and thus the expected posterior discrepancy, d, (x, 6p), will be closeto 6(6, 0, W), thelogarith-
mic discrepancy between the model identified by (9, w) and its closest approximation under the
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null. Moreover, if & = {x1, ..., z,} isarandom samplefromamodel p, (x| ), whered isone-
dimensional and there are no nuisance parameters, then (6o, 6) will typicaly be a piecewise
invertible function of # and hence (see Proposition 1 in the Appendix) the relevant reference
prior will simply be Jeffreys prior, that is 75(6) o i(6)'/2, where i(6) is Fisher's information
function. Thus, in terms of the natural parametrization, defined as ¢ = ¢(0) = f9 i(6)/2d6,
the reference prior 75(¢) will be uniform. For large sample sizes, the corresponding reference
posterior distribution of ¢ will then be approximately normal 75(¢ | ) ~ N(¢| $,1/1/n), and
will only depend on the datathroughits mle ¢; moreover, the sampling distribution of ¢, p(¢ | ¢)
will also be approximately normal, N(¢ | ¢, 1/+/n). Sincethe discrepancy function isinvariant
under one-to-one reparametrization, and hence 6(¢g, ¢) = 6(0y, 0), one obtains, after some
algebra,

dy(@,00) ~ § [1+22(0.00)] , =(8,60) = Vi [6(0) - o(60)] - ®)

This type of approximation may be extended to multivariate situations, with or without
nuisance parameters; this provides a link to both Akaike's (1973, 1974) AIC, and Schwarz's
(1978) BIC criteria. The resultswill be reported elsewhere.

4. EXAMPLES
4.1. Testing a Normal Mean Value with Known Variance

Let usfirst reconsider our canonical example. Inthiscase, 1 isthe only unknown parameter and
the logarithmic discrepancy is§ = n6?, with§ = (u — o) /o. Itiswell known that, when . is
the quantity of interest, thereferenceprior isthe (improper) uniform prior 7, (1) = 1, moreover,
giveno, # isaone-to-onefunction of 1, and, hence, fromtheinvariance propertiesof thereference
algorithm, the reference prior when 6 isthe quantity of interestisalso y(1.) = 1; besides, since
62 is piecewise invertible, if follows from Proposition 1 in the Appendix that the reference
prior when #? is the quantity of interest is still uniform and, since § is a one-to-one function
of 62, one finally has that the reference prior when ¢ is the quantity of interest is indeed the
conventional uniform prior 75(x) = 1. It follows that the corresponding posterior distribution
of pisms(p|x) = N(p |z, 0 /y/n) andthus, asanticipatedin Section 3, d,.(x, p10) = (1+2%)/2
aone-to-one function of the ‘consensus’ test statistic |z|, where z = \/n(up — ) /0.
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Figure 1. Normal observations (known variance). Behaviour of the test statistic d, (x, o) = d,(f, n),
asafunction of the standardized distance f = (u—7) /o, for samplesizesn = 1,n = 10 and n = 100.

Figure 1 describes, asafunctionof f(Z) = (uo—7)/o and the samplesize n, the behaviour
of d,(x, no) = d,(f,n). Asonewould expect, rejection—larged, (x, o) values—isindicated
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for progressively smaller values of f as n increases; indeed, as the sample size increases, one
would requirethe standardized distance between = and 1. to decreasein order to accept working
as if data had been generated with p = .

Table 1. Normal observations (known variance). Correspondence between the threshold value d* of
the test statistic d,.(x, 1), and ‘type 1" error probabilities.

- Pld, > d" [ p= d* Pld, > d" | p = po]
1.85277 0.10000 1.00 0.31731
2.42073 0.05000 2.00 0.08326
3.81745 0.01000 3.00 0.02535
4.43972 0.00500 4.00 0.00815
5.91378 0.00100 5.00 0.00270
6.55783 0.00050 6.00 0.00091
8.06835 0.00010 7.00 0.00031
8.72406 0.00005 8.00 0.00011
10.2557 0.00001 9.00 0.00004

The frequentist behaviour of the proposed test under the null is easily found. Indeed,
if 1 = po, then the sampling distribution of Z is N(z | uo, o//n) and therefore, under M,
22 ~ x? o that, the ‘type 1’ error probabilities Pr[d,(x, up) > d* | = o] are given, as a
function of the threshold value d*, by Pr[x? > 2d* — 1]. In particular, with the choice d* = 5
thetype 1 error probability is0.0027 while, with d* = 2.42073 it isthe ubiquitous 0.05; Table 1
givesother values. Asonewould surely expect inthis*consensus example, we here obtain, for
all sample sizes, a one-to-one correspondence between d*-values and frequentist significance
levels. Itiseasily seen, however, that this exact correspondence is generally not to be expected.

4.2. Testing an Exponential Parameter Value

We now consider asimplenon-normal problemwith continuousdata. Letx = {x1,...,z,}, be
arandom sampleof exponential observationswith parameter 0, sothat p(x | 6) = 0" exp[—nzb)],
and the sample mean 7 is sufficient. To test whether or not the value 6 = 6 is compatible with
those observations, we first derive the corresponding logarithmic discrepancy,

e d:c} :n[%—l—log% .

> —0x 0
d(6p,0) = n[/o fe """ log Goe—0e
This is a piecewise invertible function of ¢ and it is known, (see e.g., Bernardo and Smith,
1994, p. 438) that the reference posterior distribution of § is (0 | x) o 6" 1e™"%%, a Gamma
distribution Ga(0 | n, nZ), with aunique mode at 6 = (n — 1)/nZ, whenever n > 1. Using the
fact that if 0 hasa Ga(d | «, 3) distribution, then E[log 0] = ¥ («) — log 3, where ¢ (x) is the
digamma function, the reference posterior expectation of the logarithmic discrepancy is found

to be / p
dy(x,00) =n @b(n)—log(n—l)—kgo—l—loggo , n>2.

Note that d,.(x, 6) only depends on the data through the ratio /6 and that the procedure
suggests that no testing of the parameter value is possible in the exponential model with only
one observation. Using Stirling’s approximation for the digamma function, it is easily verified
that, for large sample sizes, the expected posterior discrepancy is approximately given by
dy(x,00) =~ 0(0y,0), the discrepancy of the model identified by 6, from the model identified
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Figure 2. Exponential observations. Exact behaviour of the test statistic d,.(x, 6y) = d.(r,n), asa
function of theratio f = 6/, for ssmplesizesn = 2, n = 10 and n = 100.

by 6, and aso by d,(x,0p) ~ L(1 + 22), with z = 2(z,6y) = /n log(6y/0), which is the
approximation given by (8).

Figure 2 describes, for several sample sizes, the exact behaviour of d,.(x, 6), asafunction
of theratio f = 90/9, and the sample size n. As one would expect, to accept the value 6 = 6y,
theratio f hasto be progressively closeto 1 asn increases.

