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Summary

The complete final product of Bayesian inference is the posterior distribution
of the quantity of interest. Important inference summaries include point es-
timation, region estimation and precise hypotheses testing. Those summaries
may appropriately be described as the solution to specific decision problems
which depend on the particular loss function chosen. The use of a continu-
ous loss function leads to an integrated set of solutions where the same prior
distribution may be used throughout. Objective Bayesian methods are those
which use a prior distribution which only depends on the assumed model and
the quantity of interest. As a consequence, objective Bayesian methods pro-
duce results which only depend on the assumed model and the data obtained.
The combined use of intrinsic discrepancy, an invariant information-based loss
function, and appropriately defined reference priors, provides an integrated
objective Bayesian solution to both estimation and hypothesis testing prob-
lems. The ideas are illustrated with a large collection of non-trivial examples.
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1. INTRODUCTION

From a Bayesian viewpoint, the final outcome of any problem of inference is the
posterior distribution of the vector of interest. Thus, given a probability model
Mz = {p(z |ω),z ∈ Z,ω ∈ Ω} which is assumed to describe the mechanism which
has generated the available data z, all that can be said about any function θ(ω) ∈ Θ
of the parameter vector ω is contained in its posterior distribution p(θ |z). This is
deduced from standard probability theory arguments via the posterior distribution
p(ω |z) ∝ p(z |ω) p(ω) which is based on the assumed prior p(ω). To facilitate
the assimilation of the inferential contents of p(θ |z), one often tries to summarize
the information contained in this posterior by (i) providing θ values which, in the
light of the data, are likely to be close to its true value (estimation) and by (ii)
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measuring the compatibility of the data with hypothetical values θ0 ∈ Θ0 ⊂ Θ
of the vector of interest which might have been suggested by the research context
(hypothesis testing). One would expect that the same prior p(ω), whatever its basis,
could be used to provide both types of summaries. However, since the pioneering
book by Jeffreys (1961), Bayesian methods have often made use of two radically
different types of priors, some for estimation and some for hypothesis testing. We
argue that this is certainly not necessary, and probably not convenient, and describe
a particular form of doing this within the framework of Bayesian decision theory.
Many of the ideas described below have already appeared in the literature over
the past few years. Thus, this is mainly an up-to-date review paper, which unifies
notation, definitions and available results. However, it also contains some previously
unpublished material.

Section 2 formalizes the decision theoretic formulation of point estimation, re-
gion estimation and precise hypothesis testing, and emphasizes that the results are
highly dependent on the choices of both the loss function and the prior distribu-
tion. Section 3 reviews a set of desiderata for loss functions to be used in stylized
non-problem-specific theoretical inference, and defines the intrinsic discrepancy, an
invariant information-based loss function, which is suggested for general use in those
circumstances. Section 4 describes objective Bayesian methods as those using a prior
distribution which only depends on the assumed model, and reviews some basic con-
cepts behind reference priors, a particular form of objective prior functions which is
proposed for general use. In multiparameter problems, reference priors are known
to depend on the quantity of interest; a criterion is proposed to select joint priors
which could safely be used for a set of different quantities of interest. In Section 5,
the combined use of the intrinsic discrepancy and appropriately chosen reference
priors is proposed as an integrated objective Bayesian solution to both estimation
and hypothesis testing problems. The theory is illustrated via many examples.

2. BAYESIAN INFERENCE SUMMARIES

Let z be the available data which are assumed to have been generated as one random
observation from model Mz = {p(z |ω),z ∈ Z,ω ∈ Ω}. Often, but not always,
data will consist of a random sample z = {x1, . . . ,xn} from some distribution
q(x |ω), with x ∈ X ; in this case p(z |ω) =

Qn
i=1 q(xi |ω) and Z = Xn. Let θ(ω)

be the vector of interest. Without loss of generality, the model may explicitly be
expressed in terms of θ so that Mz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}, where λ
is some appropriately chosen nuisance parameter vector. Let p(θ,λ) = p(λ |θ) p(θ)
be the assumed prior, and let p(θ |x) be the corresponding marginal posterior dis-
tribution of θ. Appreciation of the inferential contents of p(θ |z) may be enhanced
by providing both point and region estimates of the vector of interest θ, and by
declaring whether or not some context suggested specific value θ0 (or maybe a set
of values Θ0), is (are) compatible with the observed data z. A large number of
Bayesian estimation and hypothesis testing procedures have been proposed in the
literature. We argue that their choice is better made in decision-theoretical terms.
Although it has been argued that the use of loss functions may not be directly rele-
vant for inference problems, it is generally accepted that better inference procedures
may often be obtained with the aid of decision-theoretic machinery; this is certainly
our point of view.

Let `{θ0, (θ,λ)} describe, as a function of the (unknown) parameter values (θ,λ)
which have generated the available data, the loss to be suffered if, working with
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model Mz, the value θ0 were used as a proxy for the unknown value of θ. As
summarized below, point estimation, region estimation and hypothesis testing may
all be appropriately described as specific decision problems using a common prior
distribution and a common loss function. The results, which are obviously all condi-
tional on the assumed modelMz, may dramatically depend on the particular choices
made for both the prior and the loss functions but, given the available data z, they
all only depend on those through the corresponding posterior expected loss,

`(θ0 |z) =

Z
Θ

Z
Λ

`{θ0, (θ,λ)} p(θ,λ |z) dθdλ.

As a function of θ0 ∈ Θ, the expected loss `(θ0 |z) provides a direct measure of
the relative unacceptability of all possible values of the quantity of interest in the
light of the information provided by the data. As will later be illustrated, plotting
`(θ0 |z) as a function of θ0 when θ is one-dimensional, or producing a contour

plot of `(θ0 |z) when θ is two-dimensional, may be a very useful addition to the
conventional presentation of inferential results.

2.1. Point Estimation

To choose a point estimate for θ may be seen as a decision problem where the action
space is the class Θ of all possible θ values. Foundations of decision theory dictate
that the best estimator is that which minimizes the expected loss.

Definition 1 The Bayes estimator θ∗(z) = arg infθ0∈Θ `(θ0 |z) is that which min-
imizes the posterior expected loss.

Conventional examples of loss functions include the ubiquitous quadratic loss
`{θ0, (θ,λ)} = (θ0 − θ)t(θ0 − θ), which yields the posterior expectation as the
Bayes estimator, and the zero-one loss on a neighbourhood of the true value, which
yields the posterior mode as a limiting result.

Bayes estimators are usually not invariant under one-to-one transformations.
Thus, the Bayes estimator under quadratic loss of a variance (its posterior expec-
tation), is not the square of the Bayes estimator of the standard deviation. This is
rather difficult to explain when, as it is the case in theoretical inference, one merely
wishes to report an estimate of some quantity of interest. Invariant Bayes estimators
may easily be obtained by using invariant loss functions (see Section 3), rather than
the conventional (non-invariant) loss functions mentioned above.

2.2. Region Estimation

Bayesian region estimation is easily achieved by quoting posterior credible regions.
To choose a q-credible region for θ may be seen as a decision problem where the
action space is the class of subsets of Θ with posterior probability q. Foundations
dictate that the best region is that which contains those θ values with minimum
expected loss.

Definition 2 A Bayes q-credible region Θ∗q(z) ⊂ Θ is a q-credible region where any
value within the region has a smaller posterior expected loss than any value outside
the region, so that ∀θi ∈ Θ∗q(z), ∀θj /∈ Θ∗q(z), `(θi |z) ≤ `(θj |z).
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The quadratic loss function yields credible regions which contain those values
of θ closest to the posterior expectation in the Euclidean distance sense. A zero-one
loss function leads to highest posterior density (HPD) credible regions. Again, Bayes
credible regions are generally not invariant under one-to-one transformations. Thus,
HPD regions in one parameterization will not transform to HPD regions in another.
Invariant Bayes credible regions may however be obtained by using invariant loss
functions. The concept of a Bayes credible region was introduced by Bernardo
(2005b) under the name of lower posterior loss (LPL) credible regions; the paper,
and its ensuing discussion, includes the analysis of many examples.

2.3. Precise Hypothesis Testing

Consider a value θ0 of the vector of interest which deserves special consideration,
either because assuming θ = θ0 would noticeably simplify the model, or because
there are additional context specific arguments suggesting that θ = θ0. Intuitively,
the value θ0 should be judged to be compatible with the observed data z if its poste-
rior density p(θ0 |z) is relatively high. However, a more precise form of conclusion
is typically required.

Formally, testing the hypothesis H0 ≡ {θ = θ0} may be described as a deci-
sion problem where the action space A = {a0, a1} contains only two elements: to
accept (a0) or to reject (a1) the hypothesis under scrutiny. Foundations require
specification of a loss function `h{ai, (θ,λ)} measuring the consequences of accept-
ing or rejecting H0 as a function of the actual parameter values. It is important
to be explicit about what is precisely meant by accepting or rejecting H0. By
assumption, a0 means to act as if H0 were true, that is to work with the model
M0 = {p(z |θ0,λ0),z ∈ Z,λ0 ∈ Λ}, while a1 means to reject this simplification
and to keep working with model Mz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}. Alter-
natively, an already established model M0 may have been embedded into a more
general model Mz, constructed to include promising departures from θ = θ0, and
it is required to verify whether presently available data z are still compatible with
θ = θ0, or whether the extension to θ ∈ Θ is really necessary. Given the available
data z, the optimal action will be to reject the hypothesis considered if (and only
if) the expected posterior loss of accepting (a0) is larger than that of rejecting (a1),
so that Z

Θ

Z
Λ

[`h{a0, (θ,λ)} − `h{a1, (θ,λ)}] p(θ,λ |z) dθdλ > 0.

Hence, only the loss difference ∆`h{θ0, (θ,λ)} = `h{a0, (θ,λ)} − `h{a1, (θ,λ)},
which measures the advantage of rejecting H0 ≡ {θ = θ0} as a function of the
parameter values, must be specified. The hypothesis H0 should be rejected whenever
the expected advantage of rejecting is positive. Without loss of generality, the
function ∆`h may be written in the form

∆`h{θ0, (θ,λ)} = `{θ0, (θ,λ)} − `0

where (precisely as in estimation), `{θ0, (θ,λ)} describes, as a function of the param-
eter values which have generated the data, the non-negative loss to be suffered if θ0

were used as a proxy for θ. Since `{θ0, (θ0,λ)} = 0, so that ∆`h{θ0, (θ0,λ)} = −`0,
the constant `0 > 0 describes (in the same loss units) the context-dependent non-
negative advantage of accepting θ = θ0 when it is true. With this formulation, the
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optimal action is to reject θ = θ0 whenever the expected value of `{θ0, (θ,λ)}−`0 is

positive, i.e., whenever `(θ0 |z), the posterior expectation of `{θ0, (θ,λ)}, is larger
than `0. Thus the solution to the hypothesis testing decision problem posed is found
in terms of the same expected loss function that was needed for estimation.

Definition 3 The Bayes test criterion to decide on the compatibility of θ = θ0 with
available data z is to reject H0 ≡ {θ = θ0} if (and only if) `(θ0 |z) > `0, where `0
is a context dependent positive constant.

The compound case may be analysed by separately considering each of the values
which make part of the compound hypothesis to test. Thus, depending on the
context, a compound hypothesis of the form H0 ≡ {θ0 ∈ Θ0} could be accepted

when at least one of its elements would be accepted, so that infθ0∈Θ0 `(θ0 |z) < `0,

or when all its elements would be accepted, so that supθ0∈Θ0
`(θ0 |z) < `0.

Using the zero-one loss function, `{θ0, (θ,λ)} = 0 if θ = θ0, and `{θ0, (θ,λ)} = 1
otherwise, so that the loss advantage of rejecting θ0 is a constant whenever θ 6= θ0

and zero otherwise, leads to rejecting H0 if (and only if) Pr(θ = θ0 |z) < p0 for
some context-dependent p0. Notice that, using this particular loss function, if one
is to avoid a systematic rejection of H0 (whatever the data), the prior probability
Pr(θ = θ0) must be strictly positive. If θ is a continuous parameter this forces the
use of a non-regular “sharp” prior, concentrating a positive probability mass at θ0.
With no mention of the (rather näıve) loss structure which is implicit in the formu-
lation, this type of solution was early advocated by Jeffreys (1961). Notice, however,
that this formulation implies the use of radically different (and often polemic) priors
for hypothesis testing than those used for estimation. Moreover, this formulation is
also known to lead to the difficulties associated to Lindley’s paradox (Lindley, 1957;
Bartlett, 1957; Robert, 1993). For an illustration of the possible consequences of
Lindley’s paradox, see Example 7 in Section 5.

Using the quadratic loss function leads to rejecting a θ0 value whenever its
Euclidean distance to E[θ |z], the posterior expectation of θ, is sufficiently large.
Observe that the use of continuous loss functions (such as the quadratic loss) per-
mits the use in hypothesis testing of precisely the same priors that are used in
estimation. In general, the Bayes test criterion is not invariant under one-to-one
transformations. Thus, if φ(θ) is a one-to-one transformation of θ, rejecting θ = θ0

does not generally imply rejecting φ(θ) = φ(θ0). Once more, invariant Bayes test
procedures are available by using invariant loss functions.

The threshold constant `0, which is used to decide whether or not an expected
loss is too large, is part of the specification of the decision problem, and should be
context-dependent. However, as demonstrated below, a judicious choice of the loss
function leads to calibrated expected losses, where the relevant threshold constant
has an immediate, operational interpretation.

3. LOSS FUNCTIONS

The methods described above are completely general. Indeed, for a given loss func-
tion and a given prior distribution, they describe essentially unique procedures to
perform both estimation and hypothesis testing; they are the only procedures which
are compatible with the foundations-based decision-theoretic attitude which is at
the heart of Bayesian methods. However, the results will be extremely dependent
on the particular choices made of both the loss function and the prior distribution.
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In this section the choice of the loss function is analysed. Section 4 considers the
choice of the prior.

Conditional on modelMz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}, the required loss
function `{θ0, (θ,λ)} should describe, in terms of the unknown parameter values
(θ,λ) which have generated the available data, the loss to be suffered if, working
with modelMz, the value θ0 were used as a proxy for θ. It may näıvely appear that
what is needed is just some measure of the discrepancy between θ0 and θ. However,
since all parameterizations are arbitrary, what is really required is some measure of
the discrepancy between the models labelled by θ and by θ0. By construction, such
a discrepancy measure will be independent of the particular parameterization used.
Robert (1996) coined the word intrinsic to refer to those model-based loss functions.
They are always invariant under one-to-one reparameterizations.

Any reasonable measure of the dissimilarity δ{pz, qz} between two probability
densities p(z) and q(z) for a random vector z ∈ Z should surely be non-negative,
and zero if (and only if) p(z) = q(z) almost everywhere. Moreover it should be
invariant under one-to-one transformations of z; indeed, if y = y(z) is such a trans-
formation and J is the appropriate Jacobian, py = pz/|J |, and qy = qz/|J | are ex-
pressions of precisely the same uncertainties and, therefore, one should certainly have
δ{pz, qz} = δ{py, qy}. To avoid undesirable asymmetries (see Example 2 below),
one would also like δ to be a symmetric functional, so that δ{pz, qz} = δ{qz, pz}.
Finally, it should also be possible to use δ to compare densities with strictly nested
supports, since many approximations are precisely obtained by restricting the orig-
inal support to some strict subspace.

3.1. The Intrinsic Discrepancy Loss Function

Not many divergence measures in functional analysis satisfy the desiderata men-
tioned above, but they are all satisfied by the intrinsic discrepancy, a divergence
measure introduced by Bernardo and Rueda (2002), which has both an information
theoretical justification, and a simple operational interpretation in terms of average
log-density ratios.

Definition 4 The intrinsic discrepancy δ{p1, p2} between two probability distribu-
tions for the random vector z with densities p1(z), z ∈ Z1, and p2(z), z ∈ Z2, is

δ{p1, p2} = min [κ{p1 | p2}, κ{p2 | p1} ]

where κ{pj | pi} =
R

Zi
pi(z) log[pi(z)/pj(z)] dz is the Kullback–Leibler (KL) directed

logarithmic divergence of pj from pi. The intrinsic discrepancy between a probability
distribution p and a family of distributions F = {qi, i ∈ I} is the intrinsic discrep-
ancy between p and the closest of them,

δ{p,F} = inf
q∈F

δ{p, q}.

It is easily verified that δ{p1, p2} is non-negative and it is zero if (and only if)
p1 = p2 almost everywhere. It is invariant under one-to-one transformations of z,
and it is obviously symmetric.

Notice that this definition allows for the possibility that one of the supports is
strictly nested into the other one; if this is the case, one of the integrals diverges
and the discrepancy is measured by the other. If both p1 and p2 have the same
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support, the minimum is reached when integration is done with respect to the more
concentrated density; indeed this may be used to define an order relation among
probability distributions with the same support: p1 is more concentrated than p2 if
κ{p2 | p1} < κ{p1 | p2}.

The intrinsic discrepancy δ{p1, p2} is the minimum average log density ratio
of one density over the other, and has an operative interpretation as the minimum
amount of information (in natural information units or nits) expected to be required
to discriminate between p1 and p2. The intrinsic discrepancy may be used to define
an appropriate loss function for all the decision problems considered in this paper.

The intrinsic discrepancy loss is the intrinsic discrepancy between the model,
labelled by (θ,λ), and the familyM0 of models with θ = θ0 and arbitrary λ0 ∈ Λ:

Definition 5 ConsiderMz = {p(z |θ,λ),z ∈ Z,θ ∈ Θ,λ ∈ Λ}. The intrinsic dis-
crepancy loss of using θ0 as a proxy for θ is the intrinsic discrepancy between the true
model and the class of models with θ = θ0, M0 = {p(z |θ0,λ0),z ∈ Z,λ0 ∈ Λ},

`δ{θ0, (θ,λ) |Mz} = δ{pz(· |θ,λ),M0} = inf
λ0∈Λ

δ{pz(· |θ0,λ0), pz(· |θ,λ)}.

Notice the complete generality of Definition 5; this may be used with either
discrete or continuous data models (in the discrete case, the integrals in Definition 4
will obviously be sums), and with either discrete or continuous parameter spaces of
any dimensionality.

The intrinsic discrepancy loss has many attractive invariance properties. For
any one-to-one reparameterization of the form φ = φ(θ) and ψ = ψ(θ,λ),

`δ{θ0, (θ,λ) |Mz} = `δ{φ0, (φ,ψ) |Mz},
so that the use of this loss function will lead to estimation and hypothesis testing
procedures which are invariant under those transformations. Moreover, if t = t(z)
is a sufficient statistic for modelMz, one may equivalently work with the marginal
model Mt = {p(t |θ,λ), t ∈ T ,θ ∈ Θ,λ ∈ Λ} since, in that case,

`δ{θ0, (θ,λ) |Mz} = `δ{θ0, (θ,λ) |Mt}.
Computations are often simplified by using the additive property of the intrinsic
discrepancy loss : if data consist of a random sample z = {x1, . . . ,xn} from some
underlying model Mx, so that Z = Xn, and p(z |θ,λ) =

Qn
i=1 p(xi |θ,λ), then

`δ{θ0, (θ,λ) |Mz} = n `δ{θ0, (θ,λ) |Mx}.
An interesting interpretation of the intrinsic discrepancy loss follows directly

from Definitions 4 and 5. Indeed, `δ{θ0, (θ,λ) |Mz} is just the minimum log-
likelihood ratio which may be expected under repeated sampling between the true
model, identified by (θ,λ), and the class of models which have θ = θ0. Thus, the
intrinsic discrepancy loss formalizes the use of the minimum average log-likelihood
ratio under sampling as a general loss function.

In particular, a suggested value θ0 for the vector of interest should be judged
to be incompatible with the observed data z if `δ(θ0 |z), the posterior expectation
of `δ{θ0, (θ,λ) |Mz}, is larger than a suitably chosen constant `0. For instance,
if for some arbitrary k, `0 = log[10k], then θ0 would be rejected whenever, given
the observed data, the minimum sampling average likelihood ratio against θ = θ0,
may be expected to be larger than about 10k. Conventional choices for `0 are
{log 10, log 100, log 1000} ≈ {2.3, 4.6, 6.9}.
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Since the intrinsic divergence is also defined when the distributions to be com-
pared have nested supports, the intrinsic discrepancy loss may easily deal with
non-regular models:

Example 1 (Uniform model). Let z = {x1, . . . , xn} be a random sample of size n
from a uniform distribution on (0, θ), so that p(x | θ) = θ−1, if 0 < x < θ, and zero
otherwise. Definition 5 immediately yields `δ{θ0,θ |Mz) = n log(θ0/θ), if θ0 ≥ θ, and
n log(θ/θ0) otherwise. The same answer is obtained using the sampling distribution of the
sufficient statistic, t = max{x1, . . . , xn}, the largest observation in the sample. Most known
divergence functionals between distributions cannot deal with this simple example.

Under regularity conditions, the intrinsic discrepancy loss has an alternative
expression which is generally much simpler to compute (Juárez, 2004, Sec. 2.4):

Theorem 1 If the support of p(z |θ,λ) is convex for all (θ,λ), then the intrinsic
discrepancy loss may also be written as

`δ{θ0, (θ,λ) |Mz} = min

»
inf
λ0∈Λ

κ{θ0,λ0 |θ,λ}, inf
λ0∈Λ

κ{θ,λ |θ0,λ0}
–
,

where κ{θj ,λj |θi,λi} is the KL-divergence of pz(· |θj ,λj) from pz(· |θi,λi).

When there is no danger of confusion, Mz will be dropped from the notation
and `δ{θ0, (θ,λ) |Mz} will be written `δ{θ0, (θ,λ)}, but the dependence on the
model of intrinsic losses should always be kept in mind.

Example 2 (Univariate normal model). Consider a random sample z = {x1, . . . , xn}
from a normal N(x |µ, σ) distribution, and suppose that µ is the quantity of interest. It
may be verified that

κ{µj , σj |µi, σi} =
1

2

nσ2
i

σ2
j

− 1− log
σ2
i

σ2
j

+
(µi − µj)2

σ2
j

o
.

If simultaneous inferences about µ and σ are required, the relevant intrinsic discrepancy
loss function is `δ{(µ0, σ0), (µ, σ)} = min[κ{µ, σ |µ0, σ0}, κ{µ0, σ0 |µ, σ}].

Suppose however that µ is the parameter of interest. Since infσ0>0 κ{µ0, σ0 |µ, σ} =
(1/2) log[1 + (µ − µ0)2/σ2], and infσ0>0 κ{µ, σ |µ0, σ0} = (1/2)(µ − µ0)2/σ2, use of the
fact that x ≥ log(1 + x), Theorem 1, and the additive property of the intrinsic discrepancy
loss , yields

`δ{µ0, (µ, σ) |Mz) =
n

2
log
h
1 +

(µ− µ0)2

σ2

i
=
n

2
log
h
1 +

θ2

n

i
,

a function of the standardized distance θ = (µ − µ0)/(σ/
√
n) between µ and µ0, which

converges to θ2/2 as n→∞. It may be noticed that for |θ| ≥
√
n the intrinsic discrepancy

loss is concave, showing an attractive (but not often seen) decreasing marginal loss.

