EXAMEN TIPO DE ECONOMETRIA EMPRESARIAL

PREGUNTA 1

Con el fin de estudiar la actitud de los potenciales consumidores de un producto se ha especificado un modelo lineal de probabilidad:

$$y_i = \mathbf{b}_0 + \mathbf{b}_1 \ x_{1i} + \mathbf{b}_2 \ x_{2i} + \mathbf{b}_3 \ x_{3i} + u_i$$

donde:

 y_i es una variable que toma el valor uno si el individuo compra un teléfono móvil y cero en el caso contrario.

 x_{1i} son los ingresos anuales

 x_{2i} es la edad del potencial consumidor

 x_{3i} es una variable que toma el valor uno si el potencial consumidor es mujer y cero si es hombre.

Cuestiones:

1.- La variable endógena estimada \hat{y}_i :

- a- Siempre será positiva
- b- Tan solo toma el valor cero o la unidad
- c- Ok Mide la probabilidad de comprar un teléfono móvil.
- d- Mide la probabilidad de no comprar un teléfono móvil.

2.- En el caso de que la variable endógena estimada tome un valor negativo ¿Cuál sería su interpretación?

- a- En el modelo lineal de probabilidad nunca se puede dar este caso, siempre el valor sera positivo.
- b- La probabilidad de comprar un teléfono móvil es prácticamente la unidad.
- c- Ok La probabilidad de no comprar un teléfono móvil es prácticamente la unidad.
- d- La probabilidad de comprar un teléfono móvil es negativa.

3.- En el modelo lineal de probabilidad los errores o residuos son excesivamente grandes y por consiguiente el sumatorio de los errores al cuadrado es más grande de lo habitual. Lo cual provoca que:

- a- El coeficiente determinación es mas grande de lo normal.
- b- Ok El coeficiente determinación es mas pequeño de lo normal.
- c- El coeficiente determinación puede ser negativo.
- d- No se puede calcular el coeficiente de determinación.

7.- En el modelo lineal de probabilidad propuesto, el efecto marginal de la variable x_{3i} (dicotómica) se mide a través de la siguiente expresión:

a- Efecto marginal de
$$x_{3i} = \frac{\partial y_i}{\partial x_{3i}} = \mathbf{b}_3$$

b- Efecto marginal de
$$x_{3i} = E(y_i / x_{1i}; x_{2i}; x_{3i} = 1) = \mathbf{b}_3$$
.

c- Ok Efecto marginal de
$$x_{3i} = E(y_i / x_{1i}; x_{2i}; x_{3i} = 1) - E(y_i / x_{1i}; x_{2i}; x_{3i} = 0) = \mathbf{b}_3$$

d- Efecto marginal de
$$x_{3i} = \frac{\partial y_i}{\partial x_{3i}} = \boldsymbol{b}_3 \ f(X_i \boldsymbol{b})$$

8.- En el modelo lineal de probabilidad propuesto, el efecto marginal de la variable $x_{\mathrm{l}i}$ (continua) mide:

- a- El incremento de la variable y_i ante un incremento unitario de la variable x_{1i}
- b- Ok El incremento de probabilidad de compra de un teléfono móvil ante un incremento unitario de la variable x_{1i} .
- c- La elasticidad de compra de un teléfono móvil ante un incremento unitario de la variable x_{li}
- d- El valor esperado de la variable endógena para un valor unitario de la variable x_{1i}

PREGUNTA 2

En un estudio del sector del seguro se quiere analizar los determinantes de la probabilidad de contratar un seguro de robo, incendio, rotura de cristales y rotura de cañerías. A tal fin se pretende relacionar a través de un modelo las variables siguientes: $y_i = F(x_{1i}, x_{2i}) + u_i$

donde:

 y_i es una variable que toma el valor uno si la vivienda esta asegurada y cero en el caso contrario.

 x_{1i} son los ingresos anuales del propietario en millones de pesetas.

 x_{2i} es una variable que toma el valor uno si la vivienda esta hipotecada y cero en el resto de casos.