Table2. Exponential times. Correspondence between thethresholdvalued* of thetest statisticd, (x, 6y),
and ‘type 1' error probabilities, P[d, > d* | Hy], for sample sizes 2, 10, 100 and 1000.

d* n=2 n =10 n = 100 n = 1000
1.0000 0.71695 0.37004 0.32219 0.31780
2.0000 0.32020 0.10885 0.08552 0.08349
2.4207 0.24502 0.06867 0.05161 0.05016
3.0000 0.17325 0.03726 0.02634 0.02544
4.0000 0.09844 0.01347 0.00857 0.00819
5.0000 0.05723 0.00511 0.00287 0.00272
6.0000 0.03370 0.00190 0.00098 0.00092
7.0000 0.01193 0.00028 0.00012 0.00011
9.0000 0.00714 0.00011 0.00004 0.00004

The exact frequentist behaviour of the proposed test under the null may be obtained from
thefact that if = hasan exponential sampling distribution with parameter 0, then hasa Gamma
sampling distribution, Ga(z | n, nf) and, therefore, y = 6 /6 hasaGammasampling distribution
Ga(y |n,n — 1). Table 2 reproduces the results obtained for several sample sizes. Ascould be
expected from the asymptotic results described above, the frequentist behaviour observed for
large samplesissimilar to that obtained for testing anormal mean value, encapsulatedin Table 1,
hence providing asymptotic agreement with frequentist hypothesistesting. Note, however, that
there is not anymore a one-to-one correspondence between d*-values and significance levels,
indeed, our procedure recommends rejecting the null whenever d, > 5, which implies‘type 1’
error probabilities of 0.0572, 0.0051, 0.0029 and 0.0027 when the sample size is, respectively,
2, 10 100 and 1000; thisisin agreement with the popular belief on decreasing the significance
levels as the sample size increases.
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4.3. Testing a Binomial Parameter Value

The proposed procedure is easily applied to discrete data, with none of the problems that
plague frequentist hypothesis testing in that case. As an example, we will now consider the
binomial case. Thus, let © = {z1,...,z,}, be arandom sample of n Bernoulli observations
with parameter 6, so that p(x | 0) = 6"(1 — 6)"~", and the number of successes, r = ) z; is
sufficient. To test whether or not the value § = 6, is compatible with those observations, we
haveto derive the reference posterior expectation of the corresponding logarithmic discrepancy,

1—0].

5(60,0) = n[mog£+ (1-0)log 1 —

to
Thisisapiecewiseinvertible function of 8, and it isknown (see e.g., Bernardo and Smith, 1994,
p. 436), that the reference posterior of ¢ is a Beta distribution Be(6 |~ + 1/2,n — r 4+ 1/2),
whose expected value is @ = (r + 1/2)/(n + 1). Using the fact that, if 6 has a Be(d |, 3)
distribution, then E[¢ log 0] = a(a + 3) ' [tp(a + 1) — ¥(a + 3 + 1)], onefinds

d, (z,00) = /5(90,0) w50 2) df = d,.(8,n) = n?[@b(l +(n+ 1)@) - 1og90]
(1 —8) [¢(1 +(n+ 1)1 - @)) ~log(1 — 90)} — np(n +2).

Figure 3 describes, as afunction of the discrete variable 6, and the sample size n, the exact
behaviour of d,(x,6)), for 6y = 1/5, and several sample sizes. As one would expect, no
parameter value may be rejected with only afew observations; moreover, rejection isindicated
for values of § increasingly closeto f, asn increases; indeed, asthe sample size becomes|larger,
one would require 6 to be progressively close to 6, in order to accept the value § = 6,; for
example, withn = 5, 6y = 1/5 isonly rgected (d, > 5) if r = 5 while, with n = 10, it is

rejected whenever r > 7.
‘ fn=1/ﬂoo | / |
7.5

T %\1 =l

s

g
0 0.2 0.4 0.6 0.8

\g

1
Figure 3. Bernoulli counts. Exact behaviour of the test statistic d,.(x, 6y) = d.(6,n), for 6y = 1/5, as
a function of the reference expected posterior value of the parameter, § = (r + 1)/(n + 1), for sample
sizesn=1,n=>5,n=10,n = 100 and n = 1000.

Theparticular casewherer = n (all successes) and 6y = 1/2 may be specialy illuminating.
Inthat situation, it isfound that the null value should be questioned (d, > 2.5) forall n > 5 and
definitely rejected (d, > 5) for al n > 9; thus, a scientist analysing an experiment to test for
ESP powers on the sole strength of the data should require about 6 consecutive perfect answers
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before questioning the hypothesis of random guessing, and about 10 consecutive perfect answers
before definitely rejecting such a hypothesis.

Using Stirling’sapproximation, itisfound that, for large samplesizes, thefunctiond, (x, 6y)
is well approximated by (6, #), the logarithmic discrepancy between the models identified
by 6y and by 6, and also by (1 + 2%), with z = z(z,0)) = /n[p(0) — $(6y)], where

#(6) = 2ArcSin(+/6), which is the approximation given by (8).

Table 3. Bernoulli counts. Correspondence between the threshold value d* of the test statistic d,.(9, n),
and ‘type 1' error probabilities, P[d, > d* | Hy|, for sample sizes 5, 10, 100 and 1000.

d: n=>5 n =10 n = 100 n = 1000
1.0000 0.05792 0.22825 0.31759 0.32300
2.0000 0.05792 0.03279 0.10274 0.08904
2.4207 0.00672 0.03279 0.05948 0.05264
3.0000 0.00672 0.00637 0.02382 0.02417
4.0000 0.00032 0.00637 0.00546 0.00806
5.0000 0.00032 0.00086 0.00241 0.00263
6.0000 0.00032 0.00008 0.00061 0.00089
7.0000 0.00000 0.00008 0.00023 0.00031
8.0000 0.00000 0.00008 0.00008 0.00010
9.0000 0.00000 0.00000 0.00004 0.00004

The exact frequentist behaviour of the proposed test under the null may be computed from
the null model p(z | 6p) = 6%(1 — 69)1 7%, = € {0, 1}. Table 3 reproduces the results obtained
with 6y = 1/5 for several sample sizes. Note —and thisis of course a crucia shortcoming of
frequentist measures— that in discrete data problems confidence levels are barely meaningful
for small sample sizes. As one would expect from the asymptotic results described before,
the behaviour of BRC for large samples is similar again to that obtained for testing a normal
mean value with known variance; however asindicated in Table 3, differences may be huge for
the small sample sizes which are often found, for example, in drug testing, or in the quality
assessment of expensive items.

4.4. Testing a Normal Mean Value with Unknown Variance

We finally consider an example with nuisance parameters, which is probably the most common
example of nested hypothesistesting in scientific practice. Let x = {z1,...,z,}, bearandom
sample of n real valued observations, and suppose that it is desired to check whether or not they
could be described as arandom sample from some normal distribution with mean 1o, assuming
that they may be described as a random sample from some normal distribution.

The logarithmic discrepancy between the assumed model and its closest approximation
under the null is

(5(007N70) = inf n/N(ﬂMaU)lOgW dx

00€10,00] z | o, 00)
2 2 . 2
= it 2[log % — 14 2y 4 W p)
U%E[O,oo] o ag ors

Theinfimum is attained at o2 = o2 (10, i1, 0) = 0 + (u — pp)? and, substituting, one has

5(0o, p,0) = g[log (1 + (M ;M)Q)] = g log (1 + 6?),
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where 0 = (u — po)/o. 1t follows that the required test statistic is

d,(x, ) = / n og (1 +62) ms(6| @) db), 9)
where 75(6 | ) isthe reference posterior of # when § isthe quantity of interest. Inthisproblem,
(1, o) are unknown parameters, the quantity of interest, § = % log(1 + 6?), is a piecewise
invertible function of #, and the pair (0, o) is a one-to-one transformation of the pair (11, o). In
Proposition 2 of the Appendix, we prove that, in a normal model, the joint reference prior for
(6, ) when 6 is the parameter of interest is mp(0,0) o (1 + 1 6%)71/25=1; moreover, since
§ = 21og(1 + 6?) is apiecewise invertible function of 6, it follows from Proposition 1 in that
Appendix that this is also the reference prior when ¢ is the quantity of interest. Hence, using
Bayes theorem and integrating out the nuisance parameter o, one has

92\ /2 nb? n 1/2
ms(f]2) <1 * 5) e [ =] 1] (=) 1) (10)
wheret = t(x, uo) = Vn(Z — wo)/s, with s> = 3" (z; — 7)?/(n — 1), is the conventional ¢
statistic and, in terms of the ; F; hypergeometric function,

0
I[n,~] :/0 W't exp[—3w® + yw] dw

1 o? n—+1 n+1 a?
—20=3/2 | \ar(y B (2, 2, ) y2aT F 2.
It may be verified that the reference posterior (10) is proper whenever n > 2. The function
I[n,~] may alsoberecursively evaluated in termsof the standard normal cumulativedistribution

function @.

| W
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Figure4. Normal observations. Exact behaviour of thetest statistic d, (x, o) = d,(t,n), asafunction
of the conventional ¢ statistic, for sample sizes 2, 5, 10 and 30, and its limiting behaviour asn — oo
(solid line).