Similarly, if the parameter of interest is σ (or, since intrinsic losses are invariant, any
one-to-one transformation of σ), one has infµ0>0 κ{µ0, σ0 |µ, σ} = (1/2)g(σ2/σ2

0) and

infµ0>0 κ{µ, σ |µ0, σ0} = (1/2)g(σ2
0/σ

2) where g(x) = (t − 1) − log t, t > 0. Using the
fact that g(t) < g(1/t) if, and only if t < 1, now yields

`δ{σ0, (µ, σ) |Mz) = `δ{σ0, σ |Mz) =


(n/2) [(φ− 1)− log φ] if φ < 1

(n/2) [(φ−1 − 1)− log φ−1] if φ > 1,
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Figure 1: Invariant loss functions for estimating the variance of a normal model.

a function of the variance ratio φ = σ2
0/σ

2, which does not depend on µ. Figure 1 shows
the intrinsic discrepancy loss for this problem (for n = 1) as a function of log(σ0/σ) (solid
line), together with Stein entropy loss (James and Stein, 1961) `ent(σ0, σ) = (1/2) g(φ),
and with the standardized quadratic loss, `quad(σ0, σ) = (φ − 1)2. It may be appreciated
that both the entropy loss and the standardized quadratic loss penalize far more severely
overestimation than underestimation, and therefore will lead to choosing too small estimates
for the variance. For further details, see Bernardo (2006).

In the important case of a multivariate normal model with known covariance
matrix, the intrinsic discrepancy loss is proportional to the Mahalanobis distance:

Example 3 (Multivariate normal model). Let z = {x1, . . . ,xn} be a random sample
from a k-variate normal distribution N(x |µ,Σ) with known covariance matrix Σ. The KL

divergence of N(x |µj ,Σ) from N(x |µi,Σ) is κ{µj |µi,Σ} = 1
2

(µi − µj)tΣ−1(µi − µj).
Since this is symmetric, and the intrinsic discrepancy is additive,

δ{µ0,µ |Σ} =
n

2
(µ0 − µ)tΣ−1(µ0 − µ),

which is n/2 times the Mahalanobis distance between µ0 and µ.

3.2. Approximations

Under regularity conditions, the result of Example 3 may be combined with con-
ventional asymptotic results to obtain large sample approximations to intrinsic dis-
crepancy losses.

Theorem 2 Let data z = {x1, . . . ,xn} consist of a random sample from p(x |θ,λ),
let F (θ,λ) be the corresponding Fisher matrix, and let V (θ,λ) = F−1(θ,λ) be its
inverse. Then, for large n and under conditions for asymptotic normality,

`{θ0, (θ,λ) |Mz} ≈
n

2
(θ − θ0)tV −1

θθ (θ,λ)(θ − θ0),

where Vθθ is the submatrix of V (θ,λ) which corresponds to the vector of interest θ.

Proof. Under regularity conditions, the m.l.e.’s (θ̂, λ̂) will be jointly sufficient and asymp-
totically normal with mean (θ,λ) and precision matrix nF (θ,λ). Since the intrinsic dis-
crepancy is invariant under reduction to sufficient statistics, the result in Example 3 yields

δ{(θ0,λ0), (θ,λ) |Mz} ≈
n

2
(θ − θ0,λ− λ0)tF (θ,λ)(θ − θ0,λ− λ0).
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Moreover, it may be verified (after some algebra) that, for fixed θ0 and (θ,λ), the
KL-divergence δ{(θ0,λ0), (θ,λ) |Mz} reaches its minimum (as a function of the nuisance
vector λ0) when, in terms of the corresponding submatrices of the Fisher matrix, λ0 takes

the value λ+ FθλF
−1
λλFλθ(θ − θ0). Substitution then yields

`{θ0, (θ,λ)} = inf
λ0∈Λ0

δ{(θ0,λ0), (θ,λ) |Mz} ≈
n

2
(θ − θ0)tV −1

θθ (θ,λ)(θ − θ0).
�

The invariance of the intrinsic discrepancy loss under reparameterization may
be exploited to improve the approximation above, by simply choosing a parameteri-
zation where the asymptotic convergence to normality is faster. The following result
(Bernardo, 2005b) is a one-parameter example of this technique, which makes use
of the variance stabilization transformation.

Theorem 3 Let z = {x1, . . . , xn} be a random sample of size n from model p(x | θ),

and let θ̃n = θ̃n(z) be an asymptotically sufficient consistent estimator of θ, whose
sampling distribution is asymptotically normal with standard deviation s(θ)/

√
n.

Define φ(θ) =
R θ
s(y)−1dy. Then, for large values of n,

`{θ0, θ |Mz} ≈ (n/2)[φ(θ0)− φ(θ)]2.

4. OBJECTIVE BAYESIAN METHODS

The decision-theoretic procedures described in Section 2 to derive Bayesian inference
summaries are totally general, so that they may be used with any loss function
and any prior distribution. We have argued above for the advantages of using the
intrinsic discrepancy loss function: it is invariant under both reparameterization
and reduction to sufficient statistics; it easily deals with the presence of nuisance
parameters; it may be used with non-regular models; and it has a simple operational
interpretation in terms of average log-likelihood ratios. The choice of the prior is
considered now.

Foundations indicate that the prior distribution should describe available prior
knowledge. In many situations, however, either the available prior information on
the quantity of interest is too vague or too complex to warrant the effort required to
formalize it, or it is too subjective to be useful in scientific communication. An “ob-
jective” procedure is therefore often required, where the prior function is intended
to describe a situation where there is no relevant information about the quantity
of interest. Objectivity is an emotionally charged word, and it should be explic-
itly qualified whenever it is used. No statistical analysis is really objective, since
both the experimental design and the model assumed have very strong subjective in-
puts. However, frequentist procedures are often branded as “objective” just because
their conclusions are only conditional on the model assumed and the data obtained.
Bayesian methods where the prior function is directly derived from the assumed
model are objective is this limited, but precise sense. For lively discussions of this,
and related issues, see Bernardo (1997), Berger (2006), and ensuing discussions.

4.1. Development of Objective Priors

There is a vast literature devoted to the formulation of objective priors; relevant
pointers are included in Bernardo and Smith (1994, Sec. 5.6), Kass and Wasser-
man (1996), Datta and Mukerjee (2004), Bernardo (2005a), Berger (2006), Ghosh,
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Delampady and Samanta (2006), and references therein. Reference analysis, intro-
duced by Bernardo (1979) and further developed by Berger and Bernardo (1989,
1992a,b,c), Sun and Berger (1998) and Berger, Bernardo and Sun (2009, 2011a,b),
has been one of the most popular approaches for developing objective priors.

We will not repeat here arguments for reference analysis, but it may be worth
emphasizing some basic issues and briefly reviewing some recent developments.

We first note that the same mathematical concepts which lie behind the definition
of the intrinsic discrepancy provide an intuitive basis for the definition of reference
priors. Indeed, for the one-parameter model M = {p(z | θ),z ∈ Z, θ ∈ Θ ⊂ <}, the
intrinsic discrepancy I{pθ |M} = δ{p(z, θ), p(z) p(θ)} between the joint prior p(z, θ)
and the product of their marginals p(z) p(θ) is a functional of the prior p(θ) which
measures the association between the data and the parameter and hence, the amount
of information that, given prior p(θ), data z may be expected to provide about θ. If
one considers k independent observations from M then, as k increases, I{pθ |Mk}
will approach the missing information about θ which repeated sampling from M
could provide. If πk(θ) denotes the prior which maximizes I{pθ |Mk}, the sequence
{πk(θ)}ki=1 will converge to that prior function which maximizes the missing infor-
mation about θ, and this is defined to be the reference prior π(θ |M).

Theorem 4 Let z(k) = {z1, . . . ,zk} denote k conditionally independent observa-
tions from Mz. Then, for sufficiently large k

πk(θ) ∝ exp
˘

Ez(k) | θ
ˆ

log ph(θ |z(k))
˜¯

where ph(θ |z(k)) ∝
Qk
i=1 p(zi | θ)h(θ) is the posterior which corresponds to any

arbitrarily chosen prior function h(θ) which makes the posterior proper for any z(k).

For precise conditions and a formal proof of this very general result see Berger,
Bernardo and Sun (2009).

Consider a set z = {x1, . . . ,xn} of n values xi ∈ X ; for any real valued func-
tion g with dominion X the g-average of z is defined to be g−1

˘
n−1Pn

i=1 g(xi)
¯

.
For instance, the harmonic mean is the g-average which corresponds to the recipro-
cal function g(x) = 1/x. Theorem 4 implies that the reference prior at a particular
point θ is proportional to the logarithmic average of the posterior density which this
point would have under repeated sampling, if this θ value were the true parameter
value. The parameter values which could be expected to get relatively large asymp-
totic posterior densities if they were true, will then precisely be those with relatively
large reference prior densities.

The result in Theorem 4 makes very simple the numerical derivation of a one-
parameter reference prior. One first chooses some formal prior h(θ), maybe one
for which exact or approximate posterior computation is easy, and a relatively large
number of replications k. For each particular θ value whose reference prior is desired,

one generates a collection {z(k)
1 , . . . , z

(k)
s } of s replications z

(k)
i = {zi1, . . . ,zik} of

size k from the original model p(z | θ), computes the corresponding s posterior den-

sities at θ, {ph(θ |z(k)
j )}sj=1, and approximates the reference prior at this point by

its logarithmic average,

π(θ) ≈ exp
n1

s

Xs

j=1
log ph(θ |z(k)

j )
o
.
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Under regularity conditions explicit formulae for the reference priors are readily
available. In particular, if the posterior distribution of θ given a random sample
of size n from p(x | θ) is asymptotically normal with standard deviation s(θ̃n)/

√
n,

where θ̃n is a consistent estimator of θ, then the reference prior is π(θ) = s(θ)−1.
This includes as a particular case the famous Jeffreys–Perks prior (Jeffreys, 1946,
independently formulated by Perks, 1947)

π(θ) ∝ i(θ)1/2, i(θ) = Ex | θ[−∂2 log p(z | θ)/∂θ2].

Similarly, if p(x | θ) is a non-regular model with a support S(θ) which depends on
the paramenter in the form S(θ) = {x; a1(θ) < x < a2(θ)}, where the ai(θ)’s are
monotone functions of θ and S(θ) is either increasing or decreasing then, under
regularity conditions (Ghosal and Samanta, 1997), the reference prior is

π(θ) ∝ Ex | θ[|∂ log p(z | θ)/∂θ|].

In multiparameter problems, reference priors depend of the quantity of interest,
a necessary feature in the construction of objective priors, if one is to prevent un-
acceptable behaviour in the posterior, such as marginalization paradoxes (Dawid,
Stone and Zidek, 1973) or strong inconsistencies (Stone, 1976).

If the model has more than one parameter, the required joint reference prior is
derived sequentially. Thus, if the model is p(z | θ, λ) and θ is the quantity of interest,
one works conditionally on θ and uses the one-parameter algorithm to derive the
conditional reference prior π(λ | θ). If this is proper, it is used to obtain the integrated
model p(z | θ) =

R
Λ
p(z | θ, λ)π(λ | θ) dλ, to which the one-parameter algorithm is ap-

plied again to obtain the marginal reference prior π(θ). The joint reference prior to
compute the reference posterior for θ is then defined to be π(λ | θ)π(θ). If π(λ | θ) is
not proper, one proceeds similarly within a compact approximation to the parameter
space (where all reference priors will be proper) and then derives the corresponding
limiting result.

In general, reference priors are sequentially derived with respect to an ordered
parameterization. Thus, given a model Mz = {p(z |ω),z ∈ Z,ω ∈ Ω} with m pa-
rameters, the reference prior with respect to a particular ordered parameterization
φ(ω) = {φ1, . . . , φm} (where the φi’s are ordered by inferential importance) is se-
quentially obtained as π(φ) = π(φm |φm−1, . . . , φ1)× · · · × π(φ2 |φ1)π(φ1). Unless
all reference priors turn out to be proper, the model must be endowed with an appro-
priate compact approximation to the parameter space {Ωj}∞j=1 ⊂ Ω, which should
remain the same for all reference priors obtained within the same model. Berger and
Bernardo (1992c) describe the relevant algorithm for regular multiparameter models
where asymptotic normality may be established. In typical applications, θ = φ1 will
be the quantity of interest, and the joint reference prior π(φ), which is often denoted
πθ(φ) to emphasize the role of θ, is a just a technical device to produce the desired
one-dimensional marginal reference posterior π(θ |z) of the quantity of interest.

4.2. Approximate Reference Priors

There are many situations where one may be simultaneously interested in all the
parameters of the model or, more realistically, in several functions of them. Given
a model Mz = {p(z |ω),z ∈ Z,ω ∈ Ω ⊂ <m} with m parameters, consider a set
θ(ω) = {θ1(ω), . . . , θr(ω)} of r > 1 functions of interest, where r may be larger,
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smaller or equal to the number of parameters m. Berger, Bernardo and Sun (2011b)
suggest a procedure to select a joint prior πθ(ω) whose corresponding marginal
posteriors {πθ(θi |z)}ri=1 could be expected to be close, for all possible data sets
z ∈ Z, to the set of reference posteriors {π(θi |z)}ri=1 yielded by the set of reference
priors {πθi(ω)}ri=1 which may be derived under the assumption that each of the θi’s
is of interest.

If one is able to find a single joint prior πθ(ω) whose corresponding marginal
posteriors are precisely equal to the reference posteriors for each of the θi’s so that,
for all z values, πθ(θi |z) = π(θi |z), then it is natural to argue that this should be
a solution. Notice, however, that there may be may other priors which satisfy this
condition. If the joint reference priors for the θi are all equal, then πθ(ω) = πθi(ω)
will obviously satisfy the required condition, and it will be argued that this is the
solution to the problem posed. Notice that this apparently näıve suggestion may
have far reaching consequences. For instance, in the univariate normal model, this
implies that π(µ, σ) = σ−1, which is the reference prior when either µ or σ are the
parameters of interest, should also be used to make joint inferences for (µ, σ).

Since one will not generally be able to find a single joint prior πθ(ω) which
would yield marginal posteriors for each of the θi’s which are all equal to the cor-
responding reference posteriors, an approximate solution must be found. This is
easily implemented using intrinsic discrepancies:

Definition 6 Consider Mz = {p(z |ω),z ∈ Z,ω ∈ Ω} and let {θ1(ω), . . . , θr(ω)}
be r > 1 functions of interest. Let {πθi(ω)}ri=1 be the relevant reference priors, and
let {πθi(z)}ri=1 and {π(θi |z)}ri=1 respectively be the corresponding prior predictives
and reference posteriors. Let F = {p(ω |a),a ∈ A} be a family of prior functions.
For each ω ∈ Ω, the best approximate joint reference prior within F is that which
minimizes the average expected intrinsic discrepancy loss

d(a) =
1

r

rX
i=1

Z
Z
δ{πθi(· | z), pθi(· | z,a)}πθi(z) dz, a ∈ A,

where p(θi |z,a) is the marginal posterior of θi which corresponds to p(ω |a).

The idea behind Definition 6 is to select some mathematically tractable family of
prior distributions for ω, and to choose that element within the family which mini-
mizes the average expected intrinsic discrepancy between the marginal posteriors
for the θi’s obtained from that prior and the corresponding reference posteriors.

Example 4 (Multinomial model). Consider a multinomial model with m categories

and parameters {θ1, . . . , θm−1}, define θm = 1−
Pm−1
i=1 θi, and suppose that the functions of

interest are the m probabilities {θ1, . . . , θm}. Let z = {n1, . . . , nm} be the results observed
from a random sample of size n. Berger and Bernardo (1992a) show that the reference prior
for θi depends on i, and that the reference posterior of θi is the beta distribution π(θi |z) =
π(θi |ni, n) = Be(θi |ni+1/2, n−ni+1/2), which, as one would hope, only depends on the
number of observations ni which fall in category i and on the total number n of observations
(therefore avoiding the partition paradox which occurs when the posterior for θi depends
on the total number m of categories considered). Consider the family of (proper) Dirichlet

priors of the form p(θ | a) ∝
Qm
i=1 θ

a−1
i , with a > 0. The corresponding marginal posterior

distribution of θi is Be(θi |ni+a, n−ni+ (m−1)a) (notice the dependence on the number
m of categories). The intrinsic discrepancy between this distribution and the corresponding
reference prior is δi{a |ni,m, n} = δβ{ni + 1/2, n − ri + 1/2, ni + a, n − ni + (m − 1)a},
where δβ{α1, β1, α2, β2} = min[κβ{α2, β2 |α1, β1}, κβ{α1, β1 |α2, β2}] and κβ is the KL
divergence between two beta densities with parameters (α1, β1) and (α2, β2), given by
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κβ{α2, β2 |α1, β1} = log

»
Γ(α1 + β1)

Γ(α2 + β2)

Γ(α2)

Γ(α1)

Γ(β2)

Γ(β1)

–
+ (α1 − α2)ψ(α1) + (β1 − β2)ψ(β1)− ((α1 + β1)− (α2 + β2))ψ(α1 + β1),

where ψ(·) = d log[Γ(x)]/dx is the digamma function. The discrepancy δi{a |ni,m, n}
between the two posteriors of θi depends on the data only through ni and n, and the
corresponding reference predictive for ni is

π(ni |n) =

Z 1

0
Bi(ni |n, θi) Be(θi | 1/2, 1/2) dθi =

1

π

Γ(ni + 1/2) Γ(n− ni + 1/2)

Γ(ni + 1) Γ(n− ni + 1)
.

Hence, using Definition 6, the average expected loss of using a joint Dirichlet prior with
parameter a with a sample of size n is d(a |m,n) =

Pn
ni=0 δ{a |ni,m, n}π(ni |n) since, by

the symmetry of the problem, the m parameters {θ1, . . . , θm} all yield the same expected
intrinsic discrepancy loss.
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Figure 2: Expected intrinsic discrepancy losses from using a Dirichlet prior with param-
eter a in a multinomial model with m cells, for sample sizes 5, 10, 25, 100 and 500. Left
panel, m = 10; right panel, m = 100. In both cases, the optimal value for all sample sizes
is a∗ ≈ 1/m.

The function d(a |m = 10, n) is represented in the left panel of Figure 2 for several
values of n. The expected loss decreases with n and, for any n, the function d(a |m,n)
is concave, with a unique minimum numerically found to be at a∗ ≈ 1/m. Similarly, the
function d(a |m = 100, n) is represented in the right panel of Figure 2 for the same values
of n and with the same vertical scale, yielding qualitatively similar results although, as one
may expect, the expected losses are now larger than those obtained with m = 10 for the
same sample size. Once more, the function d(a |m,n) is concave, with a unique minimum
numerically found to be at a∗ ≈ 1/m.

If follows that, for practical purposes, the best global Dirichlet prior when one is inter-
ested in all the cells of a multinomial model (and therefore in all the cells of a contingency
table) is that with parameter a = 1/m, yielding an approximate marginal reference pos-
terior Be(θi |ni + 1/m, n − ni + (m − 1)/m), with mean (ni + 1/m)/(n + 1). This is an
important result for an objective Bayesian analysis of sparse frequency and contingency
tables.

5. INTEGRATED REFERENCE ANALYSIS

With the loss function chosen to be the intrinsic discrepancy loss, all that is re-
quired to implement the construction of the Bayesian reference summaries described
in Section 2 is to specify a prior distribution. It will not come as a surprise that
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we recommend the use of a reference prior. The corresponding Bayes point estima-
tors, Bayes credible regions and Bayes test criteria will respectively be referred to
as reference intrinsic estimators, credible regions or test criteria. The basic ideas
were respectively introduced by Bernardo and Juárez (2003), Bernardo (2005b),
and Bernardo and Rueda (2002). All inference summaries depend on the data only
through the expected reference intrinsic discrepancy loss, d(θ0 |z), the expectation
of intrinsic discrepancy loss with respect to the appropriate joint reference posterior

d(θ0 |z) =

Z
Θ

Z
Λ

`δ{θ0, (θ,λ) |Mz}π(θ,λ |z) dθdλ.

In one-parameter problems, the reference prior is unique and the solution is
therefore conceptually immediate. The following example is intended to illustrate
the general procedure:

Example 5 (Uniform model, continued). Consider again the uniform model on (0, θ)
of Example 1, where the intrinsic discrepancy loss was found to be `δ{θ0, θ |Mz) =
n log(θ0/θ), if θ0 ≥ θ, and n log(θ/θ0) otherwise. The reference prior for this model is

π(θ) = θ−1. This leads to the Pareto reference posterior π(θ |z) = π(θ | t, n) = n tnθ−(n+1)

with support on (t,∞), where t = max{x1, . . . , xn} is a sufficient statistic. The q-posterior

quantile is θq = t (1−q)−1/n; in particular the reference posterior median is t 21/n. Chang-
ing variables in π(θ | t, n), the posterior distribution of (t/θ)n as a function of θ is found
to be uniform on (0, 1); on the other hand the sampling distribution of t is the inverted
Pareto p(t | θ, n) = n tn−1θ−n with support on (0, θ) and, therefore, the sampling distribu-
tion of (t/θ)n as a function of t is also uniform on (0, 1). Thus, the reference posterior has
exact probability matching: all reference posterior q-credible intervals are also frequentist
confidence intervals of level q.

The reference posterior expected intrinsic discrepancy loss of using θ0 as a proxy for
θ (with θ0 > t since, given the data, θ is known to be larger than t) is `δ(θ0 | t, n) =
2 r − log r − 1, where r = (t/θ0)n. This is a positive convex function of r with support on
(0, 1) which tends to ∞ as r → 0, has unique minimum at r = 1/2 and takes the value 1 at

r = 1. As a function of θ0, this is minimized at θ∗ = t 21/n, which is therefore the reference
intrinsic estimator (and, as mentioned above, it is also the reference posterior median).

An intrinsic q-credible region will consist of the set of θ values with lower expected loss
which have a posterior probability equal to q. It follows from the shape of `δ(θ0 | t, n) that,

for sufficiently large q, these regions will be of the form Rq = (t, θq), where θq = t (1−q)−1/n

is the q-quantile of π(θ | t, n).

It may easily be shown that the sampling distribution of r = (t/θ0)n is uniform in

(0, (θ/θ0)n) and therefore, the expected value of `δ(θ0 | t, n) under repeated sampling is

E[`δ(θ0 | t, n) | θ] = (θ/θ0)n − n log(θ/θ0),

which is precisely equal to one if θ = θ0, and increases with n otherwise. Hence, under
repeated sampling, one would expect to obtain `δ values around 1 when θ = θ0, and one
would always reject a false θ0 value for sufficiently large n. The procedure is therefore
consistent.

A particular θ0 value should be judged to be incompatible with the observed data (t, n)

if `δ(θ0 | t, n) > `0, for suitably chosen `0. This precisely means that, given available
data, the minimum expected value under sampling of the log-likelihood ratio between the
true model and the model identified by θ0 may be expected to be larger than `0. Thus,
if `0 = log[1000] ≈ 6.9, then θ0 would be rejected whenever, given (t, n), the average
likelihood ratio against θ = θ0 may be expected to be larger than about 1000.

To illustrate the type of results obtained, a sample of size n = 10 was simulated from a
uniform distribution on (0, 2), and this had a maximum value t = 1.71. The corresponding
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Figure 3: Posterior reference analysis of the parameter of a uniform model.

reference posterior density is plotted in the top panel of Figure 3. The figure includes the
intrinsic estimator θ∗ = 1.83 (indicated by a solid dot) and the intrinsic 0.95-credible region

(t, 2.31) (indicated as a shaded area). The expected intrinsic discrepancy loss `δ(θ0 | t, n) is
plotted in the bottom panel of Figure 3. It may be appreciated that the intrinsic estimator
corresponds to the minimum value of the expected loss, and that all values within the
intrinsic credible region have smaller expected loss than all values outside the region. The
dashed horizontal line corresponds to `0 = log 1000, and this intersects the expected loss
function at θ0 = 2.66. Thus, if in this application one wants to reject any value θ0 with
an expected average log-likelihood ratio against it larger than log 1000, one should reject
whenever θ0 > 2.66.

Figure 3 provides a rather complete, intuitive, easily interpretable, impressionist
summary of the posterior reference analysis of the problem under scrutiny. Indeed,
we argue that systematic use of this type of representation for any one-dimensional
quantity of interest would greatly enhance the comprehension by the user of the
inferential conclusions which, given the assumed model, could reasonably be drawn
from the data.

Inference on the parameters of a univariate normal model is surely one of the
oldest problems in mathematical statistics and yet, there is no consensus about its
more appropriate solution. We review below the intrinsic reference results for this
problem. Further details may be found in Bernardo (2005b, 2007).

Example 6 (Normal model, continued). Let z be a random sample of size n from a
normal N(x |µ, σ) and let (x̄, s) be the jointly sufficient m.l.e. estimators of its parameters.
The reference prior when either µ or σ are the parameters of interest is π(µ, σ) = σ−1, and
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the corresponding marginal posteriors are the Student π(µ |z) = St(µ | , x̄, s/
√
n− 1, n− 1)

and the square root inverted gamma density π(σ |z) = Ga−1/2(σ | (n−1)/2, ns2/2) (so that
the reference posterior of the precision τ = 1/σ2 is a gamma distribution with the same
parameters). Intrinsic estimation of the mean produces mainly conventional results; the
intrinsic point estimator is µ∗ = x̄ and the intrinsic credible intervals are the HPD intervals
in π(µ |z). The relevant reference expected intrinsic discrepancy loss is

d(µ0 |z) = d(t, n) ≈
n

2
log
h
1 +

1

n+ 1
(1 + t2)

i
,

a one-to-one function of the conventional test statistic t =
√
n− 1 (x̄− µ0)/s. As n→∞,

the function d(t, n) converges to (1 + t2)/2; thus, for large samples (but only for large
samples), there will be a one-to-one correspondence between the intrinsic test and any
test based of the value of t. The implementation of the intrinsic test is however radically
different: rather than relying on the sampling distribution of t, one simply checks whether
or not d(µ0 | t, n) indicates too large expected log-likelihood ratios against µ0. For instance,
with n = 10 and t = 2.262 so that the p-value is 0.05, d(t, n) = 2.387 = log[10.9], so the
average likelihood ratio against the null is expected to be about 11, hardly strong evidence
for rejection.

Intrinsic estimation of σ (or of any one-to-one function of σ, since the methodology is
invariant under those transformations) produces however new results. Thus, the intrinsic
point estimator of σ is

σ∗n ≈
n

n− 1
s, n > 2,

with σ∗2 ≈ (
√

5/2) |x2 − x1 | when n = 2. As Figure 1 already suggested, the intrinsic
estimator is larger than most conventional estimators (see Bernardo, 2007, for the exact,
complicated expression). The differences are very noticeable for small sample sizes.

The exact form of intrinsic q-credible intervals for σ is complicated (see Bernardo, 2007,
for details), but for moderate or large sample sizes they are approximately of the form

R∗q =
`
σ∗e−aq/

√
2(n−1), σ∗eaq/

√
2(n−1)

´
,

with aq chosen to have posterior probability q. As n increases, aq converges to the (q+1)/2
quantile of the standard normal.

Using the intrinsic discrepancy loss `δ{σ0, σ |Mz) derived in Example 2, the reference
expected intrinsic discrepancy loss for using σ0 as a proxy for σ is

d(σ0 | s, n) =

Z ∞
0

`δ{σ0, σ |Mz)π(σ | s, n) dσ,

and testing the compatibility of the data with a particular σ0 value reduces to evaluating
d(σ0 | s, n). For instance, with n = 10 and s = 1, testing σ0 = 1.924 (which is the 0.975-
quantile of the reference posterior of σ) yields d(σ0 | s, n) = 2.367 = log[10.7]; thus the
average likelihood ratio against σ0 is expected to be about 11 which, again, is hardly strong
evidence for rejection.

This is a general feature: frequentist rejection with a 0.05 p-value typically corresponds
to an expected average likelihood ratio against the null of about 11, far from conclusive
evidence for rejection.

Joint inferences about µ and σ are easily computed in terms of the expected intrinsic dis-
crepancy loss d(µ0, σ0 |z), the expectation of the intrinsic discrepancy loss `δ{µ0, σ0), (µ, σ)},
derived in Example 2, with respect to the joint posterior which corresponds to the reference
prior π(µ, σ) = σ−1.

Figure 4 is a contour plot of the expected intrinsic discrepancy loss which corresponds to
n = 25 observations, simulated from N(x | 0, 1), which yielded x̄ = 0.024 and s = 1.077. The
resulting surface has a unique minimum at (µ∗, σ∗) = (0.024, 1.133), which is the intrinsic
joint estimate, represented by a solid dot; notice that µ∗ = x̄, and σ∗ ≈ s n/(n−1) = 1.122.
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Figure 4: Joint reference analysis of the parameters of a univariate normal model.

The three contours shown describe the intrinsic q-credible regions which correspond to
q = 0.50, 0.95 and 0.99. For instance, the 0.95-credible region (middle contour in the figure)
is the set of {µ0, σ0} points whose intrinsic expected loss is not larger that 3.35 = log[28].
Testing a joint value {µ0, σ0} reduces to checking whether of not this point belongs to the
intrinsic region defined by d(µ0, σ0 |z) = `0, where `0 is the minimum average log-likelihood
ratio against the null which is required for rejection.

In one-parameter problems, Theorem 3 may be used to obtain useful large sample
approximations to the quantities required for intrinsic estimation and hypothesis
testing. For details and proofs, see Bernardo (2005b).

Theorem 5 Let data z = {x1, . . . , xn} be a random sample from p(x | θ), and let θ̃n
be an asymptotically sufficient consistent estimator of θ with asymptotically normal

sampling distribution of standard deviation s(θ)/
√
n. Define φ(θ) =

R θ
s(y)−1dy.

Then, for large n, `{θ0 |z) ≈ (1/2) + (n/2)[E[φ |z]− φ(θ0)]2, where E[φ |z] is the
expected posterior of φ(θ). The intrinsic estimator of θ is θ−1(φ∗) ≈ θ−1{E[φ |z]},
and the intrinsic q-credible interval of θ is R∗q ≈ θ−1{E[φ |z]± nq/

√
n}, where nq

is the (q + 1)/2 quantile of a standard normal distribution.

The next example, taken from the extra sensory power (ESP) testing literature,
illustrates the radically different answers which the two alternative types of priors
commonly used in Bayesian hypothesis testing may produce with the same data.

Example 7 (Binomial parameter: ESP testing). Let z = {x1, . . . , xn} be a random
sample of size n from p(x | θ) = θx(1 − θ)1−x, with x ∈ {0, 1}, and let r =

P
xi. The

reference prior is the (proper) Beta π(θ) = Be(θ | 1/2, 1/2), and the reference posterior is
π(θ | r, n) = Be(θ | r+1/2, n−r+1/2). The intrinsic discrepancy loss function is `δ(θ0, θ) =
nκ(θ/θ0), if θ0 < min{θ, 1− θ} or θ0 > max{θ, 1− θ}, and nκ(θ0/θ) otherwise, where

κ(θj | θi) = θi log
θi

θj
+ (1− θi) log

1− θi
1− θj

.

The expected intrinsic discrepancy loss is d(θ0 | r, n) =
R 1
0 `δ(θ0, θ)π(θ | r, n) dθ, a con-

cave function of θ0. Theorem 5 yields d(θ0 | r, n) ≈ (1/2) + (n/2)[E[φ |z] − φ(θ0)]2 for

large sample sizes, where φ(θ) = 2 arcsin
√
θ. Hence, the intrinsic estimator of φ(θ) is

φ∗ ≈ E[φ |z] and, by invariance, θ∗ = θ−1(φ∗). This yields θ∗ ≈ (r+1/4)/(n+1/2), which
is close to the median of the reference posterior.
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As an illustration, consider the results reported by Jahn, Dunne and Nelson (1987) using
a random event generator based in a radioactive source, and arranged so that one gets a
random sequence of 0’s and 1’s with theoretically equal probability for each outcome. A
subject then attempted to mentally “influence” the results so that, if successful, data would
show a proportion of 1’s significantly different from 0.5. There were n = 104, 490, 000 trials
resulting in r = 52, 263, 471 successes, about 0.018% over chance expectation. The huge
sample size means that one may safely use asymptotic approximations. Using conventional
testing procedures, the authors reject the hypothesis that θ0 = 1/2 on the grounds of
the very low p-value they derive. Jefferys (1990) reanalysed the data from a Bayesian
perspective, using a prior which placed probability p0 on θ0 = 1/2 and continuously spread
the rest over the (0, 1) interval, and obtained a posterior probability Pr[θ0 = 1/2 | r, n] larger
than p0. Hence, this particular Bayesian analysis seems to support θ0 = 1/2 despite the
strong rejection by the classical test. This is a remarkable example of Lindley’s paradox. To
use the methods advocated here one simply computes the expected intrinsic discrepancy loss
to obtain d(θ0 = 1/2 | r, n) = 7.24 = log[1400] (we have used the reference prior, but given
the huge sample size, any continuous prior will give essentially the same result). Thus, the
expected minimum likelihood ratio against θ0 is about 1400 and, we argue, the hypothesis
that θ0 = 1/2 should really be rejected. Of course, this does not necessarily mean that the
subject had extra sensory powers: a far more likely explanation is that the random event
generator had some small bias. However, we argue that the argument establishes that,
under the accepted assumptions, the precise value θ0 = 1/2 is rather incompatible with the
data.

The following examples illustrate the use of the methods described to derive
novel solutions to paradigmatic problems.

Example 8 (Equality of Normal means). Let z = {x,y} be two independent random
samples, x = {x1, . . . , xn} from N(x |µx, σx}, and y = {y1, . . . , ym} from N(x |µy , σy},
and suppose that one in interested in comparing the two means. In particular, one may be
interested in testing whether or not the precise hypothesis H0 ≡ {µx = µy} is compatible
with available data z. Consider first the case where it may be assumed that σx = σy .
Using the additive property of the intrinsic discrepancy loss and the first result in Exam-
ple 2, to derive the logarithmic divergence of p(z |µ0, µ0, σ0) from p(z |µx, µy , σ), and then
minimizing over both µ0 and σ0 yields infµ0∈<, σ0>0 κ{µ0, µ0, σ0 |µx, µy , σ} = knm θ2,
where knm = 2nm/(m + n) is the harmonic mean of the two sample sizes, and θ =
(µx − µy)/σ is the standardized difference between the two means. On the other hand,
infµ0∈<, σ0>0 κ{µx, µy , σ |µ0, µ0, σ0} yields [(m+n)/2] log[1+(knm/(2(m+n))] θ2], which
is always smaller. Hence, the intrinsic discrepancy loss of accepting H0 is

`δ{H0, (µx, µy , σ)} = `δ{H0, θ |M} =
n+m

2
log
h
1 +

knm

2(n+m)
θ2
i
,

which reduces to n log[1 + θ2/4] when n = m. Here, the parameter of interest is θ.
Bernardo and Pérez (2007) find that the marginal reference posterior of θ only depends

on the data through the sample sizes and t = t(z) = (x̄ − ȳ)/(s/
p

2/knm), where s is
the m.l.e. of σ. Therefore, the required marginal reference posterior of θ is π(θ |z) =
π(θ | t,m, n) ∝ p(t | θ)π(θ) where p(t | θ) is the non-central Student sampling distribution

of t, and π(θ) = (1 + (knm/(4(m+ n)) θ2)−1/2 is the marginal reference prior for θ. The
posterior π(θ | t,m, n) may be used to provide point and interval estimates of θ, the stan-
dardized difference between the two means, and hence inferential statements about their
relative positions.

The relevant expected loss, d(H0 | t, n,m) =
R∞
−∞ `δ{H0, θ |M}π(θ | t, n,m) dθ, may be

used to test H0. This has no simple analytical expression, but its value may easily be
obtained by one-dimensional numerical integration. A good large sample approximation is

d(H0 | t, n,m) ≈
n+m

2
log
h
1 +

1

n+m
(1 + t2)

i
.
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The sampling distribution of d(H0 | t, n,m) is asymptotically (1/2)[1 + χ2
1(λ)], where

χ2
1(λ) is a non-central chi-squared distribution with one degree of freedom and non-centrality

parameter λ = knmθ2/2. If follows that the expected value under sampling of d(H0 | t, n,m)
is equal to one when µx = µy , and increases linearly with the harmonic mean of the samples
when this is not true. Thus, the testing procedure is consistent.

In the general case, when the two variances σx and σy are allowed to be different, the
intrinsic discrepancy loss function is

`δ{H0, (µx, µy , σx, σy |M)} ≈
n

2
log

"
1 +

θ2
1

(1 + τ2)2

#
+
m

2
log

»
1 +

θ2
2

(1 + τ−2)2

–
,

where θ1 = (µx − µy)/σx and θ2 = (µx − µy)/σy are the two standardized differences
of the means, and τ = (nσy)/(mσx) is a measure of the design balance. Derivation of
the exact form of the joint reference prior πφ(µx, µy , σx, σy) when the quantity of interest
is φ = `δ{H0, (µx, µy , σx, σy |M)} is daunting, but the arguments in Subsection 4.2 may

be invoked to use the joint reference prior π(µx, µy , σx, σy) = σ−1
x σ−1

y . Indeed, this prior
gives the correct marginal reference posteriors for the four parameters, and may be therefore
expected to provide a marginal posterior for φ not too different from its exact reference
posterior.

If follows from Theorem 2 that, under regularity conditions for asymptotic nor-
mality, the two KL divergences whose minima define the intrinsic discrepancy con-
verge to a common, symmetric limit. Hence, for large samples one may just take
whichever of those is easier to compute, which typically is the KL divergence of
the null from the assumed model, and use `{θ0, (θ,λ)} ≈ infλ0∈Λ κ{θ0,λ0 |θ,λ}.
Moreover, the exact reference prior when the parameter of interest is taken to be
φ = `{θ0, (θ,λ)} may well be very difficult to derive, but one may use the argu-
ments described in Subsection 4.2, and use instead the approximate joint reference
prior whose marginal posteriors minimize the expected average intrinsic discrepan-
cies from the exact reference posteriors for all the parameters involved.

We conclude this section by using these two approximations to obtain relatively
simple solutions to a couple of important problems in precise hypothesis testing.
We first consider a question in genetics which has become an important test case to
compare alternative procedures for precise hypothesis testing.

Example 9 (Hardy–Weinberg equilibrium). To determine whether or not a popula-
tion mates randomly is an important problem in biology. At a single autosomal locus with
two alleles, a diploid individual has three possible genotypes, typically denoted {AA, aa,Aa},
with (unknown) population frequencies {α1, α2, α3}, where 0 < αi < 1 and

P3
i=1 αi = 1.

The population is said to be in Hardy–Weinberg (HW) equilibrium (compatible with ran-
dom mating) if there exists a probability p = Pr(A), 0 < p < 1, such that

{α1, α2, α3} = {p2, (1− p)2, 2p(1− p)}.

Given a random sample of size n from the population, and observed z = {n1, n2, n3}
individuals (with n = n1 +n2 +n3) from each of the three possible genotypes {AA, aa,Aa},
the question is whether or not these data support the hypothesis of HW equilibrium. This
is a good example of a precise hypothesis in the sciences, since HW equilibrium corresponds
to a zero measure set within the original simplex parameter space.

The relevant statistical model is obviously trinomial Tr(n1, n2 |α1, α2, n), where the
parameter space is the simplex A = {(α1, α2); 0 < α1 < 1, 0 < α2 < 1, 0 < α1 + α2 < 1},
while the hypothesis H0 to test, the HW equilibrium, is the line with parametric equations
{(α1, α2); α1 = p2, α2 = (1− p)2, 0 < p < 1}, so that

√
α1 +

√
α2 = 1.
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The KL divergence of H0 from the model is the minimum, for all p in (0, 1), of
κ{Tr(· | p2, (1−p)2, n) |Tr(· |α1, α2, n)}. This minimum is achieved at p = (1 +α1−α2)/2,
which would be the value of Pr(A) if the population were really in HW equilibrium. Substi-
tution yields the intrinsic discrepancy loss,

`δ{H0, (α1, α2)} ≈ n
ˆ
2 H{ω, 1− ω} −H{α1, α2, 1− α1 − α2} − (1− α1 − α2) log[2]

˜
,

where H{q1, . . . , qk)} = −
Pk
j=1 qj log qj is the entropy of a discrete distribution (q1, . . . , qk),

and ω = (1 + α1 − α2)/2. As explained above, this approximation assumes that the KL
divergence of the model from the null, κ{Tr(· |α1, α2, n) |Tr(· | p2, (1 − p)2, n)}, attains a
similar minimum. It has been numerically verified that this is indeed the case, even for
very moderate sample sizes.

The function `δ{H0, (α1, α2) |Mz} is a measure on [0, n log 2] of the divergence between
the null H0 and the model identified by (α1, α2).
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Figure 5: Exact and approximate reference priors for testing Hardy–Weinberg equilibrium.

The (proper) reference prior πφ(α1, α2) when φ(α1, α2) = `δ{H0, (α1, α2)} is the quan-
tity of interest was obtained in Bernardo and Tomazella (2010), and it is rather complicated.
Its contour plot is represented in the left panel of Figure 5. For comparison, the right panel
shows the Dirichlet prior with parameter vector (1/3, 1/3, 1/3), so that

πdir(α1, α2) = Γ−3[1/3]α
1/3−1
1 α

1/3−1
2 (1− α1 − α2)1/3−1

which, as described in Example 4, has been found to be the best global approximation
for the trinomial model. It may be noticed that the two priors are not very different. To
test H0 given data {n1, n2, n3} one numerically computes

d(H0 |n1, n2, n3) =

Z
A
`δ{H0, (α1, α2) |Mz}π(α1, α2 |n1, n2, n3) dα1dα2,

and reports the value obtained. With the posterior which corresponds to the reference prior
this requires rather delicate numerical analysis. If the Dirichlet prior is used, the numerical
integration is straightforward: one simply generates a large number of samples from the
corresponding Dirichlet posterior, with parameter vector (n1 + 1/3, n2 + 1/3, n3 + 1/3),
and computes the average of the corresponding `δ{H0, (α1, α2) |Mz} values. As one would
expect, the results obtained from both priors are qualitatively similar.

For instance, simulation of n = 30 observations from a trinomial with {α1, α2} =
{0.45, 0.40}, so that the population is not in HW equilibrium (the actual value of the in-
trinsic discrepancy is nφ(0.45, 0.40) = n 0.269 = 8.08), yielded {n1, n2, n3} = {12, 12, 6}.
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The expected posterior intrinsic discrepancy loss with the exact and the approximate ref-
erence priors were respectively 5.84 = log 334 and 5.82 = log 336, both clearly indicating
rejection.

Similarly, simulation of another 30 observations from a population in HW equilib-
rium (with p = Pr[A] = 0.3, so that {α1, α2} = {p2, (1 − p)2} = {0.09, 0.49}), yielded
{n1, n2, n3} = {2, 15, 13} and expected posterior intrinsic discrepancy losses 0.321 = log 1.38
and 0.51 = log 1.66, both suggesting that those data are certainly compatible with the hy-
pothesis of HW equilibrium.

Our final example provides a new Bayesian objective procedure to test indepen-
dence in contingency tables.

Example 10 (Independence in contingency tables). Consider an a × b contingency

table, with unknown parameters 0 ≤ θij ≤ 1,
Pa
i=1

Pb
j=1 θij = 1, and let α = {α1, . . . αa}

and β = {β1, . . . βb} be the corresponding marginal distributions. Thus,

αi =
Xb

j=1
θij

Xa

i=1
αi = 1, βj =

Xa

i=1
θij ,

Xb

j=1
βj = 1.

Given a random sample of size n from the population, and observed nij individuals in
each of the a × b cells, so that z = {{n11, . . . , n1b}, . . . , {na1, . . . , nab}}, with 0 ≤ nij ≤ n
and

Pa
i=1

Pb
j=1 nij = n, the question is whether or not these data support the hypothesis

of independence, H0 ≡ {θij = αiβj , ∀i, ∀j}. This is another example of precise hypothesis
testing since H0 corresponds to a zero measure set within the original simplex parameter
space.

The KL divergence of H0 from the model is the minimum, for all α0 and β0 distribu-
tions, of the KL divergence κ{α01β01, . . . , α0aβ0b | θ11, . . . , θab} of a k-multinomial distribu-
tion with parameters (α01β01, . . . , α0aβ0b) from one with parameters (θ11, . . . , θab), where

k = a× b is the total number of cells. The minimum is achieved when α0i =
Pb
j=1 θij and

β0j =
Pa
i=1 θij , that is, when α0 and β0 take the values which α and β would have under

independence. Substitution yields

`δ{H0,θ |Mz} ≈ n
aX
i=1

bX
j=1

θij log
h θij

αi βj

i
= nφ(θ),

where φ(θ) =
P
i

P
j θij log[θij/(αi βj)] is the KL divergence of the discrete distribution

on the k-dimensional simplex with probabilities αiβj from the discrete distribution on the
same space with probabilities θij . The function φ(θ) is a non-negative conditional measure
of how far a contingency table with parameters θij is from independence, and it is zero
if (and only if) the independence condition is verified. Once again, the approximation
sign refers to the fact that only the KL-divergence of H0 from the model, which may be
analytically found, has been considered. It has been numerically verified, however, that the
KL-divergence of the model from H0 yields very similar values.

Derivation of the joint reference prior πφ(θ) when the parameter of interest is φ(θ) does
not seem to be analytically feasible. Thus, we invoke again the arguments in Subsection 4.2
and Example 4, and use instead the corresponding approximate joint reference prior which,
in this case, is a (k − 1)-dimensional Dirichlet with parameter vector {1/k, . . . , 1/k}. This
leads to a joint reference posterior π(θ |z) which is a (k − 1)-dimensional Dirichlet with
parameter vector {n11 +1/k, . . . , nab+1/k}, from which simulation is straightforward. The
expected intrinsic discrepancy loss,

d{H0 |z} ≈ n
Z
Θ
φ(θ)π(θ |z) dθ,

where Θ is the (k− 1)-dimensional simplex, may easily be computed by Monte Carlo. One
simulates a large number s of θj values from π(θ |z) = Dik−1(θ |n11 + 1/k, . . . , nab + 1/k),
and evaluates d{H0 |z} ≈ (n/s)

Ps
j=1 φ(θj).
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Figure 6: Posterior distributions of φ = φ(θ) in 2 × 2 contingency tables,
under both independence (left density), and no independence (right density).

To illustrate the procedure, we describe the results obtained with data simulated from
two different 2 × 2 contingency tables, one where independence holds, and another where
independence does not hold. In the first case, n = 100 observations were simulated from
a contingency table with cell probabilities {{0.24, 0.56}, {0.06, 0.14}}, an independent con-
tingency table (which therefore has φ(θ) = 0), with marginal probabilities {0.8, 0.2} and
{0.3, 0.7}. This yielded data z = {{20, 65}, {2, 13}}. The marginal posterior distribution
of φ, obtained from 100, 000 simulations from the corresponding Dirichlet joint reference
posterior is represented at the left side of Figure 6. This has an expected value of 0.0080.
Thus, the expected intrinsic discrepancy loss is d{H0 |z} = nE[φ |z] = 0.80 = log[2.23],
suggesting that the observed data are indeed compatible with the independence hypothesis.

For the second case, n = 100 observations were simulated from a non-independent
contingency table with cell probabilities {{0.60, 0.20}, {0.05, 0.15}}, (where the true value
of the quantity of interest is φ(θ) = 0.0851) and obtained data z = {{58, 20}, {6, 16}}.
The corresponding marginal posterior distribution of φ is represented at the right side of
Figure 6. This has an expected value of 0.0835. Thus, the expected intrinsic discrepancy
loss is d{H0 |z} = nE[φ |z] = 8.35 = log[4266], clearly suggesting that the observed data
are not compatible with the independence assumption.
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DISCUSSION

LUIS PERICCHI (Universidad de Puerto Rico en Rio Piedras, Puerto Rico)

The achievements of a unified objective Bayesian decision theory. I begin by
listing some of the achievements summarized by this historic paper, the last invited
talk at a Valencia meeting:

(i) Professor Bernardo proved that it can be done! To put point estimation, inter-
val estimation and hypothesis testing in the same (objective Bayes) decision
theory system. This is very ambitious and an achievement in itself.