Figure 4 describes the exact behaviour of the reference posterior expected discrepancy
d,(x, po), numerically computed from (9), as afunction of the conventional statistic ¢, and the
sample size n. For moderate sample sizes, agood approximation to d,. is provided by

2
dy (@, j10) = di(t, po) =~ log(1+ 5) + 5 -
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Table 4. Normal observations. Correspondence between the threshold value d* of the test statistic
d,(x, o), and ‘type 1’ error probabilities, P[d > d* | Hy], for sample sizes 2, 5, 10, 30, 100 and 1000.

d* n=2 n=>5 n =10 n = 30 n = 100 n = 1000
1.0000 0.32299 0.23752 0.25310 0.28736 0.30706 0.31623
2.0000 0.14400 0.06540 0.06225 0.07131 0.07884 0.08278
24207 0.10471 0.04093 0.03683 0.04191 0.04691 0.04966
3.0000 0.05141 0.02232 0.01850 0.02067 0.02349 0.02514
4.0000 0.00000 0.00841 0.00601 0.00638 0.00740 0.00806
5.0000 0.00000 0.00335 0.00206 0.00205 0.00240 0.00266
6.0000 0.00000 0.00135 0.00074 0.00067 0.00080 0.00090
7.0000 0.00000 0.00045 0.00027 0.00023 0.00027 0.00031
8.0000 0.00000 0.00004 0.00010 0.00008 0.00009 0.00011
9.0000 0.00000 0.00000 0.00004 0.00003 0.00003 0.00004

The limiting function as n increases is found to be %(1 + t?) so that, as one might expect, the
solution converges asymptotically to that obtained for the known variance case.

The exact frequentist behaviour of the proposed test under the null may easily be obtained
fromthefact that the sampling distribution of ¢ isstandard Student with n— 1 degrees of freedom.
Table 4 reproduces the results obtained for several sample sizes. As could be expected from
the asymptotic results described above, the frequentist behaviour observed for large samples
approaches that obtained for testing a normal mean value with known variance. Note that,
although BRC also usesthe conventional ¢ statistic, one does not have anymoreacorrespondence
between d*-values and significance levels. However, as demonstrated in Table 4, qualitatively
similar results are obtained for moderate and large sample sizes.
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APPENDIX. SOME RESULTS ON REFERENCE DISTRIBUTIONS

Proposition1l. Letp(x|6),0 € © C R, bearegular one-parameter model. If the quantity
of interest ¢ = ¢(0) is piecewise invertible, then the corresponding reference prior m4(6)
isthe same as if § were the parameter of interest.

Outline of proof. Let ¢ = ¢(0), with ¢(0) = ¢;(0), 6 € ©;, where each of the ¢;(0)’sis
one-to-onein ©;; thus, 0 = {¢,w}, wherew = i iff € ©;. The reference prior 7,(0) only
depends on the asymptotic posterior of # which, for sufficiently large samples, will concentrate
on that subset ©; of the parameter space to which the true 6 belongs. Since ¢(#) is one-to-one
within ©;, and reference priors are consistent under one-to-one reparametrizations, the stated
result follows. 4

Proposition 2. Consider anormal model N (x| u, o) with both parameters unknown and,
for some pp € R, let § = (u — po) /o bethe quantity of interest. Then, interms of (6, o),
the reference prior ismy(0, o) o (1 + 62/2)"1/271,

Proof. Intermsof (6, ), Fisher'sinformation matrix H (0, o) and itsinverse S(6,0) are

0= (). om0 (52 )

The natural compact approximation to the nuisance parameter spaceis {log o € [—i, ]}, which
does not depend on 6, and both hoo and s;; factorise as functions of § and o; thus, (Bernardo
and Smith, 1994, p. 328)

m(o]0) o, w(0) o (1+6%/2)7 12

and, hence, my(0, o) o (1 + 62/2)"1/20~1 asstated.

DISCUSSION

GAURI S. DATTA (University of Georgia, USA)

Itismy pleasureto discussavery stimulating paper by Professor Bernardo. Hehaspresented
another interesting article on the development of reference priors that are useful to carry out
objective Bayesian analyses in scientific investigations. The author, with a number of eminent
collaborators, has made many important contributions in default Bayesian analyses through
reference priors in the last two decades since the publication of his pioneering paper on the
subject. While in the mgjority of his works on reference priors he considered the estimation
aspect of the Bayesian statistical inference, in the present article Professor Bernardo considers
development of reference priors for Bayesian hypothesis testing and model selection.

In many respects Bayesian solutions, especially noninformative Bayesian solutions, to
hypothesestesting are different from thosefor estimation problems. Unlike Bayesian estimation
problemswith improper priors, wherethe normalising constant for asingle model getscancelled
inthefinal answer (of course, assuming all required integralsexist), Bayesian testing and model



118 J. M. Bernardo

selection deal with more than one model, where the normalising constants for different models
arenot readily comparablefor improper noninformative priors. Thusanoninformative Bayesian
solution to hypotheses testing needs careful attention. Often a hypothesis testing problem
concerns selecting amodel nested within alarger model. Bayesian testing of nested hypotheses
through Bayesfactors based on improper priorsfaces many difficulties and sometimes produces
paradoxical results (e.g., Lindley’s paradox).

To circumvent some of the problems associated with Bayes factors there have been several
attempts to suitably modify the Bayesfactors. Professor Bernardo in this paper takes adecision
theoretic approach to developing an objective Bayes solution to test for nested hypotheses.
He obtains a noninformative prior via Berger-Bernardo reference prior algorithm by treating
d(6o, 0, \), the expected log-likelihood ratio under the full model, as the parameter of interest.
The Bayesian reference criterion (BRC) that is suggested as atest statistic by the author isgiven
by the expectation of §(6y, 6, \) under the posterior derived from this reference prior. | will
examine in my discussion the proposed method through three examples.

Example 1. Let f(x;0) = a(x) exp{61u1(x) + Gouz(x) + ¢(01,62)} be the density function
of atwo-parameter exponential distribution. Definen; = Ey(u;(X)), 7 = 1, 2. Itisknown that
the mixed parameterisation (61, 772) introduces an orthogonal reparameterisation of (61, 62). We
assume 0y = —01¢'(n2) for some function ¢. Bar-lev and Reiser (1982) showed that ¢(6;, 62)
andn; (01, 92) canbeexpressedasc(61, n2) = O1x(n2)—M (61) andn = ¢(n2)+M' (1), where
x(n2) = m2¢ (n2) — ¢(n2) and M (6,) isan infinitely differentiable function with A" (6,) > 0
and gb”(??g) 75 0. Totest H()Z 91 = 910 vs. Hy: 91 75 910, it can be checked that 5(«910, 91,772) =
n(01 — 610)M'(61) — n{M(61) — M (619)} isafunction of 9, alone. Although (619,01, 772)
is not a one-to-one function of ;, reference analysis as proposed in the paper can be carried
out by following the Berger-Bernardo algorithm, treating 6, as the parameter of interest and 7
as a nuisance parameter. The information matrix is I(61,72) = Diag(M"(01), —61¢" (n2)). It
follows from Berger (1992) or Datta and Ghosh (1995a) that the reference prior for {61, 7m2} is
75(01,m2) = /M"(01)]¢" (n2)|, whichisalso afirst-order joint-probability-matching prior for
01 and 7 (see Datta 1996 and Sun and Ye 1996).

As a concrete application of Example 1, we consider the testing of a normal variance o
when the mean 1. is a nuisance parameter. Here

2 2
5o 02 ) =17 1) toe(Z
(0-070- nu) 2 |:(O'3 ) Og(g_%) ]
and . 2 o
d, AL N A | —1}
(,03) 2[w< 5~ loB(oe) + g 1

with $2 = > (x;—7)?, arevery similar to the corresponding quantities defined in Example 4.2.
In general, this does not lead to the UMPU test.

Example 2. Balanced one-way random effects models: Let y;; = u+a; +e€;5,j = 1,...n,
i = 1,...,k where a; and e;; are independently distributed with a; ~ N(0,02) and €ij ~
N(0,02). Writing § = 02, \ = (u,02), totest Hy: 02 = 0vs. Hy: o2 > 0, the discrepancy

function )
a

k 2

6(00,0,) = 5 | "5t —log(1 + “¢)
21 o

is only a function of the ratio of the two variances (here 6, = 0). Defining 0,2 = r and

o?(no? + o2)~1 = u, it follows the reference prior for testing Hy: o2 = 0 is given by

€ a

2
O¢
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7(r,u, u) = (ru)~l. This prior was obtained earlier as a reference and probability-matching
prior by Datta and Ghosh (1995b); see also Datta (1996). It can be checked that for priors of
the form %14 ~%2, the BRC is a strictly increasing function of the usual F-statistic, thereby
leading to atest equivalent to the frequentist test.

Marginalisation Paradox: Notwithstanding the successful handling of many difficult problems
inpresence of nuisance parameters, the Berger-Bernardo algorithm can producepriorsfor certain
group orderings of the parameters which fail to avoid marginalisation paradoxes (see Datta and
Ghosh 1995c). We will give an example to show that the BRC also suffers from this pitfall.

Example 3. We consider testing Hy: p = 0vs. Hi: p # 0 in abivariate normal distribution
with density Ng(ul, U2, 01, O’Q,p). Writing 0 = p, A = (,ul,,ug, o1, (72), it can be shown that
§(6p,0,\) = —nlog(1 — p?)/2, which is only afunction of p. The two-group reference prior
for {0, \} is ws(p1, p2, o1, 02, p) = oy 205 2(1 — p?)~! (see Datta and Ghosh 1995c), which
neither is probability-matching for p nor does it avoid the marginalisation paradox. Itisaso
shown by these authorsthat further splitting of thelast group resultsin areference prior given by
{o109(1 — p?)} ! for parameter grouping {p, (i1, it2), (o1, 02)} or {p, 1, 2, o1, 02}, which
is probability-matching for p and avoids the paradox.

BRUNERO LISEO (Universita di Roma “ La Sapienza”, Italy)

Let me start this discussion with awarm Thanks! to the Organizing Committee for putting
on my (and Datta's) shoulders the responsibility of criticizing our host. We will do our best to
make Valencia 7 still possible!

| will focus my discussion onthreemain points: (i) therole of probability and Bayesfactors
in hypothesis testing, (ii) the construction of the utility function, and (iii) the comparison of
BRC with other approaches.

1. Therole of probability and Bayes factors in hypothesis testing. Professor Bernardo says
...it may not be wise to use Bayes Factors in nested hypothesis testing

If one thinks to the immediate consequence of this statement, it is compulsory to say that it
may not be wise to use probability in nested hypothesistesting! My view is somewhat different
and here | will try to illustrate it. Models have different roles in statistics. Cox (1990) and
Lehmann (1990) basically distinguish between empirical and mechanistic models. In the case
of empirical models, we know that no one of them will be true and our aim is simply to select
the model which best describes the phenomenon under study. Models are used as a guide to
action and, inthis sense| found the Bernardo's approach very sensible. However, | consider his
scheme more adapt to analyze situations where different models are competing, as alternative
tools to approximately describe the phenomenon, as, for example, in non-nested situations. In
this case

The question of truth of a mathematical hypothesis does not arise, only that of its use as a calculating
tool. (Bishop Berkeley (1734), taken from Lehmann, 1990.)

Ontheother hand, thereare completely different situationswherea* precise’ null hypothesis
makes sense (see Berger and Delampady, 1987): in these cases| cannot see any alternative way
to use probability (and Bayes factors) statements on the truthfulness of the null hypothesis. All
in al | challenge Bernardo’s conclusion that the BRC is well suited for nested situations. |
would rather suggest to check its applicability with non-nested models. Of course, in this case,
the mathematics are going to be more involved and the posterior expected utility difference will
loseitsinterpretation in terms of divergence.
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2. The Construction of the Utility Function. Professor Bernardo starts from awell known and
accepted utility function to be used in pure scientific inference about a random quantity ¢,
namely

u(gy(-), @) = alog q4(@) + B(¢), (1)

whichisproper and local (Bernardo and Smith, 1994, Ch 3). To adapt thisutility to hisproblem,
Professor Bernardo proposes the following modification

u(g(),0,0) = a / Pa(y | 6,w) log (g () dy + B(6,w). )

Thisisneither aparticular case of (1) nor its consequence, and itsuse asa utility function would
deservemorejustification. To meitisnot clear whether thefirst argument of the utility function,
q=(+), isapredictive distribution, free of the parameters, or it is a generic sampling distribution
(belonging to M, or M;). Note that expression (2) would remain a proper utility function only
in the second case. Then, in its final step towards the transformation of the problem into a
decision one, Professor Bernardo actually introduces a somewhat different utility function. The
utilities of the two possible decisions ag and a; arein fact

u(ap,d,w) = a sup /pz(y |0, w)log(p(y | 0o, wo))dy + (0, w) — co, (3)
wp e
u(a, b, w) = a/p$(y |6, w)log(p(y|0,w))dy + B(0,w) — c1. (4)

Some questions arise:

(i) Where do ¢ and ¢; comefrom? It istrue that we need them, otherwise the larger model,
assumed to be true, will always be preferred. It is also true, as Professor Bernardo stresses,
that the von Neumann-M orgenstern theory is compatible with an additive decomposition of the
utility, but here we do not have a decomposition. We simply have an extra-component c; added
to the utility function. This modification makes it questionable, at least formally, whether the
use of the expected utility is a coherent criterion for choosing among decisions.