(ii) Reference priors have emerged over the years, starting with Bernardo (1979)
read paper to the Royal Statistical Society, and followed by Berger and Ber-
nardo (1992c) and Berger, Bernardo and Sun (2009), as the most successful
and accepted method to develop objective priors for estimation. It can be ar-
gued that reference priors gave a key contribution to make Bayesian statistics
“acceptable” to mainstream statistics, since it solved several “paradoxes” and
criticisms exposed by eminent statisticians and philosophers.

(iii) Bernardo’s version of “intrinsic” loss has interesting mathematical properties,
and in the examples given leads to attractive distances between distributions.

(iv) Less convincing (in my view) is Bernardo’s replacement of HPD intervals,
although admittedly invariance is a convenient property that his procedure
enjoys. But recall :

“The authors feel that in general nonlinear transformations ought to
change the relative credibility of any two parameter points and that in-
variance under nonlinear transformation is therefore not to be expected.
Insistence on invariance for problems which ought not to be invariant
serves only to guarantee inappropriate solutions” (Box and Tiao, 1973,
p. 124).

(v) The least convincing, my opinion, is this paper’s recipe for hypothesis testing.
I now concentrate my discussion on this last point.

Does the Bayes factor needs replacement? Or rather ought the p-value be replaced
as a measure of evidence for better scientific practice?

Three of the main arguments in the paper, against the Bayes factor and posterior
model probabilities, are: (i) it changes the prior used for estimation to a different
one used for testing for the same parameters; (ii) it assumes a positive probability
of the null hypothesis Pr(H0) = p0, say; and (iii) the loss function should be an
“intrinsic loss” function (which incidentally has nothing to do with “intrinsic priors”)
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that we call here “Bernardo’s loss”(since there are other “intrinsic” loss functions).
We revisit the interesting Example 7 on ESP testing, to illustrate that the three
criticisms above simply do not apply to this example. Furthermore, this example
show a disturbing similarity of the testing procedure of the paper with p-values, at
least for large samples.

Extra Sensory Perception: ESP or no ESP? Here, H0 : p = 1/2 vs. p 6= 1/2 and
we have a huge sample, n = 104, 490, 000, with s = 52, 263, 471 successes and ratio:
s/n = 0.5001768. The p-value against the null is minute, namely 0.0003, leading
to a compelling rejection of H0. The expected Bernardo’s loss, 7.03 = log(1130),
is bigger than the largest incompatibility in the author’s table (log(1000)) and also
compellingly leads to the rejection of H0. But we can calculate in this situation a
Bayes factor (BF) with a reference prior, since the reference prior is proper. The
reference (also Jeffreys) prior is

πR(p) = Be(p | 1/2, 1/2) = π−1 p−1/2(1− p)−1/2.

Then the Bayes Factor is there! Without any extra assumptions. It is the ratio of
evidences (as it is called by physicists),

BF01 =
p(data | p = 1/2)R
p(data | p)πR(p) dp

=
π (1/2)n

B(s+ 0.5, n− s+ 0.5)
= 18.7,

where B(a, b) above denotes the Beta function. Jefferys (1990) calculated this as 12
using a uniform prior. Thus with the same prior used for estimation, the data
favours the null hypothesis and the ratio of evidences is close to 19, pointing in
the opposite direction to the expected Bernardo’s loss. So it is not the change of
the prior that is the reason for the discrepancy, and notice that we have not yet
assumed anything about the probability of a hypothesis. It is interesting that the
Bayes factor is still not compelling, although it is substantially in favour of H0.

Now let us assume that the prior probability of the null hypothesis is not zero
(if we assume it is zero, then for any data the posterior probability is zero, a case of
pure dogmatism or a violation of the Cromwell rule described by Lindley.) Assume
then that the probability associated to H0 is not exactly 0 (if it is, what is the reason
to test?) If Pr(H0) > ε > 0 then, by Bayes’s theorem,

Pr(H0 | data) ≥
„

1 +
(1− ε)
ε BF01

«−1

.

If ε = 0.1, then Pr(H0 | data) ≥ 0.67, while if ε = 0.5, then Pr(H0 | data) ≥ 0.95.
So, the null hypothesis is very likely, but not overwhelmingly so! Notice that,
for whatever loss function, the posterior probability is a fundamental inferential
quantity that summarizes the evidence.

But, is the reference prior sensible for this test? It is not, because it does not
take into account the special status of the null point, p = 1/2 (which is objective
information). Also, ironically, it is too favourable to the null, because the prior
under the alternative does not give high probability to alternatives close to the null.

General and amazing fact. To alleviate the divergence between Bayes factors
and p-values, in the direction of a p-value, it is necessary to put a substantial (very
subjective) prior probability around the null, so that the prior has an information



Objective Bayesian Estimation and Hypothesis Testing 27

content comparable to the likelihood. To illustrate this general point let us assume
a simple class of priors:

p(p | a, a) = Be(p | a, a), 1/2 ≤ a ≤ n/2,

a class of beta densities centred in the null hypothesis, and letting the “equivalent
sample size”, equal to 2a, be from one to 18 million.

2a 1 10 50 100 200 500 9,000,000 18,000,000
B01 18.7 4.83 2.12 1.49 1.055 0.67 0.009 0.01

Here I follow a principle first stated by Berger and Pericchi (1996) (see also
Polson and Scott, 2011) “The best way to analyse a statistical procedure is to judge
the prior that yields it.” I would argue that a prior more concentrated than an
equivalent sample size of say m = 2a = 500, can be thought as of a very dogmatic
prior. See Pericchi (2010) for an argument not to take equivalent prior samples

larger than n1/3, the cube root of the sample size. In fact the minimum of BF01

over the whole range (up to 2a = n) is for n = 9 million. It is for that dogmatic
prior that the Bayes factor yields overwhelming support against H0, and still the
overall minimum BF is 30 times bigger than the p-value and the maximum 1/BF01

is 10 times smaller than Bernardo’s rate of 1130. But for the reference prior, and for
a reasonable range of priors, the Bayes factors are not overwhelming but cautiously
in favour of H0. I argue that this type of summary is better suited to science than
an inordinately strong rejection of H0. It has long been argued that Bayes factors
are sensitive to change in the priors. But it is better to have a large interval of
posterior probabilities in the right direction than to decide robustly, in the wrong
direction.

I will finish this subsection with two illuminating quotations, both about testing
without posterior probabilities:

“Do you want to reject a hypothesis? Just take enough data!” (Wonnacott
and Wonnacott in several of their writings).

“In real life, the null hypothesis will always be rejected if enough data are
taken because there will be inevitably uncontrolled sources of bias”. (Berger
and Delampady, 1987).

Posterior model probabilities may improve scientific practice. There is a grow-
ing dissatisfaction in the scientific community in the way evidence is weighted via
significance testing. For example, recall

“Law of initial results: so often early promising results are followed by others
that are less impressive. It is almost as if there is a law that states that first
results are always spectacular, and subsequent ones are mediocre: the law of
initial results.” (Ioannidis, 2005).

This is consistent with Jeffreys (1961) comments.

Consistency of the Bayes factor with objective (intrinsic) priors, but not of the
expected loss d(H0|t, n).

Mathematical consistency is a very relevant and a minimally necessary require-
ment for a procedure to be reasonable. To illustrate the inconsistency under the null
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of the expected Bernardo’s loss for decision in hypothesis testing, take Example 8,
on the equality of Normal means, with n = m, and let N = 2n. Here the criterion of
this paper is exp[−d(H0|t,N)] = [1 +N−1(1 + t2)]−N/2], which under H0 converges
to exp(− 1

2
(1 + t2)) as N → ∞, and hence is it is bounded under H0. Thus, there

a positive probability of missing H0, even with infinite information sampled from
it. Another way to check inconsistency under the null is from the result in the pa-
per in Example 8; indeed, d(H0|t,N) is distributed asymptotically as 1

2
(1 + χ2

1(λ)),

with the non-centrality parameter λ = nθ2/2, which is zero under H0. So for all
sample sizes N , no matter how large we choose the cut-point to decide against
and in favour of H0 it follows that the probability of wrong rejection is positive
P (Reject H0|H0) > 0.

Quite differently, under the alternative hypothesis H1, Bernardo’s procedure is
consistent, since now the non-centrality parameter λ→∞ with N .

Of course I am not claiming that the proposed procedure is equivalent to sig-
nificance testing for all sample sizes; in fact in Example 6 there is an instance of a
difference with a sample of size 10. But for large samples, at least for the test of
comparison of normal means, it turns out that,

2× d(H0|t, n) ' 1− 2× log(Likelihood Ratio 01),

and so the inference has no growing penalty with the sample size for over-parameteri-
zation, and thus it is not consistent under H0. The same occurs with procedures
based on Akaike’s criterion or DIC. Indeed the expression above is equivalent to
Akaike’s but with smaller penalty for over-parametrization, multiplying by one the
extra parameters, instead of two as in Akaike. None of these procedures place
the null and the alternative hypothesis on an equal footing, and it can be claimed
that they are biased in favour of the more complex hypothesis. There is a clever
resource in the paper, in that the scale chosen to reject the null is set rather high,
like log(100) or log(1000). But the problem with the procedure is deep, since that
scale should not be independent of the sample size, or the amount of information in
the problem. (See above in the ESP example that log(1000) was not high enough,
but in a problem with n = 10, log(10) may be too high, the same problem as with
p-values.)
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Figure 7: Intrinsic prior for the difference of normal means, centred at the null.

The problem of consistency and the right scale for rejection now has solutions, via
objective Bayes factors, based for example on intrinsic priors, which are consistent
both under the null and under the alternative hypothesis. To see this, in the example
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of comparison of means, let us use the intrinsic prior with a conceptual prior for
simplicity of size 4 (minimal training sample is 3, Figure 7). Then,

δ2 =
(µx − µy)2

4
, IPrior πI(δ) =

σ

4
√
π δ2

[1− exp(−4 δ2/σ2)],

and the (intrinsic) Bayes factor BF I01 converges to
√
n exp[−t22n−2/2]. This con-

verges to +∞ under H0 and converges to 0 under H1 and it is therefore consistent
under both H0 and H1. The advantage is that we now have methods for specifying
objective priors for model comparison and testing, particularly the intrinsic priors
(Berger and Pericchi, 1996), that naturally are centred around the null hypothesis
(as illustrated in Figure 7). Objective priors centred around the null (a tradition
that comes from Jeffreys, de Finetti, and Savage among others) are better for testing
than reference priors.

The paradox about Lindley’s paradox.

“Paradox: a person or thing that combines contradictory features or qualities”
(The Oxford English Dictionary).

Lindley’s paradox has been misunderstood in several places, including by myself in
the distant past. It is unfortunate that opposite to Lindley’s written words, his
“paradox” has been misunderstood as an “illness” of Bayes factors and posterior
probabilities. To put the record straight I propose to rename it, and have the word
paradox replaced by “disagreement”, “discrepancy” or “divergence”.

Let us recall some of Lindley’s comments and Bartlett’s replica, both warning
about the problems of significance testing with fixed significance levels.

The phenomenon (conflict between significance test at fixed level and posterior
probability of a hypothesis) is fairly general with significance tests and casts
doubts on the meaning of a significance level in some circumstances” ... “5%
in today’s small sample does not mean the same as 5% in tomorrow’s large
one... The value of θ0 is fundamentally different for any value of θ0 6= θ.
(Lindley, 1957).

I would agree that he (Lindley) establishes the point that one must be cautious
when using a fixed significance level for testing a null hypothesis irrespective
of the size of sample one is taken. (Bartlett, 1957).

The above quotations from Lindley and the replica by Bartlett establish in a
crystal clear way, that it is significance testing, and equivalent to significance test-
ing (even Bayesian) procedures, with fixed (with n) errors that deserve scepticism.
I suggest reolacing the misleading name “Lindley paradox” (Jeffreys earlier dis-
cussed the phenomenon, as recognized by Lindley), by Bayes/Fisher discrepancy
(as suggested by I. J.Good) or by Bayes/NonBayes disagreement (as suggested by
J. O. Berger) or by probabilities/p-values divergence, stressing that they diverge as
the information accumulates. To resolve the divergence we have an advantage now:
we have methods to assign objective priors for testing in some generality, such as
intrinsic priors, improved BIC’s, and many others.

Posterior probabilities answer a scientific question that p-values cannot answer.
“What is the probability of a hypothesis or a model given the data?”, is perhaps

the most relevant question for a scientist. This is a Bayesian question. We should
be able to answer it!
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Epilogue: The significance of the Valencia meetings. As one of the statisticians of
the generations deeply influenced by the Valencia meetings, it is fair to say: Gracias
José-Miguel for the nine Valencia meetings!, and for keeping yourself as active as
ever. This gratitude is extended to the Valencia organizing committee. You have
made statistical history and deserve our thanks!

BERTRAND CLARKE (University of Miami, USA)

The role of integrated Bayesian analysis is best seen as an extension of reference
priors to an entire reference analysis. That is, integrated Bayesian analysis is so clear
and so precise that its most important use may well be as a standard with which
other analyses may be compared. It’s not that the integrated analysis necessarily
generates the inferences one wants to report; rather, the inferences one reports may
be better interpreted if compared with the integrated analysis.

Professor Bernardo has made an enormous number of deep intellectual contribu-
tions over several decades. He has also given all of us fully nine Valencia conferences
which have dramatically accelerated the development and dissemination of Bayesian
thinking—to say nothing of the great fun we have had! In short, my esteem and
respect for Professor Bernardo is unbounded. Now, Bernardo has written an impor-
tant paper where he proposes an integrated objective Bayesian analysis based on an
intrinsic discrepancy and suitably defined objective priors that should be used for
both estimation and testing. This is a natural, principled, and unified treatment of
the central problem in Bayesian statistics.

Integrated analysis. Let me begin by restating Bernardo’s proposal using the
same notation as he uses. He proposes choosing a loss function `{θ0, (θ, λ)} with
posterior expectation ¯̀(θ0 |z). Then point estimates are the familiar minimum
posterior risk estimates and credible regions are from the level sets of ¯̀(θ |z) as a
function of θ. That is, the (1− α) credible region is of the form

Vα = {θ| ¯̀(θ |z) ≤ uα} where Pr(Vα |z) = 1− α,

a lowest posterior risk region (in the posterior density) rather than a highest pos-
terior density region. Analogously, for testing H0 ≡ {θ = θ0}, the rule is to reject
the null when ¯̀(θ0 |z) is larger than a threshold value `0. In both the testing and
estimation settings, the loss is to be intrinsic and the prior is to be objective. The
sort of analysis he suggests can, in principle, always be done: It is enough to specify
a prior, likelihood and loss.

In his earlier work, Bernardo extensively studied prior selection and more re-
cently has studied loss function selection. I assume he would say that the likelihood
comes from modelling the experiment generating the data. However, a reference
likelihood can also be identified essentially from a loss function and prior via the
rate distortion function in the information theory context, see Yuan and Clarke
(1999). An obvious extension of that work can be used to generate a reference prior
and a reference likelihood. (Given a prior, find the reference likelihood. Given the
reference likelihood, find the reference prior. Cycle until convergence is obtained.)
Taken together this would provide a complete, mostly objective, specification of the
key ingredients in a Bayesian analysis starting from a loss function.

Thus, I see this paper as the natural conceptual completion of Bernardo’s semi-
nal contribution, reference priors. Recall that the idea of a reference prior is to find
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an objective prior that encapsulates our lack of knowledge. Thus, it is not neces-
sarily to be used for inference but rather to provide a standard analysis with which
the analyses generated by other priors might be compared. In the same spirit, the
integrated analysis starting from a loss function, i.e., the estimators and tests gen-
erated by the analysis a given loss function provides by using it to find a reference
likelihood and reference prior, can be regarded as benchmark inferences with which
inferences from other choices of loss functions can be compared.

Beyond integrated analysis. Now, let me raise two caveats to Bernardo’s pro-
posal. First, there is no concept of model bias, i.e., likelihood mis-specification, and,
second, there is no concept of robustness. Note that these concerns are motivated
by the sort of validation involved in the prequential approach, see Dawid (1982).

My first thought for examining model bias is to take the data z and form a
non-parametric estimate of the density, say q̂(·). Then choose

λ∗ = arg min
λ
d{q̂, p(· | θ∗, λ)},

where d is a measure of distance on densities. If d{q̂(·), p(·|θ∗, λ∗)} is large we know
that there is no value of the nuisance parameter that makes the likelihood evaluated
at θ∗, treated as a conditional density for z, mimic a non-parametric estimate of
the density of z.

A second idea, more in keeping with decision theory based on `, is to convert the
notion of model mis-specification to a parametric problem. Suppose the parameter θ
is embedded in a larger parameter φ = (θ, ν) where ν consists of some extra dimen-
sions that can be used to describe a density. Suppose also that ` is extended to φ
and assume that the density indexed by θ0 in the initial statement of the problem
corresponds to φ0 = (θ0, ν0). Then, model mis-specification can be evaluated by
seeing if the posterior risk meaningfully decreases due to the inclusion of ν. That
is, we may surmise model-mis-specification if

¯̀(θ0|z)� ¯̀(θ0, ν0|z).

Both of these suggestions introduce new models. However, Dawid (1984) argues
convincingly that such alternatives must be examined.

My first thought on how to examine robustness to the inferences is to use a sort
of errors-in-variables technique. A recent example of this can be found in Wang et al.
(2009). The basic idea is to perturb each xi by i.i.d. noise Ui so that a collection of
data sets of the form Wi = Xi + Ui for i = 1, . . . , n is generated. These new data
sets can be analysed in the same way as the original data set and a collection of
estimates of θ can be found—one for each perturbation of the data. If the histogram
of these estimates is too spread out relative to, say, Var(Ui) then we have reason to
doubt the usefulness of θ∗.

A second idea, more in keeping with the decision theoretic structure in Bernardo’s
paper, is to call for stability of inferences under small changes to the loss function.
This is most important because Bernardo’s theory essentially rests on correct spec-
ification of the loss. However, it is very hard, too.

A third sort of robustness of the inferences is the following. Let zi be the origi-
nal data z with xi removed, i.e., zi = {x1, . . . , xn} \ {xi}. Then using the existing
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decision theoretic structure we can find n estimates of θ: θ∗(z1), . . . , θ∗(zn). Thus
we have n densities Z

p(· | θ∗(zi), λ)p(λ | θ∗zi))dλ. (1)

Let us generate new data z∗ = (z∗1 , . . . , z
∗
n) where z∗i is a random draw from (1).

Now we can form a new estimate of θ, θ(z∗) and ask how different it is from θ∗.
That is we can calculate

d(θ∗, θ(z∗)) =

Z
`{θ∗, (θ(z∗), λ)} p(λ | θ∗)dλ (2)

to see how well the predictions z∗i replicate the inferential behaviour of the original
data. Obviously, we do not expect (2) to be zero; its size will be bounded below in
terms of n and the spread of the likelihood.

Integrating integrated analysis into practice. The caveats above are merely that,
caveats. So, I am confident there will be a goodly number of problems where
Bernardo’s integrated analysis can be used as is to get good results. However, I
suspect there will be even more cases where his integrated analysis will serve as a
useful benchmark for interpreting the results of another analysis that is actually
advocated. Finally, I suggest that Bernardo’s integrated analysis can be extended
in ways that do not do much damage to his intent so as to provide a benchmark
analysis for the frustratingly complex problems that most statisticians face today.

SUBHASHIS GHOSAL (North Carolina State University, Raleigh, USA)

First, let me congratulate Professor Bernardo for a very lucid description of his
recent work on a unified method of prior selection for various inference problems.
I fully agree with Bernardo’s motivating idea that the choice of prior distribution
should not be affected by the nature of the inference problem, either philosophi-
cally or operationally. The practice of using a drastically different prior in testing
a point-null hypothesis compared to more natural looking priors used in estimation
is inconvenient and has led to a lot of disagreement (the Jeffreys–Lindley paradox)
among statisticians in the past. This sharply contrasts with the case of estimation,
at least when the sample size is reasonably large, where one can often match fre-
quentist and Bayesian procedures up to second order. Bernardo has made a valuable
contribution by bringing the prior selection mechanism for widely different inference
problems (point estimation, testing and region estimation) under the same umbrella.

Bernardo’s concept of intrinsic discrepancy loss is fundamentally important here.
Although it has become less fashionable nowadays, Wald’s decision theoretic formu-
lation of inference problems is the most elegant and useful way of describing various
issues related to inference. It is therefore not surprising that Bernardo’s elegant
solution for unification of the objective prior is based on decision theoretic concepts.
By letting the loss function be dependent only on the distance between probabil-
ity measures (rather than on the corresponding parameters), Bernardo has made
invariance under parameterization a non-issue.

Nevertheless, we still need to make some choices. The first one is the choice of
the divergence measure δ(p, q) itself. Bernardo’s choice of δ(p, q) is the minimum of
the two possible Kullback–Leibler divergence measures κ(p | q) and κ(q | p). This is
a clever choice since the Kullback–Leibler divergence is very “likelihood friendly”,
and further the minimum is symmetric, and is zero only when the two densities are
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equal. The triangle inequality is still elusive, but that does not appear to be an issue
here. But there is a potential problem with this symmetrization of κ(p | q). Unlike
κ(p | q), the measure δ(p, q) does not appear to be additive for product densities for
the general non-identically distributed case, although it is additive for all i.i.d. cases.
This is because the minimum and summation operation may not be interchanged
unless the ordering between κ(pi | qi) and κ(qi | pi) does not depend on i. This has
potential consequences when dealing with non-i.i.d. data.

Another possible candidate for the divergence measure to be used to construct
the intrinsic loss is given by the negative log-affinity, defined by ρ(p, q) = − log

R √
pq.

It is easy to check that

(i) ρ(p, q) ≥ 0;

(ii) ρ(p, q) = 0 only if p = q;

(iii) ρ(p, q) <∞ unless p and q have completely disjoint support;

(iv) ρ(
Qn
i=1 pi,

Qn
i=1 qi) =

Pn
i=1 ρ(pi, qi) always.

Note that property (iv) makes the measure completely “likelihood friendly” unlike
δ(p, q), which is so only in the i.i.d. cases. It may be noted that property (iii) makes
ρ(p, q) more useful even in some i.i.d. cases like the Un( | θ−1, θ+1) family, for which
δ(pθ, pθ′) = ∞ for all θ 6= θ′. It will be curious to see how the resulting analysis
goes through when ρ(p, q) replaces δ(p, q). At least in two cases, normal location
and uniform scale families, ρ(p, q) is equivalent to δ(p, q), but the former does not
need two integral evaluations and taking their minimum. It is also useful to note
that ρ(p, q) has a local quadratic nature similar to that of δ(p, q) (cf., Theorem 3).

Although it is a diversion from the topic, one may wonder about the notion
of relative concentration of a density p compared to another density q. Bernardo
called p more concentrated than q if κ(p | q) < κ(q | p). This certainly appears to be
intuitively acceptable for the uniform scale family. However, in general the concept
does not appear to be transitive. This is, however, a common problem for notions
defined through pairwise distances. The best known measure of this type is perhaps
Pitman closeness, which also fails to be transitive.

However, the main issue in the proposed procedure appears to be calibration
in hypothesis testing. Bernardo has recommended using a scale like log 10k, for
k = 1, 2, . . .; it would be nice to make the calibration issue more formal since ultimate
decisions will be based on the choice of the cut-off. This point seems to be also
related to the sample size, since larger sample sizes are likely to make the likelihood
ratios more extreme, and so the intrinsic discrepancy loss as well. As the intrinsic
discrepancy loss is multiplied n-fold in the i.i.d. case, I would expect the presence
of a factor of n in the cut-off point.

Finally, it will be interesting to formulate Bernardo’s decision making procedure
for multiple hypothesis testing, which has received considerable attention recently
because of genomic and fMRI applications.

MALAY GHOSH (University of Florida, USA)

It is a distinct pleasure and honour to contribute a discussion to the more recent ar-
ticle of Professor Bernardo on objective Bayesian estimation and hypothesis testing.
Bernardo’s (1979) pathbreaking discussion paper has inspired many researchers, old
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and young, to further the development of objective priors. It is safe to say that the
present article will also stimulate future research on objective priors and their role
in estimation and testing.

As I see it, there are two main issues in this article. The first, a general defi-
nition of reference priors, has been addressed very adequately by Berger, Bernardo
and Sun (2009). The second, the introduction of intrinsic discrepancy loss, to unify
estimation and testing is clearly a novel idea which bears promise for future devel-
opment.

Like Robert and Bernardo, I am very much in favour of using intrinsic losses
which measure the discrepancy between two densities rather than measuring the
discrepancy between a parameter and its estimate. Indeed, inspired by an article of
George, Liang and Xu (2006), I wrote two articles with colleagues (Ghosh, Mergel
and Datta, 2008; Ghosh and Mergel, 2009) to exhibit the Stein phenomenon under
a very general intrinsic loss. In the remainder of my discussion, I will confine my
comments to this particular aspect of the paper.

It appears that Bernardo’s procedure may overcome one of the problems which
Jeffreys encountered. Consider the N(µ, σ2) distribution with both parameters un-
known. The problem is to test H0 ≡ {µ = 0} against the alternatives H1 ≡ {µ 6= 0}.
With the prior π(µ, σ) ∝ σ−1, which is ideal for point and set estimation, Jeffreys
discovered a problem in the testing context described. Specifically, the Bayes fac-
tor of H0 relative to H1 tends to a positive constant rather than zero when the
t-statistic goes to infinity. The problem disappears with the Cauchy prior. How-
ever, Bernardo’s approximation for d in his Example 6 suggests that even with the
prior π(µ, σ) ∝ σ−1, the right inference can be done for the testing problem. My
question is: how good is this approximation? Can the author elaborate more on
this?

It should be noted that the Kullback–Leibler (KL) divergence is a special case
of a more general power divergence class, considered for example by Cressie and
Read (1984). Admittedly, KL is the most well-used measure. It appears though
that many of these results will hold for the general power divergence class. Other
than the KL, the Hellinger divergence is an important member within this class.

To see this, I considered the simple normal example, where p(x | θ) = N(x | θ, 1).
In this example, with KL loss, l(θ0, θ) = (1/2)(θ − θ0)2. With the general power
divergence loss »

1−
Z
p1−β(x | θ) pβ(x | θ0) dx

– ‹ˆ
β(1− β)

˜
,

the expression reduces to [1−exp{−β(1−β)(θ−θ0)2/2}]/[β(1−β)] for this problem.
This is monotonically increasing in (1/2)(θ−θ0)2. While this monotonicity may not
prevail, something qualitatively similar should happen for the general exponential
family or possibly even for non-regular families. I will appreciate the author’s com-
ments on this.

Professor Bernardo has promoted Bayesian statistics by holding the Valencia
meetings for more than three decades. In those days when Bayesianism was not at
all popular, it took a lot of courage and effort to find the resources to organize them.
He earns a well-deserved rest after so many highly successful ventures. Even with
his retirement from holding Valencia meetings, I do not expect him to retire from
Bayesian statistics. I take this opportunity to toast his long and productive career.
Cheers!
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MIGUEL GÓMEZ-VILLEGAS (Universidad Complutense de Madrid, Spain)

Professor Bernardo proposes a method to build, estimate and test hypotheses from
a Bayesian point of view by using an objective prior and a measure of discrepancy.
The author is to be congratulated on the way that he has overcome the difficulties
associated with objective priors. Objective Bayesian methods are those which use
a prior distribution which only depends on the assumed model and the quantity of
interest. Thus, the combined use of a modified Kullback–Leibler discrepancy and
an appropriately defined prior, provides an integrated Bayesian solution for both
estimation and hypothesis testing problems.

As it is ofen the case when the paradigm of decision theory is used, everything is
clarified. This happens in Section 2 with the point and region estimation problems.

With respect to the precise hypothesis testing, I think, with Jeffreys, that if θ is
a continuous parameter this forces the use of a non-regular “sharp” prior, concen-
trating a positive probability mass at θ0. I do not share the author’s opinion about
this formulation leading to the difficulties associated with the Lindley–Jeffreys para-
dox. I think that the problem arises with the use of a too high value for the positive
probability mass at θ0, as pointed out by Gómez-Villegas et al. (2009).

One question relative to intrinsic discrepancy may be asked. Is it not possible
to simply use

δ{pi, pj} = κ{pj |pi}
where κ{pj |pi} is the Kullback–Leibler directed logarithmic divergence of pj from pi?
I think this is adequate when robustness is being considered. We have made use of
this idea in the context of Bayesian networks in Gómez-Villegas et al. (2008).

It should be pointed out that the reference priors advocated by the author violate
the likelihood principle, but it must immediately be admitted that this is the price
to be paid to obtain an objective prior.

EDUARDO GUTIÉRREZ-PEÑA and RAÚL RUEDA
(IIMAS-UNAM, Mexico)

We would first like to congratulate Professor Bernardo for an interesting and clearly
written paper. We could not agree more with him concerning the need for a natural,
integrated approach to Bayesian estimation and hypothesis testing. It is somewhat
surprising that such an approach has not yet made its way into the mainstream
Bayesian textbooks.

The paper contains a wealth of ideas and examples, but here we will only com-
ment on two aspects:

Invariance. Bernardo places quite a lot of emphasis on the invariance of the
loss function. While we agree it is a nice property for a loss function to have, we
do not think this is essential to achieve invariant Bayesian procedures. One can
always obtain invariant estimators, even if the loss function used is not intrinsically
invariant, provided that it is suitably defined.

In the case of quadratic loss, for example, if θ is a one-dimensional parameter
one can use the “normalizing” transformation φ(·) defined in Theorem 3 of the paper
in order to find a suitable parameterization φ = φ(θ) upon which the quadratic loss
is a more natural choice, so that

`{φ0, φ} = (φ0 − φ)2.
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If one now wishes to work in terms of θ or, for that matter, any other parame-
terization ϑ = ϑ(φ), it suffices to define the corresponding loss function as

`ϑ{ϑ0, ϑ} = [φϑ(ϑ0)− φϑ(ϑ) ] 2,

where φϑ(·) is the inverse of the transformation ϑ(·).
Integration. The author does indeed provide an integrated, decision theoreti-

cal approach to point estimation, region estimation and precise hypothesis testing.
However, his ad hoc solution for the compound case H0 ≡ {θ ∈ Θ0} does not seem
to fit into his general framework.

We quote: “Thus, depending on the context, a compound hypothesis of the
form H0 ≡ {θ0 ∈ Θ0} could be accepted when at least one of its elements would be
accepted...” “...or when all its elements would be accepted...”

What is the loss function behind each of these criteria for testing compound
hypotheses? Is either of these loss functions consistent with the loss function used
for the other procedures? We would like to see the explicit form of the loss difference,
∆`h = `h{a0, (θ, λ)} − `h{a1, (θ, λ)}, whose expected value leads to either of the
criteria suggested by Bernardo for the compound case. In our view, unless this loss
can be exhibited and shown to be consistent with the intrinsic discrepancy loss used
elsewhere in the paper, this approach cannot be regarded as fully “integrated”.

In closing, we would like to express our gratitude to José-Miguel for his constant
efforts over all these years in organizing the Valencia meetings. The impact of these
on our discipline has been enormous.

ANGELIKA VAN DER LINDE (University of Bremen, Germany)

In this very last talk of the Valencia meetings, Professor Bernardo presented a
diamond: more brilliant than ever, sparkling with new ideas, exhibiting many facets
in terms of examples and being definitely invariant. He has spent much of his lifetime
cutting and polishing it. We are stunned, we admire it, and we thank José for his
passion, his inexorability and his continuous challenge for stimulating discussions
with a long applause.

We acknowledge his efforts and his success in securing the foundations of Bayesian
statistics while most of us are busy computing ... Are we going to wear this dia-
mond in everyday life? Sorry, this is an inadequate female question. Are we going
to use this diamond as a statistical tool in everyday life as Bernardo suggests?
That depends on how well we understand why the tool has been constructed as it
is, which problems, fallacies and even failures in Bayesian analysis had an impact
on its development. Bernardo hardly discusses alternative suggestions to overcome
acknowledged difficulties but mainly summarizes the driving problems as lack of
invariance. Important to me is a message inherent in his solution(s): base statistical
inference on information theoretically founded decision theory. Bayesian statistics
as applied probability theory has to incorporate entropy and information as basic
concepts of probability theory.

More closely related to the talk I have two questions:

(i) The reference prior is motivated as the prior maximizing the missing infor-
mation about θ, and in classical examples yields estimators which are close
to but more stable than the maximum likelihood estimator. Is there any idea
(experience or expectation) about the performance in a (relatively) “small n,
large p” scenario?
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(ii) Bernardo emphasized that the same prior could be used for different sum-
maries (estimation/testing) of the posterior distribution. What about the
posterior predictive distribution?

In the end, all ends turn out to be beginnings. But diamonds are forever.

DENNIS V. LINDLEY (Minehead, UK)

In the 1970s when I was head of the Department of Statistics at University College
London, a student from Spain was accepted to read for a PhD. On arriving in the
department one day, my secretary made a dramatic entrance saying “Your Spanish
student has arrived”. He had already made his mark in the department and in
the College, where parking rules had been infringed. When he and I met to discuss
research topics, I suggested a problem that appeared to be difficult; difficult because
over the years I had had several stabs at it without success. Not long afterwards
he handed in a paper that purported to give a solution. It was taken home to read,
together with a blue pencil, but to my amazement it contained a reasonable and
ingenious solution. As far as I was concerned, he could have his PhD.

That student was José (Bernardo, 1979b) whose initial success was no flash in
the pan but has been followed by a series of important papers, culminating in this
one for the ninth in the influential series of Bayesian meetings for which he has been
the guiding light. In it he presents a definitive statement of the objective Bayesian
approach, developing priors and loss functions from the supposedly objective prob-
ability model by sensible and carefully argued mathematics. It is a triumph and
statistics owes him a great debt for clarifying so many issues and producing usable
results. A colleague of mine, interested in applications, dismissed the ideas as math-
ematical posturing. This is unfair because if the basic principles Bernardo proposes
are accepted, the mathematical development can be ignored by the practitioner and
the operational procedures adopted without much difficulty in this computer age.
This is a paper that is valuable both for its theory and its practicality. José has
shown me that he deserves, not just a PhD, but the highest award that statistics
has to offer.

It is a pity that, despite my enthusiasm, I disagree with the development, just
as I think that Fisher did brilliant work of the highest order and yet, at the foun-
dational level, he was wrong, for example over tail-area probabilities. My view is
that the scientific method, and statistics as part of that method, is fundamentally
subjective, objectivity only appearing when scientists reach agreement. I therefore
argue in favour of statistical procedures that are based on subjective probabilities;
probabilities that reflect your beliefs. My doubts begin with Bernardo’s model; is
it really objective, the same for all? There are several examples in the literature of
data that have been analysed using different models, but my objections go deeper
than that.

We recognize two aspects to statistics, inference and decision-making. Some
statisticians, following the founders of the Royal Statistical Society and, more re-
cently, Fisher, have held that our remit is the collection and analysis of data, not
its use in determining action. The subjective attitude includes the decision aspect,
if only because the ideas easily lead to a recipe for action, namely the maximization
of expected utility. Indeed, many justifications for the Bayesian position start from
the decision aspect. On the practical side, what use is inference if it cannot be used
as a guide to action? Bernardo treats inference as a decision process, producing his
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loss from the model. I presume that if the data in the model were to be used as a
basis for action, that action would determine the loss, or utility, structure and his
suggestion abandoned. I interpret his loss function as that needed for inference only;
yet inference does not need a decision element but can be restricted to a statement
of your probability distribution for θ given the data. Admittedly that probability
structure may be hard to comprehend and some approximation used, but does ap-
proximation call for the paraphernalia of loss? There are other objections and an
important one for me is the violation of the likelihood principle; a principle that
is basic to the Bayesian method. (And to frequentist statistics, though usually un-
recognized there.) This violation occurs as soon as an integration takes place over
sample space Z, since the principle says the elements of that space, apart from the
data observed, are irrelevant. Definition 4 provides the first use of this banned oper-
ation. It would be interesting to see the application of objective Bayes to sequential
analysis where frequentists usually violate the principle; for example where a sample
of predetermined size n is distinguished from one in which n is random, so that the
two sample spaces, and hence the models, differ. Within the objective view, does
this make a difference?

Another difficulty for me lies in the use of the expectation operation when loss is
introduced, and even in the concept of loss itself. The most satisfactory development
of Bayesian concepts uses the notion of utility for outcomes, rather than losses, the
latter presumably being the difference of two utilities, as suggested in Section 2.3.
In this development the expectation operation can be justified if utility is itself
measured on the scale of probability: if 0 and 1 are your utilities for a bad and a
good outcome respectively, then an intermediate outcome E has utility u for you if
you are indifferent between E for sure and a good outcome with probability u (and
bad otherwise). Perhaps the paper lacks a clear explanation of loss and a justification
for the sole use of expectation. These points are developed in Chapter 10 of my book
Lindley (2006). Similar doubts may also be expressed about the use of supremum
in Definition 3, for it is often dangerous to replace a function by a number, with
possible damage to one’s understanding.

Example 7 was naturally of special interest to me. The analysis by the objective
method is impressive and the outcome seems right. My analysis would have replaced
the concentration of prior probability on θ = 1/2, which I regard as an approxima-
tion to reality, by a prior centred there and with small variance. The difficulty then
is, how large is small? To answer that one has to go back to the design of the exper-
iment, including the construction of the random mechanism. We know little about
the construction of personal probabilities and this topic should be an important area
for research. I am perhaps overfond of quoting de Finetti’s question to me: “Why
do statisticians always talk about Greek letters?”. Yet its relevance is apparent here
as in Example 5 where the classic, practical case involves the number θ of tramcars
in a town and you see tramcar number x. The reference prior θ−1, ignoring the
discrete element, is unsatisfactory, for would you really think the town most likely
had just one tramcar? The objective development arises because of the addiction
to the Greek alphabet. In practice θ is merely the representative of something real,
here tramcars, and reality should not be forgotten.

The objective approach to inference is like an exploration to find a pass through
the mountains, failed to find it, but made wonderful discoveries on the way that
were very useful to those who ultimately reached the pass.



Objective Bayesian Estimation and Hypothesis Testing 39

MANUEL MENDOZA (Instituto Tecnológico Autónomo de México, Mexico)

As it often happens when listening to a talk by Professor Bernardo, this presentation
is so full of clever ideas, concepts and results that it is rather difficult to capture
the global scenario behind all this work. If, in addition, the subject is one as
controversial as the idea of an objective Bayesian analysis, the manuscript must be
read at least twice to state clearly some of the questions that emerge from the very
beginning. Let me start by recalling some specific assertions in the paper.

In Section 2.2, Bernardo says: “Bayesian estimators are usually not invariant
under one-to-one transformations”, and reminds us that, under quadratic loss, the
Bayesian estimator of the variance is not the square of the Bayes estimator of the
standard deviation. This assertion is not exactly true. Let us suppose that in a
decision problem, and in accordance to the axiomatic foundations, you have elicited
the loss function `(d, θ) where d ∈ D and θ ∈ Θ. Thus, ` is defined as ` : D×Θ→ <.
Now, if you relabel the action space so that d′ = g(d) where g : D → D′ is a one-to-
one function and a similar treatment is given to θ so that φ = h(θ) where h : Θ→ Φ
is also a one-to-one function, then the loss function `, uniquely defined up to linear
transformations, can be expressed in terms of d′ and φ, as `(g−1(d′), (h−1(φ)) =
`′(d′, φ) where `′ : D′ × Φ → <. Now if we get d′∗, the Bayesian solution to this
problem in terms of the new labelling (and `′(d′, φ)), it follows that d′∗ = g(d∗)
where d∗ is the original Bayesian solution with `(d, θ). Thus, the Bayesian solution is
invariant under one-to-one transformations and so is Bayesian pointwise estimation.
The point here is that `(σ̂2, σ2) = (σ̂2 − σ2)2 and `(σ̂, σ) = (σ̂ − σ)2 are different
loss functions and thus, lead to different solutions. The coherent use of a quadratic
loss requires the selection of the specific labelling for which the quadratic function
describes our preferences. If this labelling is the standard deviation, then if we
change to the variance, the appropriate expression for the same loss function is

`(σ̂2, σ2) = (
√
σ̂2 −

√
σ2)2. The same idea can be used to prove that coherent

Bayesian credible intervals are also invariant (Section 2.3). All you have to do is
to choose the labelling for which a minimum length is desired. In any case, I think
that a note should be introduced to clearly distinguish invariant Bayesian decisions
from invariant loss functions, as discussed by Bernardo. Obviously, these concepts
are related. If we use an invariant loss function, then the expressions for the loss
function corresponding to different labellings have the same functional form.

In Section 2.3, when discussing the hypothesis testing problem in the compound
case, we can read: “Thus, depending on the context, a compound hypothesis of
the form H0 ≡ {θ0 ∈ Θ0} could be accepted when at least one of its elements
would be accepted, so that infθ0∈Θ0

¯̀(θ0 | z) < `0, or when all its elements would
be accepted, so that supθ0∈Θ0

¯̀(θ0 | z) < `0”. This looks like a minimax-type
criterion and I would like to see how this can be derived from a loss structure
(`{a0, (θ, λ)}, `{a1, (θ, λ)}).

In Section 3.1 (Example 2), it is stated: “...both the entropy loss and the stan-
dardized quadratic loss penalize far more severely overestimation than underestima-
tion, and will both yield too small estimates for the variance”. In the quest for a loss
function which would be one of the components of the objective Bayesian analysis,
invariance might be considered a useful property because of the technical simplifi-
cations it entails. On the other hand, the requirement of symmetry is a little more
difficult to understand. Is the author implying that a case where underestimation
is preferred to overestimation cannot be handled by means of an objective Bayesian
analysis?
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At a more general level, my personal feeling is that Bernardo has presented us
with his subjective version of what an objective Bayesian analysis should be. In
constructing his proposal he has made a number of decisions. Some of them will be
shared by many of us, but I guess that in some cases, alternative formulations could
be proposed. In any case, I think that this is a nice paper with many stimulating
ideas and enlightening examples which may lead us to a fruitful debate on the future
of Bayesian analysis.

ELÍAS MORENO (Universidad de Granada, Spain)

While we should acknowledge the efforts of Professor Bernardo in putting together
both Bayesian estimation and hypothesis testing, my position is that they are dif-
ferent problems that require different statistical tools. In particular, different prior
distributions will be generally needed when more than one model is involved in
the problem. At the very beginning of the paper the author proposes the follow-
ing definition “Objective Bayesian methods are defined as those which use a prior
distribution which only depends on the assumed model and the quantity of inter-
est”. Using this definition it can be argued that since in estimation and testing the
quantities of interest and the models are different the goal of the paper of unify-
ing objective Bayesian parameter estimation and hypothesis testing seems to be, in
general, unattainable.

In testing problems the quantity of interest is a discrete set of competing models,
and for simplicity we assume it contains only two models. This has the nature of a
decision problem on the model space {Mi, i = 0, 1}, where model Mi consists of a
set of sampling models {fi(xi | θi,Mi), θi ∈ Θi}, the prior structure has the form
πi(θi,Mi) = πi(θi |Mi) Pr(Mi), and the decision space is {di, i = 0, 1}, where di
is the decision of choosing model Mi. To complete the formulation of the decision
problem we need the function `(di,Mj), the loss which corresponds to making the
decision di when the true model isMj . We note that the loss function in the paper
is not defined in the product space {d0, d1} × {M0,M1}, even when the decision
problem is that of choosing between the models M0 and M1.

When we want to minimize the proportion of times we make a wrong decision the
0–1 loss function is an appropriate one. It is useful, for instance, in cost-effectiveness
analysis where transfers of health between patients is judged to be not reasonable
(Moreno et al. 2010). For this loss function, and the data z = (x1, ..., xn), assuming
they come from a sampling model in eitherM0 orM1, the optimal decision is that of
choosing modelM0 if its posterior probability is such that Pr(M0 | z) ≥ Pr(M1 | z),
or equivalently

BF10(z) ≤ Pr(M0)

Pr(M1)
,

where BF10(z) =
R
f1(z | θ1,M1)π1(θ1 |M1)dθ1/

R
f0(z | θ0,M0)π0(θ0 |M0)dθ0 is

the Bayes factor to compare M0 and M1. An important particular example is
that of testing a sharp null hypothesis of the form H0 ≡ {θ = θ0}, the case where
Bernardo is more critical with the Bayes factors. In this case the sampling model f0

is nested in f1. In the paper it is argued that for this problem, in which we necessarily
have π0(θ |M0) = δθ0(θ), the prior π0 is polemic. I do not see why it is polemic
under the above scheme. It is also asserted that “Moreover, this formulation is also
known to lead to the difficulties associated to the Lindley’s paradox”. It is not so
easy, and the question is whether or not Lindley’s paradox conveys such a message.
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Let us revise the paradox. As far as I know it was originally described when
f0(x |M0) = N(x | 0, 1), f1(x | θ,M1) = N(x | θ, 1) and π(θ |M1) = N(θ | 0, τ), and
it is desired to choose one of the models based on a sample z = {x1, . . . , xn}. It is
then easy to see that

BF10(x̄, n, τ) =
1

(nτ2 + 1)1/2
exp


n x̄2

2

n τ2

nτ2 + 1

ff
,

where x̄ is the sample mean. When τ → ∞ we have that B10(x̄, n, τ) → 0; that
is, whatever the sample mean x̄ the model M0 is always chosen. This is seen
to be paradoxical, and is called Lindley’s paradox. But we note that the prior
N(θ | 0, τ) degenerates to zero when τ → ∞ (Robert 1993). Therefore, there is
nothing paradoxical but simply that the prior for the alternative model is such that
in the limit there is only one model to be chosen, the model M0. By the way, we
recall that for any fixed value of τ the Bayes factor B10(x̄, n, τ) is consistent, that
is when sampling fromM0 the Bayes factor tends to zero as the sample size grows,
and when sampling from M1 the Bayes factor tends to +∞.

Certainly, similar “paradoxical” situations can be reproduced for other sam-
pling distributions; for instance, Example 7 in Section 5 of the paper, where a
binomial sampling model Bi(x | θ, n) is considered and a sample observation such
that x/n = 0.500177 for n as large as 104, 900, 000 is available, and we want to
test the null θ = 0.5 vs. θ ∈ (0, 1). We first note that in a small neighbourhood
of the point 0.500177 the likelihood is huge compared with the likelihood outside
of this neighbourhood, for instance L(0.500177) = 685L(0.5). If the prior on the
alternative sampling models spreads out the mass in the interval (0, 1), most of the
probability mass is put on the region where the likelihood is extremely small, and
the resulting likelihood of the alternative model will be very small compared with
the likelihood of the null. Consequently, the null will be chosen.