(it) Sampling or predictive distributions? In expressions (3) and (4) utilities of each single
member of the families M, and M, are calculated for each single (6, w). In asense, this seems
to be too optimistic since each single sampling distribution is evaluated at the ‘right’ value of
the parameters. It sounds like profiling the problem, by not considering the influence of the
nuisance parameter. In a Bayesian model comparison, would it not be more realistic to use

mo(y) = / p(y|o.w)m(dw)  and  my(y) ://p<y|0,w>w<de,dw>

instead of, respectively, p(y | 6y, w) and p(y | 0, w)? Of course this approach would imply the

use of aprior distribution inside the utility, as Professor Herman Rubin (see, for example Rubin

and Sethuraman, 1966) has often suggested. Clearly, this proposal heedsto also be analyzed in

detail asautility function but it seems to me more naturally consistent with (2), if not with (1).
Thisway, granted the use of ¢y and ¢;, formula (4) in the paper would become

R o)

Note that the priors to be used in this context cannot be improper. Isit surprising? No, | think
not. Coherent Bayesian model selection needs proper priors. To see what happens in this case,
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let us consider Example 1 (Lindley’s Paradox). After some algebra, and assuming a conjugate
prior N (p0, %) for 1 under the larger model, it turns out that BRC selects M if and only if

20,2 2 2 -3
+ 2no7) no
9 Solo1 ( 5 2)_1101(0 7 7 6
Z(@) 2219 —log (0/y/o" +no 2(02 + no?)? o2 + no? (6)

As o2 goes to infinity al the quantities in the left-hand side of (6) remain bounded; the only
exceptionis

log (0’/ o? + na%).

This means that the Lindley’s paradox appears again! From the above analysisit is clear that
BRC avoids the paradox simply because the variance of m (), 0% /n + o2 is replaced by the
variance of p(z | 1), which is o /n independently of L.

3. Comparison of BRC with other approaches. From an operational viewpoint, a new tool for
Bayesian model comparison should be compared with the more important existing one, namely
the Bayes factor and its ramifications. Now | will elaborate this point in the simple scenario of
Example 1 (Lindley’s Paradox). It iswell known that, using a conjugate prior N (ug,o3) on
under the larger model, we get aBayes factor which, asn (or %) goesto infinity always selects
the simpler model. How can the BRC avoid this behavior and still remain aBayesian criterion?
BRC selects the larger model if and only if
- 2

2, ) = " g 1, (7)
On the other hand a proper conjugate Bayesian analysis will select the larger model if and only
if my(x)/mo(x) > 1, that is, when

zQ(wvluO) = 2 2 2 (8)

n(Z — po)? - not + o? o noi + o?
noj

o o

Note, also, that the “intrinsic” priors arising from the expected arithmetic intrinsic Bayes factor
(Berger and Pericchi, 1996) and from the fractional Bayes factor (O’ Hagan, 1995) are special
cases of conjugate priors. By equating thresholds in (7) and (8) one obtains

2 2
no no
1+ = = —L _(29—1 9
+250 —en{ g - 1) )
That meansthat, for fixed n, thereisaoneto onerelation between g and o?. Choosingalevel gin
terms of utility amountsto choose a conjugate with the appropriate variance. Also, Equation (9)
showsthat, asn increases, BRC avoidsthe paradox by decreasing the prior variance. In asense
the“intrinsic” prior of the BRC depends on n.

4. Concluding remarks. A genera concern that | have with the BRC isthat it is difficult to use
a (inference tailored) utility function in a hypotheses testing set-up. The collapse of the action
spaceinto only two pointsmakesit difficult for autility functionto remain proper. Consequently,
the use of the logarithmic discrepancy turns out to be suspect.

Conclusions obtained with BRC are very closeto afrequentist test, in the spirit of reference
analysis. Whereasit can bevaluablein estimation problems, itisgoingto beaproblemintesting,
especially when testing a precise null hypothesis. Berger and Delampady (1987) develop this
point.
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DENNISV. LINDLEY (Minehead, UK)

Theworld that weinhabit iscomplicated. We know afew thingsabout it, either through our
personal experiences or from those experiences we share with others. Despite this knowledge,
most aspects of our world are uncertain for us. One of the great achievements of mankind
is the demonstration that this uncertainty must be described by quantities that obey the rules
of the probability calculus. | personally learnt this from Harold Jeffreys, but others have
given aternative demonstrations that lead to essentially the same conclusion: the inevitability
of probability. Our knowledge is primary probabilistic. We therefore need to describe our
uncertain world in probabilistic terms. A model refersto part of this description, and data can
assist in determining modifications to a model.

In addition to knowledge about the world, we need to act in face of the uncertainty of that
knowledge. Action, or decision-making, requires an evaluation of our individua preferences.
These are expressed, again in terms of probability, through a utility function. Actionisachieved
by maximization of expected utility. Jeffreys did not concern himself with decisions, but these
conclusions easily follow from the demonstration that probability is the appropriate language.

Jeffreys was concerned with uncertainty in science. A key concept in the scientific method
isthat of atheory, or hypothesis. Jeffreys pointed out that many theories can be put in the form
that a parameter ¢ takes a particular value 6,. More generally, it has proved useful to study
situations in which a hypothesis that 6 = 6, is proposed, which is than tested against 6 # 6.
Asin this paper, | confine myself to the one parametric dimension of interest, recognizing that
other nuisance parameter w may be present. Combining this formulation with the major point
about probability, Jeffreys formulated hypothesis testing as the calculation of the probability
that 0 is equal to 6, rather than to some other value. Hypothesis testing is, in principle, very
simple, merely the calculation of Pr(6y | ), for data «. It is part of our total expression of
uncertainty about the world. Inthisview, it is part of our appreciation of the world, and has no
element of decision-making init.

Bernardo takes a different view of model choice of hypothesis-testing. Let uslook at the
stages in this approach.

(i) It istreated as a decision problem. That is, it is not regarded as just one aspect of our
appreciation of the world, but goes beyond it in contemplating action in that uncertain
world.

(if) Thedecision is not about the parameter but about data: “act asif pg (- | 6y, w) were true’.
This is restrictive since theories are general statements, not confined to data sets either
present, x, or to future data sets of the same type y, referred to in the paper.

(iii) The interpretation of hypothesis-testing in decision terms requires a utility function. The
twin requirement that this be both proper and local, means a logarithmic form. Locality
may be queried because values near 6, play an important role, as will be seen below. This
leads to the logarithmic discrepancy as the quantity whose expectation has to be found.

(iv) Thetheory of reference priorsisthen used to obtain the prior appropriate to the logarithmic
discrepancy, from whence the expected utilities can be calculated. The test then becomes
the choice of the better decision according to the expectation criterion.

Having summarized both approaches, let us compare them. One clear distinction is the
complexity of Bernardo’s method in comparison with the simplicity of Jeffreys's. It requires
four procedures, as against a single calculation of probability. However, thisis not necessarily
a serious objection since once the analysis has been performed (and the paper provides several
examples) the resulting test is just as easy to use as Jeffreys's. The user need not fear the
complexity.
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Another distinction, which | consider more important, is that the decision procedure is
automatic once the sample space and its associate probability structure are given, whereas the
probability approach requires the user to think about additional probabilities. Bernardo suffers
from what | call the Greek-letter syndrome. Nowhere, in constructing the test, does he, or the
user, need to ask what 6 means. It isjust a Greek letter. Jeffreys had the syndrome to a lesser
degree, because hetried to find automatic priors; for example the Cauchy in thefamiliar, normal
case discussed in Section 1. A subjective Bayesian, following de Finetti, requires one to think,
not about a Greek letter, but about the feature of the world it attempts to describe.

Thisleads to athird distinction. Bernardo’s automatic procedure leads to a unique answe,
whereas the subjective approach does not; indeed, testing, unlike estimation, is disturbingly
sensitive to the original probability distribution over values of ¢ other than 6. Jeffreys noticed
that hisinvariant distributions, with their automatic element, produced nonsense with tests. So
do reference priorsfor 6, but it isatriumph of this paper to suggest, and than to prove, that those
for the logarithmic discrepancy are sensible. This feature alone makes this an important paper:
abeautiful goal for Spain whilst England is confused mid-field.