This is exactly the situation posed by the use of either the uniform or Jeffreys
prior. These priors, which do not depend on the null, are not appropriate for testing
problems since they do not concentrate mass around the null; that is, they do not
satisfy the Savage continuity condition (Jeffreys, 1961, Ch. 5; Gûnel and Dickey,
1974; Berger and Sellke, 1987; Casella and Berger, 1987; Morris, 1987a,b; Berger,
1994). When the prior concentrates its mass around the null hypothesis, as the
intrinsic priors do with a degree of concentration controlled by the training sample
size, the resulting likelihood of the alternative model will be a much more serious
competitor of the null likelihood, and in this case the null can be rejected. For the
notion of intrinsic priors see Berger and Pericchi (1996) and Moreno et al. (1998),
and for an analysis of the concentration of the intrinsic prior of the alternative model
on the null and its implication on robustness in testing problems see Consonni and
La Rocca (2008), and Casella and Moreno (2009).

Therefore, in my opinion the arguments against the Bayes factors and model
posterior probabilities in the paper are not convincing. After all, when the alterna-
tive is either empty or constructed as a mixture of models having an extremely small
likelihood, to accept the null hypothesis is the right thing to do, a behaviour that
is not paradoxical. I am not sure that the integrated objective Bayesian method
presented in this paper by the author is a general improvement over the current ob-
jective Bayesian methods for hypothesis testing based on Bayes factors and model
posterior probabilities.
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Finally, I would like to thank Professor Bernardo for the organization of the
Valencia meetings that have served as a source of stimulus for so many statisticians.
Congratulations for that, José-Miguel.

CHRISTIAN P. ROBERT and JUDITH ROUSSEAU
(Université Paris-Dauphine, France)

In this discussion, we congratulate Professor Bernardo for his all-encompassing per-
spective on intrinsic inference and focus on the case of nuisance parameters.

Unified inference. The paper manages the tour de force of aggregating intrinsic
loss functions with intrinsic (aka reference) priors. Thus, Bernardo presents us
with a unified picture of Bayesian analysis as he sees it, and it is obviously fitting
to see this cohesive perspective appearing in the Valencia 9 proceedings as a kind
of third unification! We appreciated very much the paper and our comments will
thus concentrate on minor issues rather than on the big picture, since we mostly
agree with it. Although the tendency in Bayesian analysis, over the years, and in
particular in the Valencia proceedings (see, e.g., Polson and Scott, 2011, who discuss
shrinkage without a loss function), has been to shy away from the decision-theoretic
perspective (see, e.g., Gelman, 2008), it is worth reenacting this approach to the
field, both because it sustains to a large extent the validation of a Bayesian analysis,
and because it avoids the deterioration of its scope into a mechanical data analysis
tool.

Down with point masses! The requirement that one uses a point mass as a
prior when testing for point null hypotheses is always an embarrassment and often
a cause of misunderstanding in our classrooms. Rephrasing the decision to pick
the simpler model as the result of a larger advantage is thus much more likely to
convince our students. What matters in pointwise hypothesis testing is not whether
or not θ = θ0 holds but what the consequences of a wrong decision are. Of course,
there is a caveat in the reformulation of Professor Bernardo, which is that, in the
event the null hypothesis θ = θ0 is accepted, one has to act with the modelM0. One
can of course assume that, given the model M0, the intrinsic Bayesian statistician
would start from the reference prior for M0, but this involves a dual definition of
the prior for the same problem that remains a bit of an itch ...

The case of compound hypotheses is only half-convincing in that the “natural”
solution would seem to us to compare the posterior expected losses under both
models, rather than singling out H0 in a most unbalanced and un-Bayesian way.
We actually take issue with the repeated use of infima in the definition of loss
functions.

Intrinsic losses. Most obviously, we welcome the recentring of objective Bayes
analyses around the intrinsic losses we developed in Robert (1996). Note that the
severe lack of invariance of HPD regions was further studied by Druilhet and Marin
(2007), while integrating point estimation losses in the evaluation of credible regions
was proposed by Robert and Casella (1994).

The handling of nuisance parameters always is a ... nuisance, so Definition 5 is a
possible solution to this nuisance. While it shies away from using the unsatisfactory
argument of λ being “common” to both models, one of us (CPR) somehow dislikes
the introduction of the infimum over all values of λ0: a more agreeable alternative
would be to integrate over the λ0’s, using for instance an intrinsic prior π(λ|θ0).
We however acknowledge the relevance of projections in model comparisons, as
illustrated by Robert and Rousseau (2002).
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Another issue deals with cases when the nuisance parameter is ill-defined under
the null hypothesis, as for instance in our favourite example of mixtures of distri-
butions (Titterington, Smith and Makov, 1985; Maclachlan and Peel, 2000): When
the null has several possible representations, the nuisance parameter varies from
one representation to the next. A connected issue is the case when the parameter
of interest is a function (functional) of the whole parameter vector that is such that
there is no explicit way of breaking the whole parameter into a parameter of interest
and a nuisance parameter, a setting that typically occurs in semi-parametric prob-
lems. Although a natural extension to Bernardo’s approach is to define the intrinsic
discrepancy loss between the parameter θ = θ(f) and θ0 as

δ(θ0, f) = inf{min(k(f | f0), k(f0 | f)); f0 ∈ F satisfies θ(f0) = θ0}

such an approach seems impossible to implement in practice, even in simple semi-
parametric problems.

When replacing regular testing with checking whether or not the new type of
regret `{θ0, (θ, λ)} − `0 is positive, the so-called context dependent positive constant
`0 is equal to Z

Θ

Z
Λ

`h{a1, (θ, λ)} p(θ, λ |z) dθ dλ

in the original formulation. We therefore wonder why the special values `0 = log 10k

for k = 1, 2, 3, . . . , are of particular interest compared, say, with `0 = log
√
π
k

or
`0 = log ek... The calibration of `0 suffers from the same difficulty as the calibration
of Bayes factors in that the choice of the decision boundary between acceptance and
rejection is not based on a loss function. In particular, it is surprising that, in an
objective context, `0 does not depend on the number of observations. Typically, the
Kullback–Leibler divergence between the densities fθ and fθ′ associated with n (not
necessarily i.i.d) observations increases with n. Should `0 be rescaled as n `0 and is
such a scaling appropriate in general? We argue that rescaling by n as such is as
arbitrary as considering the Jeffreys prior as default prior.

A last point of interest to us is whether or not an integrated reference analysis is
always possible. Bypassing the issue of finding a reference prior, we wonder if there
exist settings where the posterior Kullback–Leibler loss is uniformly infinite, thus
preventing the choice of a Bayes estimator. For instance, when observing a Cauchy
variate x, the intrinsic discrepancy loss is of the form represented in Figure 8. Since
the posterior under the flat prior is a Cauchy distribution with location parameter
x, the loss may be increasing too fast for the Bayes estimator to exist.

A family of models where the Kullback–Leibler loss cannot be applied corre-
sponds to cases where the densities have supports that depend on the parameters
in a non-trivial way, i.e.

fθ(x) = IL(θ)gθ(x), where L(θ) ∩ L(θ′)c 6= ∅ and L(θ′) ∩ L(θ)c 6= ∅

and gθ(x) > 0 everywhere.

In conclusion, our point here is to emphasize that, although the Kullback–Leibler
loss has compelling features such as additivity, it also suffers from drawbacks, related
to the requirement of comparing absolutely continuous distributions (one way or
the other) and to its unboundedness. Some other natural intrinsic losses could be
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Figure 8: Kullback–Leibler loss function `(θ, δ) associated with a Cauchy
distribution with location parameter θ.

considered, in particular the Hellinger distance (Robert, 1996b). How would both
losses compare and what would their relative merits be? It seems to us that the
natural calibrations found in Bernardo’s proposal could not be used with Hellinger
loss. Now, could that be such a bad thing ...?!

Reference priors. Although we essentially agree with most of the construction
of reference priors, we are doubtful about the systematic use of repeated (identically
and independently) data sets. Indeed, in cases where the observations are modelled
as a dependent process, say a time series, a part of the parameter vector addresses
the dependence structure. Then, first, repeated i.i.d. sampling from the model
will not provide useful knowledge about these parameters, since they can only be
inferred correctly by letting the sample size increase to infinity. Second, for a fixed
sample size, the Fisher information matrix depends in a non-trivial way on n and
it usually has a non-explicit representation. Therefore, the reference prior under
repeated sampling does not have an interesting formulation. For instance, when
sampling from a stationary Gaussian process with spectral density fθ, the Fisher
information matrix associated with the covariance matrix includes terms of the form

tr
h`
Tn(fθ)

−1Tn(∇fθ)
´2i

,

where Tn(f) is the n-dimensional Toeplitz matrix associated with the function f
and ∇fθ is the first derivative of the spectral density; see Philippe and Rousseau
(2003). This expression is not user-friendly, to say the least!, whereas the reference
prior—obtained by letting the sample size go to infinity—actually corresponds to
the limit of the above terms:

1

2π

Z π

−π
(∇ log fθ)

2(x) dx
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which are much more satisfactory for the construction of a prior distribution. The
latter can also be obtained by considering the limit of the reference priors as n goes
to infinity, however it is not clear whether it should be interpreted as the reference
prior directly obtained from increasing n in the sampling or as the limit of Professor
Bernardo’s reference prior when n goes to infinity. These two approaches might
indeed lead to quite different results, as illustrated by non-stationary models.

NOZER SINGPURWALLA (The George Washington University, USA)

Professor Bernardo is one among a handful of skilled researchers who work on the
methodological foundations of Bayesian statistics. Regrettably, this handful seems
to be dwindling, and thus papers like this that provide a summary of recent work
in the arena of inferential methodology are of archival value.

I found this paper demanding to read, and having read it, challenging to digest.
All the same, I was amply rewarded by exposure to a wealth of material, and for
his contribution to my learning, I thank José.

Now that the obligatory niceties which discussants are expected to bestow on
an author have been dispensed, I will put forth my thoughts on the edifice that
Bernardo and his coauthors have created.

General comments: Tempest in a teapot. My claim that this paper is demand-
ing to read is based on the feeling that the paper exposits its material in a pedantic
style that detracts from essentials. For example, the introduction of the nuisance
parameter λ tends to be a nuisance when it comes into focus. Similarly, the intro-
duction of the parameter ω ∈ Ω, and then a function of ω, namely θ(ω) ∈ Θ, are
unnecessary.

The material in the paper is challenging to digest because it subscribes to the
hierarchical and nested writing style of de Finetti. But de Finetti’s essential thesis,
namely, a categorical rejection of the focus on parameters, has been forsaken. Are
parameters not just “Greek symbols” whose sole purpose, at least from a Bayesian
perspective, is to mechanize the process of predicting observables by imparting on
them the property of (conditional) independence? If such a point of view were to be
adopted, then the entire enterprise of reference priors, parameter estimation and hy-
pothesis testing, boils down to a mathematical exercise—and I do like mathematics!

Engineers and scientists could not care less about properties of unobservable
parameters. They are interested in predicting and in controlling observables, a point
of view that has been made before by several authors. Of course, this viewpoint
does not obviate the need for loss functions and prior distributions (cf. Singpurwalla,
2006). It simply says that priors and losses should be functions of observables, not
parameters. Indeed Bayes assigned a prior distribution on outcomes (Stigler, 1982),
the prior on parameters being the handiwork of Laplace, whose genius it was to
interpret the propensity parameter of Bernoulli trials as the cause of the observed
observables (cf. Singpurwalla, 2002b). Therefore, with some trepidation, I call upon
the author to develop a mechanism for prediction and control, that is fully Bayesian
in character, but with priors on observables that can be claimed to be objective, in
some definable sense. Some preliminary ideas along the above lines, albeit without
any claims of objectivity, are in Singpurwalla (2002a). My conjecture is that in
pursuing such a path, many of the hurdles faced by Bernardo will vanish.
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Thesis of the paper: Where is the intuition? I am in full agreement with the
driving thesis of this paper that estimation and hypothesis testing should be deci-
sion theoretic, and that normative decision making is based on two pillars and one
principle. The pillars are (prior) probability and utility, and the principle is the
maximization of expected utility. However, the devil is in the details, and this is
where the essence of the paper comes into play. As pointed out by the author, the
existing modus operandi in Bayesian inference is to use two radically different kinds
of priors on the same parameter, say ω; one for estimation and one for hypothesis
testing. This may somehow seem unattractive, even though estimation is for a dif-
ferent set of actions than testing hypothesis. If a parameter has a physical meaning
(such as the limit of a relative frequency in Bernoulli trials) then the claim is that
in the eyes of a single assessor, there should be one and only one prior for ω.

Having advocated the use of reference priors for estimation, Bernardo is left with
but one choice to achieve his goal of using the same prior for hypothesis testing as
well. The choice is to tinker with the utility (loss) function. This is done admirably
well by introducing an intrinsic discrepancy loss function, and then producing an
impressive array of inspiring examples.

The reference prior and the intrinsic discrepancy loss function share a common
mathematical foundation, namely, the Kullback–Leibler measure of divergence, and
the manner in which this measure is invoked is ingenious. In the former case it is the
discrepancy between the joint p(x, ω) and the product of the marginals p(x)p(ω).
In the latter case it is via the introduction of the notion of an intrinsic discrepancy,
which for two distributions p1 and p2 is the minimum of the Kullback–Leibler diver-
gence of p1 from p2, and of p2 from p1; see Definition 4. The intrinsic discrepancy
loss function is based on a minimization of the intrinsic discrepancy; see Definition 5.

With the above as a methodological architecture, we see a menu of examples,
each exhibiting attractive features, leading sceptics to conclude that the ends justify
the means.

Personally, I find the Bayesian argument attractive because of: its completeness
due to a firm grounding in the mathematics of probability; its coherence via an
avoidance of a sure loss, and most important its scientific merit vis à vis allowing
the incorporation of information generated by honest beliefs, and/or the physics
of the problem. Thus when endowing priors to observables or to parameters, the
Bayesian should act like a scientist by gaining a sound appreciation of the problem,
and then proceed without leaning on the use of automated priors. This philosophical
viewpoint has been voiced before; to paraphrase the late Dev Basu “you have no
business working on a problem you don’t understand.” Similarly, with the utilities;
they should be grounded in the economics of the decision making environment.

But suppose one were to accept (on pragmatics) the philosophy of using auto-
mated priors and utilities. Then one should still have a believable basis for proposing
these. The reference prior seems to have the intuitive import, in that it is guided
by the principle of let the prior do the talking and the data do the walking. What is
unclear to me is the motivation behind the notion of the intrinsic discrepancy, the
notion which gives birth to the intrinsic discrepancy loss. A clearer justification of
this would allay my concerns, and despite reservations about the enterprise, will go
a long way towards a “buy in”.

Minor quibbles. (i) Figure 1 seems to me like a two-edged sword. It really
demonstrates the disadvantages of choosing stylized loss functions. For example, in
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the context of engineering design, underestimating the variance could lead to designs
that are risk prone, whereas overestimating the variance can result in designs with
a large margin of safety. In the former case lδ is attractive; and in the latter case
lquad is attractive. A loss function which encapsulates a trade-off between cost and
safety appears to be a hybrid between lδ and lquad. All this goes to suggest that the
appropriateness of a loss function should be context dependent.

(ii) The material of Example 4 is fascinating. Why should non-dependence of
the posterior on m be viewed as a virtue? When a = 1/2 and m = 2, the two
posteriors are identical. The Dirichlet based posterior offers more generality.

(iii) The material of Example 5, with θ∗ = 21/nt and (t, t(1 − q)1/n) as the
q-credible region, suggests the possibility of exploring an inference mechanism for
the threshold parameter of failure models. Threshold parameters are proxies for
minimum life and are useful for setting warranties and insurance premiums. On
the matter of the example itself, the rationale behind choosing l0 is unclear, and
the expected loss linearly increasing in θ0 bothersome. A diminishing marginal loss
function (of θ0) seems meaningful.

(iv) The discussion following Example 7 pertaining to ESP is paradoxical. Here
we have one of the world’s foremost Bayesians leaning on p-values as a yardstick
for calibrating his work, and rejecting Jefferys’ (not Sir Harold Jeffreys—the e and
r are transposed) standard Bayesian approach as an example of Lindley’s paradox.
It seems we have come around a full circle. Paradox I win, paradox you lose. My
physics colleagues will say that with 52,263,471 successes in 104,490,000 trials, the
raw propensity of success is 0.50017677, and you do not need a statistician (Bayesian
or frequentist) to accept the hypothesis that θ0 = 0.5. Besides, what is the point of
testing such a hypothesis?

To conclude, I thank José for his years of friendship, his kindness, and his invi-
tation to comment on this paper.

JAN SPRENGER (Tilburg University, The Netherlands)

In his contribution, Professor Bernardo presents a variety of results on objective
Bayesian inference in the classical problems of parameter estimation and hypothesis
testing. A main motivation for these developments, and in particular for the use of
intrinsic loss functions, is to avoid results that vary with the chosen parametrization.
Such results are, he says, “difficult to explain when, as it is the case in theoretical
inference, one merely wishes to report an estimate of some quantity of interest”.

This statement has a striking resemblance to Ronald A. Fisher’s reservations
with respect to a decision-theoretic approach in statistical inference:

“In the field of pure research no assessment of the cost of wrong con-
clusions [...] can conceivably be more than a pretence, and in any case
such an assessment would be inadmissible and irrelevant in judging the
state of the scientific evidence”. (Fisher 1935, 25–26).

Although Bernardo has no principal objections to a decision-theoretic perspective in
pure statistical inference (Bernardo 1999), he agrees with Fisher that pure scientific
inference demands different methods than applied inference. This becomes clear in
the case of hypothesis testing where, according to Bernardo, scientists frequently
ask the question of whether a particular parameter value θ = θ0 is “compatible with
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the data”. This question makes perfect sense for a frequentist objectivist like Fisher,
but from a Bayesian perspective, it sounds somewhat odd and incomplete. What
counts as “compatible”? Doesn’t our standard for judging compatibility depend on
how plausible we consider the alternatives, those close to θ0 and those far from θ0

(see also Berger and Delampady 1987)? In other words, I believe the idea of an
objective, context-independent discrepancy measure between model and data to be
a frequentist chimera that we should be careful to invoke.

Moreover, the intrinsic discrepancy loss function that Bernardo suggests is in
principle unbounded, making it conceptually inappropriate for a variety of estima-
tion problems, including the ones from theoretical science that Bernardo has in
mind. I believe that the justification for using such functions should be practical,
not foundational, coming from our ignorance of the structure of the true loss func-
tion, and the convenient mathematical properties that they possess. Indeed, some
of Bernardo’s writings (e.g., the reply to Lindley in his 1979 paper) indicate that
intrinsic discrepancy losses and reference priors should not be understood as a chal-
lenge to Bayesian subjectivism, but as conventional or default choices, and as a form
of sensitivity analysis.

Fisher’s program of developing a logic of objective scientific inference has long
been pursued by frequentists, but, as we (Bayesians) know, without success. The
approach by Bernardo is arguably our best attempt to revive this program from a
Bayesian perspective, but it needs to be aware of the intrinsic tension in the program
itself.

FRANK TUYL (University of Newcastle, Australia)

While Professor Bernardo has proposed an attractive integrated framework, I suggest
that certain aspects will not impress our frequentist colleagues, nor all Bayesians. I
would like to discuss two limitations, one of the proposed region estimation and one
of reference priors in general.

Region estimation. Previously, Bernardo has emphasized the excellent sampling
properties of credible intervals based on reference posteriors. However, central in-
tervals tend to lead to zero coverage near parameter extremes, and HPD intervals
do not always fix this problem—which it certainly is from a frequentist point of
view. While intrinsic intervals avoid the lack of invariance of HPD intervals, they
potentially share the central interval’s zero minimum coverage even when the HPD
interval avoids it.

First consider Figure 3. As pointed out by Bernardo, here any credible interval is
also a confidence interval, so that excluding, for larger values of α that lead to a lower
limit l > 1.71, a sliver to the right of θ = 1.71 has no effect on frequentist coverage.
However, to many frequentists and Bayesians, such an interval appears inferior to
the HPD interval, which is also the short confidence interval: the wider intrinsic
interval sacrifices values with high likelihood for values with lower likelihood.

Second, the very similar Figure 7 of Bernardo (2005b) based on binomial data
x = 0 and n = 10, and with left limit 0 instead of 1.71, is more serious. Due to
the binomial model’s lack of a pivotal quantity, coverage now varies with θ; here,
HPD intervals are clearly preferable to central intervals as they avoid zero minimum
coverage. However, Bernardo’s (2005b) Figure 7 suggests that when α > 0.2, ap-
proximately, the intrinsic interval shares this undesirable property with the central

interval. Also, as α → 1, the HPD interval converges to θ̂ = 0, an estimate called
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“utterly useless” by Bernardo (2005b, p. 342), even though as a data-based point
estimate it seems perfectly adequate.

When deriving an interval from a reference posterior, referring to a suitable
likelihood function rather than the intrinsic discrepancy loss function, appears to
add better sampling properties to the invariance property (work in progress). Of
course there is only one likelihood function for one-parameter models, when this
approach (see e.g., Box and Tiao, 1973, p. 124) leads to HPD in the metric for
which the reference prior is uniform. But in the case of σ in the Normal model, for
example, it is the use of the marginal likelihood that leads to HPD in log(σ), and to
an “unbiased” confidence interval (Lindley et al. 1960), less complicated and more
attractive (to frequentists and, I suggest, many Bayesians) than the interval from
Example 6.

Reference priors. I believe Bernardo’s (1979) article to be one of the most
important contributions in the history of statistics. It appears, however, that a
reference prior may be too informative when it “shoots off to infinity” (Zellner’s
words in a comment to Geisser, 1984) at the extreme of a parameter range, if in
fact the pdf is defined at such an extreme. The most common example of this
is, of course, the binomial; setting 0 < θ < 1 does not take away the fact that
this model is also valid for θ = 0 and θ = 1. This could be the reason behind
why the uniform or Bayes–Laplace prior appears preferable, as a representation of
prior ignorance and thus for the purpose of scientific communication and sensitivity
analysis, to the reference/Jeffreys prior Be(θ | 1/2, 1/2). This can be most easily
shown by considering x = 0 (x = n) (Tuyl et al., 2008). As a related illustration,
consider the Bayesian Rule of Three which states that, based on x = 0 and an
informative prior Be(θ | 1, b) (b > 1), the 95% one-sided upper credible limit may be
approximated by 3/(n+ b) when n is large (Jovanovic and Levy, 1997). It is easy to
check that the reference prior leads to an approximate limit of 1.92/n here. Equating
the two rules gives b = 0.56n, so that under this scenario the reference prior adds,
in effect, 0.56n − 1 observations (i.e., failures) to the uniform prior. For another
argument in favour of the uniform prior, and an example of the informativeness of
Be(θ | 1/2, 1/2) priors in the context of a 2 × 2 contingency table, see Aitkin et al.
(2005, p. 229).