To explore this contrast further, consider the normal case of Section 1. Since this provides
agood approximation for awide variety of testing problemswith asingle parameter of interest,
what happens hereisagood guideto most behaviour. Everyone agreesthat the analysis depends
on z(x,0y) = (T — 0y)/(c/+/n). Disagreement lies on what to do with z. Bernardo agrees
with the standard practice and rejects the null value 6y if 2% exceeds a constant ¢ that does not
depend on n or o. Jeffreys, or a subjectivist, would reject (with possible reservations on the
word ‘reject’) if the probability of 6, was sufficiently small. If 6, given 6 # 6, is normal,
centred a y, with variance o2, this leads to rejection if

n n—+ A o2
Z2>{10g(1+x>+0/} j’b— ’ A= 0'_%’ (1)
for constant ¢’. Thisfollowsform thefirst, displayed equation in the paper. Here, A depends on
the variance of the normal prior and exhibits the sensitivity referred to above. Bernardo says
that (1) resultsin “undesirable behaviour, clearly inconsistent with accepted scientific practice”.
| disagree; so much the worse for scientific practice.

Consider first theinfluence of thevariance o7 of the prior, expressed through \. Equation (1)
shows that is substantial. Suppose that the experiment yielding Z concerns ESP and that 6, is
the value that would arise were ESP absent. Then it is reasonable to suppose that § cannot
differ much form 6, because otherwise good evidence for ESP would have been demonstrated
before. It hasnot. So o issmall, A islarge and it is hard to reject 6. Contrast this with an
experiment on adrug which is expected to do well in comparison with aplacebo. Herethe effect
could be large and values of 6, the difference between drug and placebo, substantially different
from 6 = 6, quite reasonable. Hence A small. Practical considerations like these seem entirely
reasonable to me. We should not look at Z in isolation. We should not ignore the meaning of
Greek letters. For Bernardo, the real world does not appear to matter: telepathy, drug testing, it
isall the sameto the adherent of reference priors. Indeed he goes so far asto search for analysis
inwhich the datadominates. That is, data setsare analysed inisolation. Thisisnot how science
works; itisthrough lots of different types of datathat theories cameto be accepted. Statisticians
have slowly come to recognize this and introduce the topic of meta-analysis. In other words, |
contend that the sensitivity to the prior, the mid-field confusion, is not a defect but a reasonable
reflection of redlity.

Another difference between (1) and 22 > ¢ lies not in the dependence of \, but on n. For
large n, (1) behaveslike

22> +logn, (2)
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so that as n increases it becomes increasingly difficult to reject 6y in comparison with the
standard 2% > ¢, though the increase is logarithmic, and therefore slow. This can be defended
using an Occam’s razor type of argument, that values of the parameter other than the null value
should not be introduced without due cause. A better defence, to my mind, is the remark that
if sampling is continued (n increased) until 22 > ¢, thiswill certainly happen even if 6 # 6.
Proof of thisusesthe law of theiterated logarithm. Introduction of thelog n termin (2) prevent
this happening. It is no longer possible to sample to aforegone conclusion (that 6 # 6p). This
results connects with the likelihood principle, which (1) satisfies. It is not clear to me whether
the decision method of this paper does. The appearance of integrals over sample space in the
logarithmic discrepancy suggests it need not. The differences between the two approaches is
most noticeable when n islarge and then only when z issmall, yet not too small. To expressthis
differently, p(6 |z, 0 # 6)) is normal with very small variance and mean near to 6y. In those
circumstances, locality may be influential: whatever 6 obtains, it is almost surely near to 6.

Another possible objection to the use of 22 > ¢ might arise in passing from (1) to higher
dimensions. It is well known that, using standard, tail area significance tests, it can happen
that, with (z,y) normal about (0, ¢), atest of # = 0 can lead to rejection at the same time as
one for ¢ = 0, whereas the test for # = ¢ = 0 can result in acceptance. We will have to wait
for Bernardo to extend his results to the bivariate situation before it can be seen whether his
procedure avoids that difficulty.

| remain unconvinced by the wizardry of this paper. Yet, if we honestly compare the two
modelsfor hypothesistesting, that of the subjective Bayesian with that of this paper, we cannot,
inour present state of knowledge, reject either. Themore understanding we gain of thisoriginal,
ingenious and stimulating approach, the easier it will be to achieve the ultimate goal; asensible,
probabilistic description of our uncertain world.

MICHEL MOUCHART (Université Catholique de Louvain, Belgium)

From a Bayesian point of view, whether two models are nested or not should depend
not only on the sampling specification (the data density) but also on the prior specification.
In Example 3.2.1 of Florens and Mouchart (1993) we produce a situation where the prior
specification on the regression coefficient of agiven explanatory variable should clearly depend
on the model athough, from a frequentist approach, one is nested in the other one. Such an
issue might be kept hidden in a pure reference analysis.

It is quite interesting to realize that the author is developing a class of examples of the
“encompassing principle’ : this gives historical support for his work; for more detail, see my
comments to Geweke's paper in this volume.

TONY O'HAGAN (University of Nottingham, UK)

Professor Bernardo’s paper is interesting and provocative, but | have serious doubts about
the development in Section 2 of the criterion d(x, 6p). In the discussion leading to (1), the
analysis is said to be before observing data «, and is based on the utility of predicting those
future datax, using the same model. In the next displayed equations, x isreplaced by y, which
is described as a dummy variable. The next sentence contains the phrase “given data «”, so
now Bernardo is looking at analysis after observing . What now is the status of y? Just
after (4), herefersto d(x, 6) as being concerned with the amount of information about future
observations, so apparently y is a future observation which will be made after observing the
data x. Presumably, y could be any future data, a single observation, many observations, or
perhaps even an infinite sequence of future observations. But, remarkably, towards the end of
Section 3.1, it seems that y is « again, because when s = s(x) is sufficient, Bernardo writes
x = {s, r} and then proceeds asif y = {s, r} aso. Throughout the rest of the paper it seems
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that y = « also. Now the original definition of d(x, 6) is nonsense if we strictly interpret the
statement y = « because y isintegrated out in (4) and yet appears againin (3) as . It seems
that y is indeed future data, but with exactly the same number of observations and the same
structure as x. In effect, Bernardo's criterion relates to predicting a replicate of the data x.
There is no explanation or justification of this curious choice.

Another puzzling claim is that the equations right at the end of Section 3.2 demonstrate
consistency. First, consistency in model choice is usualy interpreted as meaning selecting the
true model with probability one (asn — oo). These equations do not guarantee that, and indeed
the behaviour when the null model istrue is exactly that of a frequentist fixed-size hypothesis
test: the null isfalsely rejected with a probability that does not tend to zero. Further frequentist
thinking is evident in the expectation being conditioned on the parameters, where one would
have wanted a preposterior expectation.

Finally, | object to Bernardo’s description in Section 1 of the fractional Bayes factor as
amethod of obtaining a non-subjective Bayes factor. | did not develop it as such, have never
referredtoit inthat way, and dislikeintensely the perversion of Bayesian statisticsthat isimplied
by the adjective ‘ non-subjective’.