In the current article, the approximate marginal reference posterior from Exam-
ple 4, Be(θi |ni+1/m, n−ni+(m−1)/m) seems of particular concern when m is large
and ni = 0, resulting in a credible interval (for θi) too close to 0. For m = n = 100,
for example, the 95% reference upper limit is 0.000033, even though ni = 0 would
be a common occurrence for θi many times greater than this limit. Instead, the
95% upper limit resulting from the uniform Dirichlet prior is 0.015, which seems
more reasonable. [As pointed out by Bernardo, Dirichlet posteriors depend on m,
which, if the only prior knowledge is that m categories exist, seems more reasonable
than dependence on ni only. The reference posterior Be(θi |ni + 1/2, n− ni + 1/2)
also given by Bernardo does have the latter property (“as one would hope”) and
happens to perform better here, but remains too informative in general, as shown
above in the context of m = 2.] Philosophical differences aside, it is important to
acknowledge Jaynes’s (1976, p. 178) words, “The merits of any statistical method
are determined by the results it gives when applied to specific problems.” Jaynes
gave examples for which credible intervals are clearly superior to certain confidence
intervals, with the same frequentist properties. However, the interval (0, 0.000033)
above leads to inadequate coverage, and would be embarrassing to give to a client.
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Examples by Lindley in his discussion of Bernardo (1979) are relevant here.
Lindley started off referring to the different reference/Jeffreys prior Be(θ | 0, 1/2)
for the negative binomial parameter: many Bayesians agree with Lindley that vio-
lation of the likelihood principle is undesirable. While Bernardo has continued to
defend this prior, it seems that Bayesians who have adopted “the” Jeffreys prior
for binary data analysis, do not usually check how the sample was collected, and
simply adopt the Be(θ | 1/2, 1/2)—just like most frequentists tend to use their stan-
dard binomial calculations without checking the sampling rule. Ultimately, Geisser’s
(1984) counter-arguments, in his reply to discussants (including Bernardo), seem ir-
refutable; for example, which reference/Jeffreys prior results when the experiment
is stopped when either x successes or n trials are achieved, whichever occurs first?
A possibility would be to adopt Be(θ | 0, 1/2) when the former and Be(θ | 1/2, 1/2)
when the latter occurs, but such rules seem to simply illustrate the need for the
likelihood principle: what if the xth success occurred on the nth trial?

Interestingly, this type of prior, although nothing to do with a stopping rule as
such, plays a role in the trinomial example given next by Lindley. In the context of
life-tables, the three probabilities are λ{1− (1− δ)µ}, (1− δλ)µ and (1− λ)(1− µ),
with frequencies D of deaths, W of withdrawals and S of survivors. Lindley chal-
lenged Bernardo’s reference prior methodology for this example, stating that for
δ = 0 or δ = 1, when we “isolate λ say”, the reference prior is not the usual
Be(λ | 1/2, 1/2). However, in his reply Bernardo showed that his method does give
this result for δ = 0, but Be(λ | 1/2, 0) when δ = 1. About this different prior
Bernardo remarked, “I suspect that δ = 1 is a limiting condition which precisely
implies this type of sampling rule.”, which is hardly convincing. In contrast with
genuine negative binomial sampling, there is a definite problem, as the reference
posterior Be(λ |D + 1/2,W + S) is improper when D = n.

Bernardo’s analysis was based on setting φ1 = (1−δλ)µ and φ2 = (1−λ)(1−µ).
Based on Bayes’s (1763) original argument for a uniform prior predictive distribu-
tion, we should consider a uniform prior on (φ1, φ2). For δ = 1, the posterior for λ
is now Be(λ |D+1,W +S+2) which makes sense: before any observations the prior
mean is 1

3
, the result of a prior “balanced” view of the frequencies D, W and S.

Of course for large frequencies, adopting a uniform prior on (λ, µ), which in case of
δ = 1 results in a slightly different posterior Be(λ |D + 1,W + S + 1) instead, is
adequate, unlike Bernardo’s Be(λ |D + 1

2
,W + S) not breaking down for any zero

frequencies.

It seems surprising that Bernardo himself found the potential impropriety of the
Haldane posterior of the binomial parameter, based on the prior Be(θ | 0, 0), “less
than adequate” (Bernardo 1979, p. 119), but was not concerned about the same
consequence for the D = n possibility in this example. It appears that Lindley’s
intuition was correct, and that the example provides strong evidence that reference
priors can be suboptimal for certain models. In contrast, Bernardo’s treatment of
the Fieller–Creasy problem and Stein’s paradox, for example, must have been truly
remarkable in 1979.

Lindley finished off by stating, “...but he has been successful in overcoming
other difficulties, and the rewards of success would be so great, that I am sure he
will be able to overcome these teasers.” Until Bernardo does so, it appears that
non-regular models such as the ones discussed above should be excluded from the
current reference prior methodology.
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REPLY TO THE DISCUSSION

I am extremely grateful to all discussants for their relevant, interesting, and thought-
provoking comments. Naturally, I have also much appreciated their very nice per-
sonal remarks (which sometimes have made me blush). In particular, it is indeed
very nice to be told that one is able to produce diamonds: I only hope that people
will not be shy to wear them! And I was really moved by the warm opening words of
Professor Lindley, my maestro, the person who introduced me to Bayesian statistics,
and who has always been a key figure in my professional life.

In this rejoinder, I will first concentrate on trying to give specific answers to
the discussant’s queries, grouping these by subject, and I will finally attempt to
summarize what I perceive to be the main conclusions.

Objectivity. Professor Lindley has foundational objections to the use of objective
priors. As any Bayesian surely knows, Lindley moved from an objectivist Bayesian
position closely related to Jeffreys (one of his mentors), nicely developed in his ex-
cellent pioneering book (Lindley, 1969), to an extreme subjectivist approach. I guess
that (as is often the case in genetics), in this issue I am closer to my grandfather. Of
course, many choices in any statistical analysis are subjective, and it may be claimed
that objectivity only arises when scientists reach agreement. However, by limiting
and making explicit these subjective choices, and using a prior distribution and a
loss function chosen by consensus, this agreement is more likely to be obtained. Ref-
erence priors and intrinsic discrepancy loss functions are precisely proposed for this
type of consensus. These also produce benchmarks against which solutions derived
from more subjective choices may be usefully compared.

Both Professor Lindley and Professor Singpurwalla object to the treatment of
parameters as “Greek symbols” without a context specific meaning, reducing statis-
tical analysis to a mathematical exercise. I believe that this objective mathematical
exercise is precisely what scientists often demand in order to reach some basic con-
sensus on what, for a given assumed model, the data imply on the likely values of
parameters which label the model. If those parameter have a physical interpretation
(which is not always the case) and the scientists are able to specify a context-based
prior, they should indeed use this information in the form of a context-based prior
distribution but, even then, computing the reference posterior will be helpful to ver-
ify to what extent the results they obtain depend of the particular context-dependent
prior which they have decided to use.

I certainly agree with Singpurwalla in that prediction is often the final goal of
any statistical investigation but, for any given model, computation of a posterior
predictive technically requires the derivation of a joint posterior for the parameters.
Naturally, a reference posterior predictive requires a reference prior. As Dr. van der
Linde mentions, in prediction problems with multiparameter models the quantity of
interest (required to derive the appropriate reference prior) is not obvious. Using as
the quantity of interest the median θ(ω) = Median[y |ω] of the sampling distribution
of the quantity y to predict seems to produce very attractive reference predictive
densities. For many successful examples of this approach, see Román (2011).

As Professors Pericchi, Lindley and Moreno all suggest, I am sure that there are
situations where the scientist is willing to use a prior distribution highly concentrated
at a particular region and explore the consequences of this assumption. Lindley
describes this as a subjective choice, while both Pericchi and Moreno argue that
some of these choices are somewhat objective. What I claim is that, even in precise
hypothesis testing situations, the scientist is often interested in an analysis which
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does not assume this type of sharp prior knowledge, and that standard reference
priors may be used to give an objective Bayesian answer to the question of whether
or not a particular parameter value is compatible with the data, without making
such an important assumption.

In line with his subjectivist approach to Bayesian statistics, Singpurwalla advo-
cates the use of context-based loss functions as opposed to automatic loss functions,
like those provided by divergence measures. My reaction to this is very much the
same as that provoked by the suggestion to use context-based priors. In recommend-
ing the optimal dose of a drug given available experimental data, the pharmacologist
may have to consider that a too large dose might be severely toxic, while a too small
dose could be correctable with a supplementary dose, and consequently use a non-
symmetric loss leading to Bayes estimators for the optimal dose far smaller than
the intrinsic estimator. However, an astronomer estimating the speed of a galaxy
would probably just want to know the speed values which are most compatible with
available data, and those will be provided by the intrinsic estimator and by intrinsic
credible regions. Even the pharmacologist will probably want to know the intrinsic
estimator of the optimal dose, if only to compare this with the solution suggested by
his context-based loss function. Very much like information-theoretical ideas provide
an intuitive basis for the formal definition of reference priors, divergences between
models derived from functional analysis provide an intuitive basis for objective loss
functions. The intrinsic discrepancy has an additional important intuitive justifi-
cation for statisticians, as it is directly related to the average log-likelihood ratios
between models, a concept well understood and appreciated by most statisticians.

Mathematical formulation. Singpurwalla finds pedantic the explicit introduction
of nuisance parameters in our formulation. While it is certainly true that some of
the central ideas are easier to describe in simple one-parameter models, most real
problems use models with many parameters, and the extension to multiparameter
problems of the original ideas is not particularly trivial. If I had been writing a
book rather than a review paper, I would surely have used a two-stage approach
but, with the space limitations of a paper, I was obliged to directly describe the
general solution.

As Professor Sprenger points out, I agree with both Fisher and Lindley in that
pure scientific inference is a somewhat different problem than context-based decision
making. However as described in the Annals paper which Lindley quotes (Bernardo,
1979b), statistical inference may formally be described as a decision problem (where
the action space is the class of posteriors, and the utility function an information
measure) and, as a consequence, decision theoretical techniques may be used to ob-
tain sound procedures for statistical inference. It is decision theory which makes
precise the conditions under which, say a particular point estimator, may be ap-
propriate. Within statistical inference, I perceive decision theory as an appropriate
guide to guarantee good statistical practice.

Bayesians have used decision theory for decades to obtain good general estima-
tors, but too often the loss function used (in many cases just the quadratic loss) has
been rather näıve. I have proposed the use of the intrinsic discrepancy loss as a pos-
sible improvement in those pure inference problems. Of course, as mentioned above,
context-dependent decision problems should make use of a context-dependent loss
function. Both Lindley and Sprenger mention the fact that the intrinsic discrep-
ancy loss (as the ubiquitous quadratic loss) is not bounded. I do not think this is
a problem in scientific inference: conceptually, because an unbounded loss is the
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mathematical code for the possibility of being totally wrong; pragmatically, because
the tails of the posterior will typically make irrelevant the form of the loss when one
is far from the more likely region. That said, as Sprenger quotes, I certainly believe
that intrinsic discrepancy losses and reference priors should not be understood as a
challenge to a Bayesian context-dependent analysis, but as conventional consensus
choices, and as a form of sensitivity analysis.

All the ideas presented in this paper could have been developed using utility
functions rather than loss functions; this would have probably been closer to foun-
dations, but I believe that the use of losses makes interpretation of the results far
simpler in the context of pure statistical inference.

Invariance. Pericchi recognizes that invariance with respect to one-to-one trans-
formations is a “convenient” property, but then quotes Box and Tiao in an attempt
to defend the use of non-invariant procedures, such as HPD regions. But this quote
does not support non-invariant procedures for the choice of credible regions. Box
and Tiao are obviously right when they say that “the relative credibility of any two
parameter points ought to change with non linear transformations”. This is indeed
a trivial consequence of probability theory. Given a posterior density, say π(θ |z),
one always has

π(φi |z)

π(φj |z)
=
π(θi |z)

π(θj |z)

| ∂θ/∂φ | θ=θ(φi)

| ∂θ/∂φ | θ=θ(φj)

,

and this will generally be different from π(θi |z)/π(θj |z) unless | ∂θ/∂φ | is constant.
This does not imply, however, that credible intervals should not be invariant. In-
deed, the statement θ ∈ B is precisely the same as φ ∈ φ(B) and, we argue, any
sensible approach to the choice of credible regions should take this rather obvious
fact into account. And certainly, insisting on this invariance does not lead to inap-
propriate solutions, as demonstrated in the many examples contained in Bernardo
(2005b).

Professors Gutiérrez-Peña, Rueda and Mendoza are certainly right when they
point out that one obtains invariant results if one chooses a loss function in a parti-
cular parameterization and then uses the corresponding transformation in any other
parameterization. This is indeed the appropriate procedure if one uses a context de-
pendent loss function (such as a monetary loss). If, however, one is interested in the
simplifications and generality associated with the use of a conventional loss function
(such as the quadratic) this requires specification of the particular parameterization
in which the conventional loss is appropriate (a non-trivial decision) and, more-
over, this would lose the automatic calibration aspect of the intrinsic discrepancy
loss. More importantly, measuring discrepancies between models makes far more
sense to me than measuring distances between parameters, and invariance is then
an immediate by-product.

Consistency. Pericchi does not like the fact that, given any fixed cut-off point in
the procedure we suggest for testing a precise null H0, although the probability of
rejecting H0 when it is false goes to one as the sample size increases, the probability
of rejecting the null when it is true does not go to zero as n → ∞. We however
consider this mathematical fact as a very welcome feature of the proposed testing
procedure.

Indeed, many philosophers of science (Popper 1934; Lakatos 1978) assert that
hypotheses of sufficient generality and strength can never be proved, and that our
method of investigating them is essentially an attempt to falsify them (i.e., to reject
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them when they are false). Thus, one may only claim that data are probably
compatible with H0, but many other explanations may also be compatible with
the data. For a criticism of that view, see Kuhn (1962, 1977); one may notice,
however, that the philosophical debate about whether or not science is essentially
falsificationist appears to have lost its pace without reaching a clear result.

The intrinsic discrepancy test does not place the null and the alternative on an
equal footing and, we argue, rightly so: the alternative (the full model) is true by
assumption, and one is testing whether or nor the data are compatible with the
restricted model described by H0, hardly a symmetric situation. That said, one
should not limit the analysis to selecting a particular cut-off and simply reporting
whether or not the intrinsic statistic d(θ0 |z) exceeds, or does not exceed, that value.
Indeed, the whole behaviour of d(θ0 |z) as a function of θ0 is of interest and, for
each particular θ0, the value d(θ0 |z) is a direct, operational measure of the possible
incompatibility of θ0 with the data, in terms of the expected average log-likelihood
ratio against this particular parameter value.

Professors Pericchi, Ghosal, Robert and Rousseau do not like the fact that the
threshold required in the proposed procedure for hypothesis testing is independent of
the sample size. Yet, we feel this is a very sensible feature of the procedure, for this
describes the upper limit of the sampling average log-likelihood ratio against the null
which one is prepared to tolerate without rejection, and this utility constant should
surely be independent of the data size. Indeed, we find very unappealing the frequent
ad hoc sample size adjustments that people are forced to do with conventional testing
procedures. Notice also that our procedure is described in terms of available data z,
and this may have a totally general structure that will often not be that of a random
sample, so that the concept of “sample size” cannot possibly be generally relevant.
In particular, Ghosal suggests that, as the intrinsic discrepancy loss is multiplied
n-fold in the i.i.d. case, a factor of n in the cut-off point should be expected. I do
not think this should be the case. For any data set z = {x1, . . . , xn}, a fixed (sample
size independent) cut-off point typically forces the size of the acceptance region to
be proportional to 1/

√
n, which (under regularity conditions) is precisely what one

would expect. To take the simplest example, testing the value for a normal mean µ0

given a random sample z = {x1, . . . , xn} from N(x |µ, 1), the expected intrinsic
discrepancy loss is n δ{N(· |µ, 1),N(· |µ0, 1)} = n (µ− µ0)2/2 and, using the cut-off
constant k = loge(e

k), the null value µ0 will be rejected whenever

|x̄− µ0| >
√

2k − 1√
n

so that, as one would expect, the size of the acceptance region decreases with 1/
√
n.

In particular, for k = 3 (where the null is rejected whenever the sampling average log-
likelihood ratio against µ0 may be expected to be larger than 3, and hence the likeli-
hood ratio about e3 ≈ 20), this happens whenever |x̄−µ0| > 2.23/

√
n. For k = 2.42

one gets the conventional rejection rule |x̄− µ0| > 1.96/
√
n, which corresponds to

an expected likelihood ratio against the null of about only e2.42 ≈ 11. As mentioned
in the paper, this is hardly conclusive evidence against µ0; no wonder therefore that,
as often reported in the literature, many frequentist α = 0.05 based rejections turn
out to be wrong rejections. Notice that if the cut-off constant had been chosen of the
form nk, the rejection rule would have been |x̄− µ0| >

p
n(2kn− 1)/n, converging

to |x̄− µ0| >
√

2 k for large n, not quite an acceptable proposal.
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Compound hypothesis. Professors Gutiérrez-Peña and Rueda, Mendoza, Robert
and Rousseau, all question the suitability of the simple approach suggested to deal
with compound hypotheses. The proposed testing procedure is consciously defined
in terms of testing whether or not a particular value θ0 of the parameter is compatible
with the data. Depending on the context, a compound hypothesis of the form
H0 ≡ {θ0 ∈ Θ0} is to be rejected when (i) at least one of its elements would be
rejected, or when (ii) all its elements would be rejected. This second case is likely
to be the more frequent situation, but the solution proposed may be used to deal
with both cases.

For instance, in a scientific context, where the parameter values Θ0 are all those
compatible with an established theory, rejecting the hypothesis H0 is rejecting that
theory, and this will be the case if all of the values in Θ0 are considered to be
incompatible with the data. Thus, in high energy physics, the accepted theory may
imply that the energy of a type of particle must lie in a given interval; if all the values
in that interval are incompatible with the data, than that theory must be revised,
and new physics proposed. However, in a pharmacological context, where Θ0 is the
set of all the conditions under which the drug must work, the hypothesis that the
drug is worth further study is to be rejected if at least one of those parameter values
is considered to be incompatible with the data, for this means that the drug does
not work under, at least, some of the required conditions.

Approximations. Professor Ghosh refers to the approximate solution for testing
the value of a normal mean when both parameters are unknown (Example 6) and
wonders about the precision of that approximation. Actually, the approximation
is quite good. Here, the intrinsic divergence between the model N(· |µ, σ) and the
hypothesis H0, which is the set {N(· |µ0, σ0), σ0 > 0}, is given by

δ{H0 |µ,σ} = inf
σ0>0

n δ{N(· |µ, σ),N(· |µ0, σ0)}

= inf
σ0>0

n

2

h
log

σ2
0

σ2
− 1 +

σ2

σ2
0

+
(µ− µ0)2

σ2
0

i
=

n

2
log
“

1 +
`µ− µ0

σ

´2”
=
n

2
log(1 + θ2),

where θ = (µ − µ0)/σ. Moreover π(θ |z), the marginal posterior distribution of θ
given z = {x1, . . . , xn} which corresponds to the reference prior π(µ, σ) = σ−1, is
a non-central chi-squared which is proper for any n ≥ 2, and which only depends
on the data through the sample size n and the absolute value of the conventional
statistic t = (x̄−µ0)/(s/

√
n− 1), where s2 = Σ(xj− x̄)2/n. The reference expected

intrinsic discrepancy loss may thus be numerically computed as

d(µ0 |z) = d(t, n) =
n

2

Z ∞
−∞

log(1 + θ2)π(θ | t) dθ ≈ n

2
log
h
1 +

1

n+ 1
(1 + t2)

i
.

The quality of the approximation may be appreciated from Table 1, which gives
the exact and the approximate values of d(t, n) for several |t| values and n = 25.
The limiting value of d(t, n) as n→∞ is (1 + t2)/2. For fixed n, the value of d(t, n)
goes to infinity as |t| goes to infinity so that, as one would surely expect, null values
with very large |t| values will always be rejected.

Since the expected loss is only a function of t and n, any cut-off value d0 will be
numerically equivalent to a particular choice of the significance level in the conven-
tional frequentist t test. However, the practical differences with the proposed pro-
cedure are rather radical. For instance, one finds that the choice d0 = 2.42 = log 11
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Table 1: Exact and approximate values of the intrinsic statistic d(t, n) to test
the value of a normal mean µ0, for n = 25, where t is the conventional t statistic.

| t | Exact Value of d(t, n) Approximation
0 0.473 0.472
1 0.915 0.926
2 2.157 2.199
3 3.995 4.068
4 6.192 6.289
5 8.555 8.664
6 10.950 11.063

corresponds to p-values of 0.039, 0.048 and 0.050 for sample sizes 10, 100 and 1000
respectively. Thus, the null would typically be rejected by conventional practice
when the only evidence is that the likelihood ratio against the null is expected to
be about 11. Thus, once again, a sizeable proportion of frequentist rejections may
be expected to be wrong rejections.

Bayes factors. As one would expect from scholars who have produced many
interesting results using Bayes factors, Pericchi, Gómez-Villegas and Moreno are all
unhappy with my treatment of precise hypothesis testing. I now analyse further
the ESP example, which we all seem to agree is a good test case. The question is
whether or not r = 52, 263, 471 successes in n = 104, 490, 000 Bernoulli trials is, or
is not, compatible with the precise value θ = 1/2. With such a huge sample, the
posterior density which corresponds to any non-pathological positive prior on (0, 1)
is actually N(θ | 0.50018, 0.000049), so that the specific (continuous) prior choice is
pretty much irrelevant. This is shown in the top panel of Figure 9.

It should be obvious from that figure that any Bayesian with a non-dogmatic
prior is forced to conclude that the precise value θ = 0.5 is not well supported by
the data. More precisely, using the intrinsic discrepancy loss function (represented
in the bottom panel of Figure 9), the expected loss from using θ = 0.5 in place of
the true, unknown θ value is about 7.24 = log[1400] so that, given the data, the
sampling average log-likelihood ratio against θ = 1/2 may be expected to be 7.24
(again with virtually any non-dogmatic prior) and hence, in any future use of the
model the data may be expected to be about 1400 times more likely under the true
value of θ (which should roughly be around 0.5002 ± 0.0001) than under θ = 1/2.
Thus, one should not work under the hypothesis that θ is precisely equal to 1/2.

The fact that this conclusion agrees with the conclusion which one would obtain
using p-values in this case does not mean (as Singpurwalla seems to suggest!) that
I lean on p-values as a yardstick. The argument rests solidly on Bayesian grounds.

We conclude that H0 should be rejected, but Pericchi computes the Bayes fac-
tor which corresponds to the use of the density Be(θ | 1/2, 1/2) as the conditional
prior given that H0 ≡ {θ = 1/2} is false, and obtains B01 = 18.7 suggesting a
“ratio of evidences” of about 19 in favour of H0. And again, the conclusion will be
qualitatively the same with any other non-pathological conditional prior under the
full model. But he adds that this conclusion is reached with the same assumptions
(the reference prior) which I propose to use. However, this is certainly not the case.
As pointed out before by many authors, Bayes factors have no direct foundational
meaning to a Bayesian: only posterior probabilities have a proper Bayesian inter-
pretation. The fact that, under appropriate conditions, the Bayes factors contain all
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Figure 9: Posterior density (for any non-dogmatic prior) and expected intrinsic
discrepancy loss for the parameter θ of a binomial model, given r = 52, 263, 471
successes in n = 104, 490, 000 trials.

relevant data information to obtain the required posterior probabilities associated
to a finite set of possibilities does not mean that one may reason in terms of Bayes
factors rather than probabilities, very much as the fact that likelihood functions
contain all data information to obtain posterior densities does not mean that one
may reason in terms of likelihoods instead of in terms of posterior densities. In
this particular case the Bayes factor B01 is only relevant if one wishes to obtain
the posterior probabilities Pr[H0 |z] and Pr[H1 |z] and these only make sense if one
assumes a prior of the form Pr[H0] = p0, Pr[H1] = 1 − p0, p(θ |H1) = p(θ), for
some p0 > 0 and some proper prior p(θ); clearly this is a non-regular “sharp” prior
which will always be very different from any continuous prior, such as the reference
prior π(θ) which I assume. Contrary to Pericchi’s assertion, the reference prior value
π(θ0) = 0 is not in violation of Cromwell’s rule, but a simple consequence of the fact
that H0 is a measure zero set in this setting. We argue that only if one restricted
the parameter space to a finite set of values Θ = {θ0, θ1, . . . , θk} (and then one will
be in an entirely different problem) would the assumption Pr(θ0) > 0 be required.