CHRISTIAN P. ROBERT (CREST-INSEE and Université de Rouen, France)

The BRC approach adopted for model selection is quite convincing, especially in nested
models. The choice of the Kullback-Leibler divergence has been stressed as a non-informative
criterionin Robert (1996), sinceit encompassesall possible and future uses of the chosen model.
Another advantage of the BRC criterion is that the whole analysis is done in terms of the full
model and does not require to define a prior on each submodel, as pointed out in Goutis and
Robert (1998) and Dupuis and Robert (1997). Moreover, this also allows for improper priors
to be used in aregular Bayesian fashion, while avoiding the “dilution” phenomenon mentioned
in George (1998).

Thedifficulty | havewith the BRC method liesinthe choiceof a* golden standard” threshold.
In Goutis and Robert (1998) and Dupuis and Robert (1997), we proposed alternatives which
depend on the sampling model, the prior and/or thedataat hand. 1t would seemthat d* = 5 could
work in alimited set of models like exponential familiesin dimension one. Higher dimension
models or setups with covariates could require more specific calibration.

Also, how does the BRC method extend to non-nested cases? There are many caveats
related to encompassing pointed out in the econometric literature (see Goutis and Robert, 1997,
for references) and | wonder whether the BRC criterion may suffer from those.

REPLY TO THE DISCUSSION

| am extremely grateful to all discussants for their thought-provoking comments. | will first try
to give specific answers to their queries, and | will then attempt to summarize what | perceive
to be the main conclusions.

1. Reply to Datta. | am very grateful to Datta for providing further examples which illustrate
the behaviour of the BRC criterion. There are however two pointsin his comments which need
clarification:

() In the one-way random effects model, he points out that the BRC statistic is a strictly
increasing function of the usual F-statistic, and concludes that BRC leads to a test equivalent
to the frequentist test. Thisis not so; the sampling distribution of F' depends on the sample size
and, therefore, using a fixed quantile of the corresponding sampling distribution as the cutoff
point is not equivalent to using afixed utility constant (independent of ) as suggested by BRC.
There would be, however, asymptotic agreement.



126 J. M. Bernardo

(ii) Datta correctly points out that the prior obtained by grouping together the nuisance
parameters in the coefficient of correlation example leads to a prior which is not probability
matching and does not avoid the marginalisation paradox. | should stress however that, although
the reference algorithm may technically be used for any grouping, we explicitly stated (Berger
and Bernardo, 1992, Section 3.3; Bernardo, 1997) that ‘the’ reference prior should be that
sequentially obtained by considering the nuisance parameters one at a time. In the coefficient
of correlation example thisleads to the reference prior o 102‘ 1(1 — p?)~! which haslong been
known to be the reference prior for this problem (Bayarri, 1981); as Datta mentions, this is
probability matching for p, and avoids the marginalisation paradox. Priors based on grouping
the nuisance parameters should not be referred to as reference priors.

2. Replyto Liseo. Liseo correctly stressesthat there are situationswhere a* precise’ null hypoth-
esis makes sense, but then he adds that he cannot see an alternative probability-based method
to Bayes factors to analyze them. | would argue that the special status of a precise null may be
incorporated through the utility function: the Bayesian analysis of the corresponding decision
problem the naturally requires the derivation of the posterior distribution of the parameters; but
thisisdone using aregular prior instead of asingular prior. The probability-based mechanism
used to incorporate the information provided by the datais precisely the same, namely Bayes
theorem followed by appropriate marginalization. The point is that, in my view, in nested hy-
pothesis testing problems one should not try to find the posterior probability of the null (which
must be zero if aregular prior is used), but one should either derive the posterior probabilities
associated to interesting regions of the parameter space (which may or may not include the null)
or, moreto the point, or one should judge whether or not the null model provides agood enough
explanation of the observed data, using aregular, possibly non-subjective prior.

Liseo has some queries about the definition of the utility function. Actually, only the utility
difference u(a, 6o, 0,w) — u(ag, b, 0, w) need be specified to solve the problem, and it is
natural to assume

u(ay, 0o, 0,w) — u(ag, by, 0,w) = ad(by,0,w) — (c1 — cp),

where § (6, 0, w) issome measure of the‘distance’ between 6 and 6 as possible ‘ explanations
of the observed data, assuming that pz (- | 0, w) istrue, and where ¢y — ¢; is a measure of the
utility increase of using the null model when it is true. The optimal action will be to reject
working asif § were equal to 6y if d(x, 6), the expected posterior value of §(6y, 0, w), islarger
that the constant g = (¢; — ¢p) /. Thus, ¢; and ¢ arejust part of the proposed utility function.
A particular solution to the problem posed will be found for each choice of the discrepancy
function. For the reasons discussed in the paper, | propose using the logarithmic divergence

[ patyl.c) s {M] dy.
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between the assumed model pg (- | 0, w) and its closest approximation under the null, identified
by wo = wo(fy, 0, w). This specific choice has two very important properties: (i) it measures
the *distance’ between 6 and 6 in terms of how different are the corresponding models, rather
than in terms of the (largely irrelevant), say Euclidean distance between 6 and 6; and (ii) itis
invariant under reparametrization, so testing whether or not & = 6, will produce the same result
astesting ¢(0) = ¢(6y) for any one-to-one transformation ¢ = ¢(#). Liseo gives a powerful
argument against the use of predictives in the definition of §(6y, 6, w), when he shows that this
would bring back Lindley’s paradox.

Anyone unconvinced by either the scoring rule argument used to motivate the use of the
logarithmic discrepancy, or by its attractive properties, may indeed choose another definition

6(007 97 w)

= inf
wo e
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for (0, 0,w). Any such choice (together with some prior on the parameters) will produce a
completely Bayesian, coherent answer to the decision problem posed. | think, however, that the
suggested choice provides avery good candidate for general use.

Liseo correctly points out that, in the context of Example 1, for fixed n thereisaoneto one
relation between the utility constant g and the prior variance ;. It isindeed known (Bernardo,
1980; Smith and Spiegelhalter, 1980) that Lindley’s paradox may be avoided using singular
priors if the prior probability of the null is made to depend on the sample size n; however,
as mentioned before, singular priors may only be justified as an approximation to strong prior
subjective beliefs, and a subjective prior may hardly be assumed to depend on the sample size.

3. Reply to Lindley. Lindley is obviously right when he insists on using context dependent
subjective priorsin any Bayesian analysis but, as mentioned before, thisis certainly compatible
with the use of reference priors. Indeed, if at all possible, reference posteriors should not be
used on their own, but compared with subjective-based posteriors in order to be able to gauge
the actual importance of prior information in thefinal analysis. Moreover, it isonly the context
and the related subjective information, which will allow a proper inter pretation of the results.

For example, Jahn et al. (1987) report the result of an experiment in parapsychological
research where an electronic device is used to produce a random sequence of 0's and 1's with
theoretical equal probability for each of two outcomes, and a subject attemptsto ‘influence’ the
random event generator to obtain asequence of resultswith adifferent distribution; thisresultsin
r = 52,263,471 observed 1's, out of n = 104, 490, 000 performed trials. The hypothesisto be
tested isf = 0y = 1/2. The automatic analysis provided by BRC leads to d,- (6, r,n) = 7.03,
thus suggesting that the true value of 6 cannot be assumed to be 1/2, (in sharp contrast with
the corresponding Bayes factor analysis. see Jefferys, 1990), but the interpretation of this fact
(whether thisis dueto ESP, it is due to some undetected bias, or it indicates the need of amore
refined physics theory), is obviously a context dependent, subjective issue over which the data
cannot provide any information whatsoever.