Sprenger suggests that our standard for judging compatibility should depend on
how plausible we consider the alternatives. I do not believe this should be case. The
fact that one is interested in a particular θ0 value does not require that this value
is judged to be more likely. Interest is measured in terms of utility, not in terms of
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probability. One is not interested in how likely θ0 is, a less than appropriate question
in a continuous setting, but on whether or not the simplified model p(z | θ0) may
safely be used in place of the assumed model {p(z | θ), θ ∈ (0, 1)}, a very different
question. We give an operational answer to this problem by suggesting that the
null should be rejected whenever the expected average log-likelihood ratio of the
assumed model against the null is too large. In the ESP example the message is
clear: one should not conclude that θ is precisely equal to 0.5, for there is sufficient
evidence to state that the true value of θ is likely to be within 0.5002± 0.0001. No
matter what the physicist friends of Singpurwalla apparently believe, you have to
know some statistics to see that a raw propensity of success of 0.500018 with this
huge sample size of n = 104, 490, 000 does not lead us to accept the precise value
θ0 = 0.5, but to conclude that a small bias was very likely present. Whether or
not this is an important practical conclusion is another matter, which (if required)
could surely be treated as a formal decision problem, and analysed with a context
specific utility function.

In an effort to justify a large posterior probability for the null, Moreno mentions
likelihood ratios, but a careful analysis of the likelihood ratios suggests precisely the
opposite. Thus, if one follows the common practice of plotting the likelihood ratio
against the null BF10(θ) = [θr(1 − θ)n−r]/(1/2)n as a function of the parameter θ
(see Figure 10) one naturally finds that this ratio is large for all values in a region

close to the m.l.e. θ̂ ≈ 0.50018, essentially reproducing (at another scale) the top
panel of Figure 9. Thus, BF01(0.50018) = 686, and BF10(θ) is only smaller than 1
if θ < 0.5 or θ > 0.50035. It should be obvious that only a very dogmatic prior
extremely concentrated on θ = 1/2 could possibly dominate the data and give a
large probability to a tiny interval around the null (and this would hardly qualify
as an objective procedure which lets the data speak for themselves!)
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Figure 10: Likelihood ratio against θ = 1/2 as a function of the parameter of
a binomial model, given r = 52, 263, 471 successes in n = 104, 490, 000 trials.

We all agree that scientists often need a summary of the implications of the data
to the problem at hand and that “it is better to have large posterior probabilities in
the right direction that to decide robustly in the wrong” but I am afraid that I do
not agree with Pericchi on what the appropriate summary should be, or on precisely
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what is right and what is wrong here. To the best of my knowledge, the posterior
density in the top panel of Figure 9, a direct consequence of probability theory with
no special assumptions about the prior, and possibly complemented by the expected
loss in the bottom panel of that figure, is the summary the scientist needs, while
the conventional Bayes factor analysis is plainly misleading in this problem.

As Berger and Delampady (1987) correctly pointed out “(precise) nulls will
always be rejected if enough data are taken because there will be uncontrolled sources
of bias”, and this is possibly what data are showing here: the machine used possibly
had a small positive bias, and this has been duly detected by the reference analysis.
We do not have to believe in ESP, but the fact remains that the proportion of
successes which the machine produces is found to be very likely different from exactly
50%, in direct contradiction with the Bayes factor results. As mentioned before, the
analysis of practical consequences of this undeniable fact is another issue.

Lindley’s paradox. There are two rather different facts in the mathematical
behaviour of the Bayes factor for testing whether a normal mean is zero, the example
quoted by Moreno to discuss Lindley’s paradox. The fact mentioned by Moreno is
that B10 → 0 as the prior variance increases, proving that the usual objective prior
in this problem, the uniform π(θ) = 1 cannot be used with this formulation. The
other fact, rather more upsetting, is that for any fixed value of n x̄2 (the square of the
number of standard deviations x̄/

√
n that the m.l.e. x̄ is from the null value θ = 0),

the Bayes factor B10 → 0 as n → ∞, hence leading to accept H0 (for sufficiently
large samples) no matter what the relevant data say. This is Lindley’s paradox,

and illustrates the fact that, when true parameter values are order O(n−1/2) of the
null and the sample size is large, one may obtain totally misleading answers from
Bayes factors. This is a direct mathematical consequence of the fact that, in those
conditions, a continuous prior concentrated on θ0 cannot be properly approximated
by a sharp prior with a point mass on θ0 (Berger and Delampady, 1987).

Thus, I certainly do not agree with Pericchi that Lindley’s paradox has been
“misunderstood” as an illness of Bayes factors for precise hypothesis testing. On
the contrary, this clearly poses a very serious problem to Bayes factors, in that,
under certain conditions, they may lead to misleading answers. Whether you call
this a paradox or a disagreement, the fact that the Bayes factor for the null may be
arbitrarily large for sufficiently large n, however relatively unlikely the data may be
under H0 is, to say the least, deeply disturbing.

To further illustrate this point, consider again the ESP example discussed above.
For large n and r/n close to 1/2, the Bayes factor for testing whether or not the
binomial parameter θ is precisely equal to 1/2 becomes

B01(r, n) ≈ 1

2
log
hnπ

2

i
− 2n

„
θ̂ − 1

2

«2

, θ̂ =
r

n
.

With the ESP data of Example 7, this yields indeed B01 = exp[2.93] = 18.7, as
Pericchi mentions. Now suppose that the m.l.e. is at a distance of order 1/

√
n from

the null, so that, say, θ̂ = 1/2± δ/(2
√
n); then the Bayes factor becomes

B01(r, n) ≈ 1

2
log
hnπ

2

i
− δ2

2
,

which (for any fixed δ) tends to infinity as n increases, therefore always strongly
supporting the null for large enough samples. However, the likelihood ratio of the
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m.l.e. against the null will in this case be

Bi(r | θ̂, n)

Bi(r | 1/2, n)
≈ exp

»
δ2

2

–
= exp

h
2n (θ̂ − 1/2)2

i
,

which, for all θ̂ 6= 1/2, will be large for large n values. Thus, for large sample sizes,

whenever the true value of the parameter is O(n−1/2) from the null, the Bayes factor
analysis may be completely misleading, in that it would suggest accepting the null,
even if the likelihood ratio for the m.l.e. against the null is very large.

This is precisely what happens in the ESP example. Here the likelihood of the

m.l.e. θ̂ = r/n against the null is Bi(r | θ̂, n)/Bi(r | 1/2, n) ≈ 686, but the m.l.e. is

O(n−1/2) from 1/2, with θ̂ = 1/2 + δ/(2
√
n) and δ = 3.614. Thus, for any non-

dogmatic continuous prior, the null is 3.614 posterior standard deviations from the
m.l.e. (something most probabilists would regard as strong evidence against the
null), the likelihood ratio of the m.l.e. against the null is about 686 and, yet, the
Bayes factor suggests “evidence” for the null of about 19 to 1! We strongly believe
that this behaviour (which is shared by all Bayes factor based procedures) is less
than satisfactory.

Gómez-Villegas follows Jeffreys’ conventional approach and claims that testing
in a continuous parameter problem forces the use of a non-regular sharp prior. As
mentioned before, this is of course true if one insists in presenting the answer as a
posterior probability for the null but, as demonstrated above, this is certainly not
required if, for a given model, one wishes to test the compatibility of the available
data with the null, which is precisely what I believe one should be doing. Placing
(as he suggests) a larger value for p0, the prior probability of the null, than the
conventional p0 = 1/2 will often get closer compatibility with p-values practice, but
I am less than convinced that this will generally provide a good answer. Moreover,
for any p0 choice, Lindley’s paradox will always appear for specific values of the
sample size.

As pointed out by Moreno, the formulation of model choice as a decision problem
on the finite set of alternative models is of course fine. It is on the choices of the loss
function and the prior distribution where disagreement may occur. In particular, the
0–1 loss is possibly too näıve, for this cannot take into account the actual differences
between using the alternative models for the problem under scrutiny. In nested
models with continuous parameters it is precisely the use of this particular loss that
forces the use of sharp priors, and this in turn leads to Lindley’s paradox, with the
possibly devastating effects illustrated by the ESP example discussed above.

Reference priors. Lindley, Gómez-Villegas and Tuyl all mention that reference
priors are apparently incompatible with the likelihood principle. Once the data have
been obtained, the likelihood “principle” is an immediate consequence of Bayes the-
orem, stating that inferences should only depend on observed data. However, inte-
grating on the sample space is mandatory in many statistical tasks to be performed
before the data are obtained. These include experimental design and reference anal-
ysis: one cannot optimize an experiment without some assumptions of its possible
outcomes, and one cannot determine the (reference) prior which maximizes the miss-
ing information from a particular experiment without making precise the experiment
one is willing to consider.

Reference posteriors are conditional answers of the “what if” type. They provide
a meaningful answer to a very precise question: given a set of data which are assumed
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to have been generated by a particular model, what could be said about some
function of its parameters if initial knowledge were described by that prior which
maximizes the missing information which this experiment could provide? Obviously,
the answer is bound to depend of the experiment considered, and there is certainly no
fundamental difficulty in simultaneously considering different plausible experimental
settings as part of an (always welcome) sensitivity analysis.

Robert and Rousseau refer to the general definition of reference priors, where
the required prior function is obtained from the behaviour of the posterior distri-
bution of the quantity of interest under repeated replication of the original data
structure, as opposed to simply letting the sample size increase. As they point out,
the result may be very different, unless the original data structure already consists
of i.i.d. observations. I strongly believe that the original formulation is always the
appropriate one. Indeed, by definition, the reference prior is designed to obtain
that prior which maximizes the missing information which the experiment analyzed
could possibly provide, and this would only be obtained by repeated observations
from the precise experiment analysed. Notice that this formulation naturally per-
mits the reference prior to take the experiment design into account; for instance, in
two -sample problems (like that comparing two normal means), the reference prior
typically depends on the ratio n/m of the two sample sizes, and this is obtained
by analysing the posterior densities which correspond to k replications of pairs of
samples of sizes n and m from the two populations, and letting k increase (for a
detailed example, see e.g., Bernardo and Pérez, 2007). It the data structure consists
of n not i.i.d. observations, letting n go to infinity often produces an approximate
reference prior, which could be used with actually large sample sizes; the results if
one uses that prior with small data sets (where the relevance of the prior is largest)
may well be inappropriate.

Dr. Tuyl argues for the use of uniform objective priors in models with bounded
parameter range, where the reference prior often tends to infinity in the extremes,
with special reference to the binomial model. However, the parameter range depends
on the (once again) arbitrary parameterization; thus in the binomial model, the
perfectly adequate logit parameterization φ(θ) = log[θ/(1 − θ)] has the real line
as the parameter space. The reference prior is actually uniform in the alternative
parameterization ψ(θ) = arcsin[

p
(θ)], which also has a bounded parameter space.

I strongly believe that any proposal for an objective prior which is not consistent
under one-to-one reparameterization is simply not worthy of being considered.

Alternative formulations. The whole objective integrated approach described
in this paper may in principle be done with any invariant continuous loss function,
and I would be very surprised if the results turned out to be dramatically different.
Ghosal suggests to use the negative logarithm of Matusita’s affinity (Matusita, 1967),
leading to

ρ{p1, p2} = − log

»Z
X1∩X2

p
p1(x) p2(x) dx

–
,

whenever the integral exists and the two distributions have non-disjoint supports.

The negative log-affinity between two normals with different location and the
same scale is ρ{N(· |µ1, σ),N(· |µ2, σ)} = (µ1−µ2)2)/(8σ2), just proportional to the
intrinsic discrepancy, δ{N(· |µ1, σ),N(· |µ2, σ)} = (µ1−µ2)2/(2σ2). Using this result
and standard asymptotic arguments, it should be relatively simple to establish the
asymptotic equivalence of both discrepancies for regular problems, where asymptotic
normality may be established.
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On the other hand, the negative log-affinity between two uniform densities within
the family Un(x | θ−1, θ+1), the interesting non-regular case which Ghosal mentions
(where the supports are not nested and the intrinsic discrepancy cannot be used),
is given by

ρ{Un(· | θ1 − 1, θ1 + 1),Un(· | θ2 − 1, θ2 + 1)} = − log [1− |θ1 − θ2|/2] ,

whenever |θ1 − θ2| < 2, and +∞ otherwise. The reference prior function for the
uniform model Un(x | θ − 1, θ + 1) is easily seen to be the uniform π(θ) = 1, and the
corresponding reference posterior given a random sample z = {x1, . . . , xn} is the
uniform π(θ |z) = Un(θ |xmax − 1, xmin + 1). The corresponding expected negative
log-affinity loss of using θ0 rather than the true θ value will then be

ρ(θ0 |z) =
1

2− (xmax − xmin)

Z xmin+1

xmax−1

− log

»
1− 1

2
|θ0 − θ|

–
dθ,

a concave function of θ0 with a unique minimum at θ∗(z) = (xmax+xmin)/2, which
is the (very sensible) reference Bayes point estimator for this particular loss function.

As these examples illustrate, the general method proposed in this paper may
indeed be used with any intrinsic discrepancy loss function and, as Ghosal indicates,
there may be some advantages in using the negative log-affinity. Also, the power
divergence class mentioned by Ghosh is certainly an interesting, general divergence
measure. However, the pragmatically important interpretation of the expected loss
as an expected average log-likelihood ratio, and hence the automatic calibration
of the procedure in those terms, would be lost if one uses anything different from
the proposed logarithmic divergence. And, to answer Robert and Rousseau, yes, I
believe this would be a bad thing to lose.

As Robert and Rousseau indicate, the Kullback–Leibler loss cannot be used
when the densities have supports that depend on the parameters; this is precisely
an important reason for using the minimum of the two possible KL divergences.
Indeed, using the KL divergence κ{pj | pi} rather than the intrinsic discrepancy (as
Gómez-Villegas suggests), would limit the applicability to those regular problems
where κ{pj | pi} is always finite. For instance, one could not use this to test the
parameter value in a uniform Un(· | 0, θ) model (Example 5).

To answer a point raised by Mendoza, I am certainly not suggesting that loss
functions should necessarily be symmetric. In a context specific situation, this would
naturally depend on the problem. However, in a pure inferential situation, where
one is only interested in the true value of the parameter, one may well like to see
some form of symmetry. This is not a requirement, but it may be a welcome feature
when it happens, as in the normal variance problem of Example 2.

Robert and Rousseau suggest the use of an intrinsic prior π(λ |θ0) to get rid of
the nuisance parameter in the formulation of the loss (Definition 5). I do not like the
idea of being forced to introduce further concepts than required (as the intrinsic prior
formalism) but, more importantly, I believe that defining the discrepancy between a
point and a set as the minimum discrepancy between the point and all the elements
in the family has a long tradition in mathematics, and may be expected to produce
appropriate results. The examples analysed suggest that this is indeed the case.

The formulation of Robert and Rousseau to deal with cases where the nuisance
parameter is ill-defined under the null is certainly appropriate, and this has already
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been successfully used in practice. Relatively simple examples include the equality
of normal means problem (Example 8, further detailed in Bernardo and Pérez, 2007)
and the Hardy–Weinberg equilibrium (Example 9, further detailed in Bernardo and
Tomazella, 2010).
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Figure 11: Reference posterior and intrinsic statistic function for the loca-
tion parameter of a Cauchy Ca(x | θ, 1), given a random sample of size n = 20
simulated for a Cauchy, Ca(x | θ, 1).

Robert and Rousseau suggest that the use of the intrinsic discrepancy may not
always work, and quote a Cauchy model Ca(x | θ, 1) as a possible example. I am
convinced that pathological examples may be found where the expected intrinsic dis-
crepancy cannot be evaluated, but this is certainly not the case with Cauchy data. In
this problem, the two KL divergences are identical, so that the intrinsic discrepancy
is just one of them (represented in Figure 8). This is a location model; hence the
reference prior is uniform and the reference posterior π(θ |z) is just the normalized
likelihood. This may be used to obtain the posterior expected intrinsic discrepancy
d(θ0 |z) by one-dimensional numerical integration. To illustrate this, I simulated a
random sample z = {x1, . . . , xn} of size n = 20 from a Cauchy Ca(x | 3, 1). The top
panel of Figure 11 shows the corresponding reference posterior of θ, and the bot-
tom panel the intrinsic statistic function d(θ0 |z) = n

R
< κ{θ0 | θ}π(θ |z) dθ, where

κ{θ0 | θ} = κ{θ | θ0} is the KL divergence between Ca(x | θ0, 1) and Ca(x | θ, 1) and
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π(θ |x1, . . . , xn) ∝
Qn
i=1 Ca(xi | θ, 1). This function has a unique minimum, the in-

trinsic estimator θ∗ ≈ 3.27, and has the value log[1000] ≈ 6.9 at θl = 1.96 and
θu = 4.58. Hence, values smaller than θl or larger than θu would be rejected at
that particular level, and the interval [θl, θu] is an intrinsic credible interval, whose
posterior probability may found to be 0.9956. It may be verified that the procedure
works even with a sample of size one where, if x is observed, the reference posterior
is the Cauchy Ca(θ |x, 1) and the intrinsic estimator is just θ∗ = x.

In his opening remarks Professor Clarke provides a lucid, concise summary of
what integrated reference analysis is all about. His suggestion of using a prior to
find a reference likelihood, then using this to obtain a reference prior, and cycle until
convergence is obtained is intriguing. A large collection of important solved case
studies would be necessary however before such a programme could be appropriately
evaluated.

As Clarke mentions, I have indeed assumed that the available data have been
generated from some member of a well specified parametric family of probability
models. This is certainly an idealized situation, but one which is systematically
made in the literature. It is clear however that, even under this simplifying assump-
tion, there has been an enormous amount of different (often incompatible) suggested
procedures for both estimation and hypothesis testing. We believe that some clari-
fication is in order before proceeding further, and we argue that foundational argu-
ments provide the best tools for this task. That said, model mis-specification and
robustness analysis are certainly two very important topics to consider. The idea of
using leave-one-out techniques to analyze robustness, as in the particular proposal
which Clarke sketches, is certainly worth exploring.

Both non-parametric density estimation, and parametric model elaboration are
promising options to deal with the possibility of model mis-specification. The former
is however bound to be crucially dependent on the particular density estimation
procedure chosen, and we all know that there is not yet a consensus on how this
may be better done. I find far more attractive the idea of model elaboration. Indeed,
as mentioned in Section 2.3, the hypothesis testing scenario may often be precisely
described in those terms: one begins from a model,M0 ≡ {p(z | θ0, λ), λ ∈ Λ} in my
original notation or p(z | θ) in that used by Clarke, and this is embedded into a more
general model, Mz ≡ {p(z | θ, λ), λ ∈ Λ, θ ∈ Θ}, constructed to include promising
departures from M0.

Specific queries. Van der Linde asks about the performance of reference intrinsic
estimators in small n, large p scenarios, where the number of parameters is large
relative to the sample size, resulting in unstable conventional estimators. I am
not aware of detailed systematic reference analysis of this type of problem, but
my attitude would be to introduce a suitable hierarchical structure modelling the
plausible relations between the parameters, and then use a joint reference prior for
the hyperparameters thus introduced, derived from the corresponding integrated
model.

Ghosal is certainly right in stressing the importance of multiple hypothesis test-
ing problems. Some relevant results in this direction (from the approach proposed
here) may be found in Bernardo and Rueda (2002), where simultaneous testing of
H0i ≡ {µi = 0}, for i = 1, . . . , k, is considered in a multivariate Nk(x |µ,Σ) con-
text; this is seen to provide a resolution of Rao’s paradox. Further work is however
needed in this area.
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Both Singurwalla and Tuyl question the virtue of the non-dependence of the
posterior of the multinomial parameters (Example 4) on the number m of categories.
Well, I cannot imagine how an objective estimate of the proportion of votes which a
party will obtain in an election given a random sample of results, should depend on
something else than the votes for that party and the total number of votes counted.
In particular, this should not depend on whether the small parties are jointly labelled
as “small” or individually considered.

I am afraid I do not understand Singpurwalla’s comment on the uniform model
(Example 5). In that case, the expected intrinsic discrepancy loss under repeated
sampling is (θ/θ0)n − n log(θ/θ0). This increases with n (not linearly with θ0) for
any θ 6= θ0, thus leading to always rejecting a false null for sufficiently large samples.
For fixed sample size n, it increases (not linearly) as the ratio θ/θ0 moves away from
one, producing a function of θ/θ0 with a unique minimum at θ/θ0 = 1.

Tuyl seems to prefer HPD regions to intrinsic regions because the later may
“sacrifice values with high likelihood”. However, it is not likelihood that drives HPD,
but posterior density, and this totally depends on the (arbitrary) parametrization
used. A Bayesian should always prefer values with minimum expected loss, and only
the rather näıve, not invariant, 0–1 loss will yield HPD regions (and then only in
the particular parametrization chosen). Tuyl does not like the reference prior in the
binomial model, and mentions the coverage properties of the corresponding reference
posterior; however, the coverage properties of the intrinsic credible regions in the
binomial case are actually very good: for a detailed analysis see Bernardo (2005b)
and ensuing discussion. He seems to like the binomial m.l.e. estimator; yet the idea
that in a binomial situation r/n is a “perfectly adequate” estimator even in extreme
situations is hardly acceptable: would you really quote to your Provost precisely 0
as your best estimate for the proportion of AIDS infected people in the campus, just
because you have not observed any in a random sample of n? (and this, even for
small n values!) Incidentally, in one-parameter regular models (where asymptotic
normality may be verified) the Jeffreys prior has been found to be optimal from so
many viewpoints (of which the reference algorithm is only one example) that using
something else in those simple conditions is, to say the least, rather bizarre.

In his comments on the trinomial example, Tuyl seems to forget his earlier uni-
form recommendation on the original parameterization for the multinomial, and
suggests a uniform prior on a different parametrization, a less than consistent be-
haviour, I would say. He mentions the obvious fact that posteriors should be proper.
Indeed, by definition, a reference posterior must be proper (see Berger, Bernardo and
Sun, 2009, for a detailed discussion). For a recent detailed reference analysis of the
trinomial example (were the posteriors are of course all proper), see Bernardo and
Tomazella (2010). Finally, the notion by Tuyl that the simple binomial model is not
“regular” and needs special ad hoc techniques to produce sensible objective Bayesian
answers is, in my view, rather far removed from reality.

Conclusions. As Mendoza cunningly puts it, I have tried to present here my sub-
jective view of what objective Bayesian methods should be: model divergence based
loss functions, information-based reference priors, and the machinery of decision
theory, can work together to derive attractive Bayesian solutions to pure inference
problems. These solutions could be labelled objective, both in the narrow sense
of only using model and data, and in the larger sense of making possible a much
needed form of consensus.

As both Clarke and Sprenger nicely remind us, the integrated reference analyses
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advocated here is intended to be a benchmark against which other analysis, with
context dependent loss functions and/or subjectively assessed prior functions, could
be compared, to help in the evaluation of the impact of these, possibly debatable
inputs, in the results finally presented.

On the apparently more polemic aspect of this paper, it should be obvious to
the reader that I do not agree with Pericchi that the “probability of a hypothesis
given the data is perhaps the most relevant question for a scientist”. To my per-
ception, the relevant question is whether or not available data are compatible with
a hypothesis, and this is a decision problem which requires a loss function. Poste-
rior probabilities are the answer if, and only if, the scientist’s preferences are well
described by the näıve zero-loss function, a less than likely situation. Besides, this
forces a totally different objective prior structure (unnecessary otherwise) than that
used for estimation, and this entails the difficulties discussed above. I firmly be-
lieve that continuous invariant loss functions and relevant reference priors are more
appropriate for the job.

To conclude, I am certainly not claiming to have discovered the ultimate pass
through the statistical mountains but, as my maestro suggests, I am certainly en-
joying the ride. Thanks again to all of you.
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