It should also be mentioned here that restricted reference priors, obtained by maximizing
the missing information within the class of priorscompatiblewith assumed prior knowledge (see
e.g., Bernardo and Smith, 1994, Section 5.4.3) may actually be used as a powerful mechanism
to elicit prior subjective knowledge. Thus, if it is desired to incorporate some knowledge in
the analysis of a precise hypothesis testing situation, (say the mean and variance of 6) then
the (unrestricted) reference prior should be replaced by the restricted reference prior which
corresponds to this assumed knowledge, and the resulting BRC statistic will automatically
incorporate this further assumption. The more information included, the closest the result will
be to astrictly subjective analysis; restricted reference priors provide a continuum of solutions,
ranging from the conventional reference posterior to the posterior which corresponds to any
(regular) subjective prior.

Lindley mentions that with BRC (as with frequentist testing) it is possible to sample to a
foregone conclusion, in the sense that, allowing optional stopping, one can sample until BRC
exceeds g, and thiswill eventually happen with probability one. Thisisamathematical fact, but
hasto be seenin perspective. With aregular prior, any data set, however unlikely, has a positive
prior predictive density so that, if one is allowed to sample indefinitely, one would eventually
get to one of these unlikely data sets which suggest the wrong decision; this makes perfect sense
to me.

Finally, Lindley worriesabout the behaviour of BRCin higher dimensions. Work in progress
with Raul Rueda (which includes many examples) indicates that thisis appropriate, but further
results are definitely needed there.
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4. Reply to Mouchart. Mouchart suggests that in some situations the prior should depend on
the model. Indeed, one may well consider situations when the ‘null’ is of the form M, =
{p(x| by, w), po(w)}, and the aternative M; = {p(x|0,w),p(w|0)} but, if thisis the case,
then the nuisance parameter may simply beintegrated out and oneisleft with astandard situation
of the type p(x | 6y) versus p(x | 6), to which the proposed method may directly be applied.

5. Reply to O’ Hagan.

O’'Hagan seems to be confused by my use of the dummy integration variable y to define
the logarithmic discrepancy. As mentioned above (in the reply to Liseo), what isrequired is a
measure of the discrepancy between the model pz (- | €, w) and its best approximation under the
null, as a possible description of the probabilistic mechanism that has generated the observed
data x; thus, the y in the definition of the discrepancy is simply a possible observation from the
same probabilistic mechanism that has generated «.

O’ Hagan points out that with BRC the null is falsely rejected with a probability that does
not tend to zero asn increases. | do not find this disturbing, but rather an expected consequence
of the proposed decision-oriented approach: the choice of the threshold d* which controls
such asymptotic ‘error’ probability is a trade-off between missing a possible opportunity for
simplification and early detection of the unsuitability of the null. Since, in my statement of
the problem, one is only trying to check whether or not the null model is a suitable proxy for
the correct model px (- |0, w), a‘fase’ rejection only means that one misses an opportunity of
simplifying the model, but the model used will nevertheless be correct. In contrast, if thenull is
false, the BRC statistic increases linearly with n so that, for sufficiently large samples, afase
null will always be rejected. Thus, with BRC and sufficiently large samples, one will never be
lead to using awrong model.

| take note of O’ Hagan’suneasiness of my description of hisfractional Bayesfactor asanon-
subjective Bayes factor. Fractional Bayes factors are not coherent (and thus, hardly Bayesian)
but, on re-reading his papers | cannot find asingle attempt at using subjective prior information
in the examples he considers: in my limited use of the English language, a procedure which
does not use subjective input is non-subjective.

Theuse of theadjective‘ non-subjective’ to describe attemptsto describethe many published
procedureswhich try to provide a solution to the definition of an ‘origin’ for Bayesian inference
was voted in preference to other proposed alternatives (automatic, conventional, default, fair,
neutral, objective, reference, standard) by those who attended an international workshop on that
topic held at Purdue University in November 1996; | personally prefer the adjective ‘reference’
(introduced by Box and Tiao, 1962, p. 420), but thisisnow mostly used to refer to the procedures
| introduced in the 70's. | am afraid that, in spite of O’Hagan's ‘intense dislike’ for what he
considers nothing less than a ‘ perversion’, non-subjective Bayesian methods are here to stay
and, | would add, for many good reasons. | would refer those interested on this important
foundational issue to Bernardo (1997), ensuing discussion, and references therein.

6. Reply to Robert. | appreciate Robert’s s positive attitude towards BRC, and support his
defense of the Kullback-Leibler divergence as a most appropriate intrinsic loss function.

He wonders on the generality of the value d* = 5 as an standard for scientific communica-
tionsin higher dimension models. | have already mentioned work in progress with Radl Rueda
which suggests that indeed, this standard may also be used in higher dimensions; however,
further work is necessary.

Robert also asks about the extension of the BRC method to non-nested cases. We have
been looking at non-nested cases using simple encompassing procedures. For instance, if x =
{z1,...,z,} isaset of exchangeable observations, and two aternative models, M; = p;(x | 0)
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and My = po(x | 0), are considered in terms of some common parameter vector 6 defined, as
exchangeability requires, as the limit 8 = lim,, . f(z1,...,z,) of some function f of the
observations, then BRC may be used with the encompassing model

p(z|0,¢) = [pi(x]0)]°p2(x]0)]' ™, ¢ € {0,1},

obtained by incorporating the discrete parameter ¢. This effectively allows testing either of
the two models, assuming that one of the two is correct. The derivation of the appropriate
reference prior hereisinvolved, for it requires avery careful analysis of the necessary compact
approximations, but we have worked out some examples (including the‘ canonical’ Exponential
versus Poisson problem) and the results are very encouraging.

7. Conclusions. Many authors have stressed that precise hypothesis testing problems are im-
portant for scientists, but the procedures proposed to give a solution to these problems have
always been subject to polemic. It seems clear from the discussion that some of this polemic
is due to the fact that two different problems are often addressed under the common heading
of precise hypothesis testing. In some situations, a scientist may have reasons to have a prior
distribution on the quantity of interest sharply concentrated around some specific null value; if
this is the case then, after the data have been observed, he will naturally be interested in the
posterior probability that the parameter lies within an small enough interval around the null; if
(and only if) the sample size is not too big, then such probability may be approximated by the
posterior probability which may be deduced from a singular prior with a mass of probability
on the null. On the other hand, in many other situations, the scientist is interested instead in
checking the compatibility of the data with the particular model identified by the null; thisis
the problem that BRC tries to address.

Many of us have often advocated the systematic use of decision analysisto provide reason-
able, coherent solutions to any problem, including those often considered as * pure inference’
problems. Inthispaper, | havetried to demonstrate that adecision-oriented analysis of the prob-
lem of checking the compatibility of datawith anull model suggests that the special role of the
null should beincorporated in the utility structure, not in the prior distribution. Thisimpliesthat
regular priors should used to obtain, by maximizing the expected posterior utility, sensible co-
herent criteriafor model criticism. Animportant consequence of this approach isthat (possibly
improper) non-subjective priors may indeed be used to facilitate scientific communication.

Naturally, the logarithmic discrepancy is not the only possible loss function; indeed, the
discrepancy functions derived from other proper scoring rules may well be worth exploring. |
believe however, that the attractive properties and the information-theoretical interpretation of
the logarithmic discrepancy makes it a natural first choice. Similarly, the procedure described
may be used with any prior, subjective or not. As a matter of fact atotally subjective testing
procedure may be achieved by computing the subjective posterior expectation of thediscrepancy,
and comparing this with a subjective threshold which measures the decision-maker level of
preference for the ssmple model when it is true. | believe, however, in the convenience of
establishing some standard which may be used for scientific communication, and the combined
use of the appropriate reference prior and a threshold calibrated with a canonical example
provides, | think, such a convenient standard.
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