Con una muestra de tamaño 500 se han estimado dos especificaciones de este modelo, un modelo logit y un modelo valor extremo, cuyos resultados se detallan a continuación:

Method: ML - Binary Logit Sample: 1 500 Variable	Coefficient	Std. Error	z-Statistic	Prob.
C X1 X2	3.692339 -1.133410 35.69015	2.606650 0.558371 3475235.	1.416508 -2.029851 1.03E-05	0.1566 0.0424 1.0000
Mean dependent var S.E. of regression Sum squared resid Log likelihood Restr. log likelihood LR statistic (2 df) Probability(LR stat)	0.532000 0.275606 37.75148 -122.9288 -345.5489 445.2401 0.000000	S.D. dependent Akaike info crit Schwarz criteri Hannan-Quinn Avg. log likelih McFadden R-sc	erion on criter. ood	0.499475 0.503715 0.529003 0.513638 -0.245858 0.644251
Obs with Dep=0 Obs with Dep=1	234 266	Total obs		500

Variable	Coefficient	Std. Error	z-Statistic	Prob
С	1.714356	1.163610	1.473308	0.140
X1	-0.489593	0.246012	-1.990116	0.046
X2	38.32414	14646728	2.62E-06	1.000
Mean dependent var	0.532000	S.D. dependent var		0.49947
S.E. of regression	0.275869	Akaike info criterion		0.50422
Sum squared resid	37.82367	Schwarz criterion		0.52951
Log likelihood	-123.0567	Hannan-Quinn criter.		0.51415
Restr. log likelihood	-345.5489	Avg. log likelihood		-0.24611
LR statistic (2 df)	444.9843	McFadden R-squared		0.64388
Probability(LR stat)	0.000000		•	
Obs with Dep=0	234	Total obs		50
Obs with Dep=0	266	10101003		30

Medias de las variables $x_{1i} = 4,1084$

 $x_{2i} = 0.44$

1.- Entre ambos modelos elegiría:

- a- El modelo Valor Extremo ya que presenta un AIC-Akaike (0.504227) mayor que el AIC-Akaike del modelo Logit (0.503715)
- El modelo Valor Extremo ya que presenta un logaritmo de la función de verosimilitud (Log likelihood -122.9288) menor que el logaritmo de la función de verosimilitud (Log likelihood -123.0567) del modelo Logit
- c- El modelo Logit ya que presenta un logaritmo de la función de verosimilitud (Log likelihood -123.0567) menor que el logaritmo de la función de verosimilitud (Log likelihood -122.9288) del modelo Valor Extremo
- d- Ok El modelo Logit ya que presenta un criterio de Hannan-Quinn (0.513638) menor que el Hannan-Quinn (0.514150) del modelo Valor Extremo.

2.- El modelo Logit estimado tiene como estimación:

a- Ok
$$\hat{y}_i = \frac{1}{1 + e^{-3.692339 + 1.13341x_{1i} - 35.69015x_{2i}}}$$

b-
$$\hat{y}_i = \frac{1}{1 - e^{-3.692339 + 1.13341x_{1i} - 35.69015x_{2i}}}$$

c-
$$\hat{y}_i = \frac{1}{1 - e^{3.692339 - 1.13341x_{1i} + 35.69015x_{2i}}}$$

d-
$$\hat{y}_i = \frac{1}{1 + e^{3.692339 - 1.1334 \ln_{1i} + 35.69015x_{2i}}}$$

3.- La probabilidad de estar asegurada una vivienda, para los valores medios $x_{1i} = 15.00 \text{ y}$ $x_{2i} = 0.44$; es:

- a- Ok 0.91643413
- b- 0.08356587
- c- 0.51287323
- d- 0.72247587

6.-El análisis de la significatividad del modelo Logit en su conjunto se efectúa a través del contraste probabilistico siguiente:

Prob
$$(LR < C_a^2) = 1 - a$$

Donde LR es la razón de varosimilitud obtenida a partir del modelo sin restricciones y el modelo con restricciones. Para **a** =0.05 se tiene:

- a- El contraste es incorrecto ya que el estadístico \boldsymbol{LR} no se distribuye según una $\boldsymbol{C_a}^2$...
- b- El modelo Logit no es significativo ya que se cumple la desigualdad siguiente:

c- Ok El modelo Logit es significativo ya que no se cumple la desigualdad siguiente:

d- El modelo Logit es significativo ya que no se cumple la desigualdad siguiente:

8.- En el modelo Logit el efecto marginal de la variable x_{1i} (continua) se mide a través de la siguiente expresión:

a- Efecto marginal de
$$x_{1i} = \frac{\partial y_i}{\partial x_{1i}} = \boldsymbol{b}_1 \quad x_{1i}$$

b- Ok Efecto marginal de
$$x_{1i} = \frac{\partial y_i}{\partial x_{1i}} = \boldsymbol{b}_1 \cdot P_i \ (1-P_i)$$

c- Efecto marginal de
$$x_{1i} = E(y_i / x_{1i} = 1; x_{2i}; x_{3i}) - E(y_i / x_{1i} = 0; x_{2i}; x_{3i})$$

d- Efecto marginal de
$$x_{1i} = \boldsymbol{b}_1$$

9.- En el modelo Logit el efecto marginal de la variable x_{1i} para el punto (x_{1i} =6 y x_{2i} =0) es:

- -0.046406269
- 0.040943939
- 0.001829573
- -0.002073657

13.- El modelo Valor Extremo estimado tiene como ecuación:

13.- El modelo Valor Extremo estimado tiene com a- Ok
$$\hat{y}_i = e^{-1.714356+0.489593x_{1i}-38.32414x_{2i}}$$

$$\text{b-} \quad \hat{y}_i = e^{-e^{1.714356-0.489593x_{1i}+38.32414x_{2i}}}$$

c-
$$\hat{y}_i = e^{-1.714356+0.489593x_{1i}-38.32414x_{2i}}$$

d-
$$\hat{y}_i = e^{1.714356 - 0.489593x_{1i} + 38.32414x_{2i}}$$

14.- En el modelo Valor Extremo el efecto marginal de la variable x_{1i} (continua) se mide a través de la siguiente expresión:

a- Efecto marginal de
$$x_{1i} = \frac{\partial y_i}{\partial x_{1i}} = \boldsymbol{b}_1 \quad x_{1i}$$

b- Ok Efecto marginal de
$$x_{1i} = \frac{\partial y_i}{\partial x_{1i}} = \boldsymbol{b}_1 \cdot \boldsymbol{w}(X_i \boldsymbol{b})$$

c- Efecto marginal de
$$x_{1i} = E(y_i / x_{1i} = 1; x_{2i}; x_{3i}) - E(y_i / x_{1i} = 0; x_{2i}; x_{3i})$$

d- Efecto marginal de
$$x_{1i} = \frac{\partial y_i}{\partial x_{1i}} = \boldsymbol{b}_1 \cdot P_i \ (1-P_i)$$

PREGUNTA 3

Una empresa dedicada a la comunicación ha realizado un estudio de mercado en la que se ha preguntado a los encuestados el número de aparatos telefónicos que dispone la unidad familiar: cero, uno, dos, tres, cuatro o más de cuatro (y_i) y las características socio-económicas de la familia: ingresos mensuales (x_{1i}) , nivel cultural del cabeza de familia (x_{2i}) y edad del cabeza de familia (x_{3i}) . Los resultados del modelo estimado son:

Dependent Variable: Y						
Method: ML - Ordered	Probit					
Sample: 1 500						
i '	Coefficient	Std. Error	z-Statistic	Prob.		
X1	1.959272	0.132899	14.74252	0.0000		
X2	0.927821	0.078415	11.83218	0.0000		
X3	-0.003335	0.004194	-0.795256	0.4265		
Limit Points						
LIMIT_1:C(4)	8.245685	0.520922	15.82903	0.0000		
LIMIT_1:C(4)	9.478410	0.580128	16.33849	0.0000		
LIMIT_3:C(6)	11.15440	0.657532	16.96403	0.0000		
LIMIT_4:C(7)	12.17123	0.671026	18.13824	0.0000		
Akaike info criterion				1.799336		
Log likelihood	1.740331 -428.0828	Schwarz criterion		1.799336		
Restr. log likelihood	-426.0626 -783.9153	Hannan-Quinn criter.		-0.856166		
•		Avg. log likelihood LR index (Pseudo-R2)				
LR statistic (3 df)	711.6649 0.000000	LR Index (P	seudo-RZ)	0.453917		
Probability(LR stat)	0.000000					
	,					
Dependent Variable: Y						
Dependent Variable: Y Method: ML - Ordered						
Dependent Variable: Y	Logit	044 5	- 01-11-11-	Duck		
Dependent Variable: Y Method: ML - Ordered		Std. Error	z-Statistic	Prob.		
Dependent Variable: Y Method: ML - Ordered	Logit	Std. Error 0.239641	z-Statistic	Prob. 0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500	Logit Coefficient					
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1	Logit Coefficient 3.333134	0.239641	13.90886	0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2	Coefficient 3.333134 1.651607	0.239641 0.144077 0.007348	13.90886 11.46337	0.0000 0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2	Coefficient 3.333134 1.651607 -0.003066	0.239641 0.144077 0.007348	13.90886 11.46337	0.0000 0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2 X3	Coefficient 3.333134 1.651607 -0.003066 Limit F	0.239641 0.144077 0.007348 Points	13.90886 11.46337 -0.417315	0.0000 0.0000 0.6764		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5)	Coefficient 3.333134 1.651607 -0.003066 Limit F	0.239641 0.144077 0.007348 Points 0.972827	13.90886 11.46337 -0.417315 14.63075	0.0000 0.0000 0.6764 0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4)	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635	0.239641 0.144077 0.007348 Points 0.972827 1.090582	13.90886 11.46337 -0.417315 14.63075 15.02533	0.0000 0.0000 0.6764 0.0000 0.0000		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5) LIMIT_3:C(6) LIMIT_4:C(7)	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635 19.30928 21.07333	0.239641 0.144077 0.007348 Points 0.972827 1.090582 1.240652 1.278564	13.90886 11.46337 -0.417315 14.63075 15.02533 15.56382 16.48204	0.0000 0.0000 0.6764 0.0000 0.0000 0.0000		
Dependent Variable: YMethod: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5) LIMIT_3:C(6) LIMIT_4:C(7) Akaike info criterion	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635 19.30928 21.07333 1.751132	0.239641 0.144077 0.007348 Points 0.972827 1.090582 1.240652 1.278564 Schwarz crit	13.90886 11.46337 -0.417315 14.63075 15.02533 15.56382 16.48204 erion	0.0000 0.0000 0.6764 0.0000 0.0000 0.0000 1.810137		
Dependent Variable: YMethod: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5) LIMIT_3:C(6) LIMIT_4:C(7) Akaike info criterion Log likelihood	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635 19.30928 21.07333 1.751132 -430.7831	0.239641 0.144077 0.007348 Points 0.972827 1.090582 1.240652 1.278564 Schwarz crit Hannan-Qui	13.90886 11.46337 -0.417315 14.63075 15.02533 15.56382 16.48204 erion nn criter.	0.0000 0.0000 0.6764 0.0000 0.0000 0.0000 1.810137 1.774286		
Dependent Variable: Y Method: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5) LIMIT_3:C(6) LIMIT_4:C(7) Akaike info criterion Log likelihood Restr. log likelihood	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635 19.30928 21.07333 1.751132 -430.7831 -783.9153	0.239641 0.144077 0.007348 Points 0.972827 1.090582 1.240652 1.278564 Schwarz crit Hannan-Qui Avg. log like	13.90886 11.46337 -0.417315 14.63075 15.02533 15.56382 16.48204 erion nn criter. lihood	0.0000 0.0000 0.6764 0.0000 0.0000 0.0000 1.810137 1.774286 -0.861566		
Dependent Variable: YMethod: ML - Ordered Sample: 1 500 X1 X2 X3 LIMIT_1:C(4) LIMIT_2:C(5) LIMIT_3:C(6) LIMIT_4:C(7) Akaike info criterion Log likelihood	Coefficient 3.333134 1.651607 -0.003066 Limit F 14.23319 16.38635 19.30928 21.07333 1.751132 -430.7831	0.239641 0.144077 0.007348 Points 0.972827 1.090582 1.240652 1.278564 Schwarz crit Hannan-Qui	13.90886 11.46337 -0.417315 14.63075 15.02533 15.56382 16.48204 erion nn criter. lihood	0.0000 0.0000 0.6764 0.0000 0.0000 0.0000 1.810137 1.774286		

Medias de $x_{1i} = 4.1084$

 $x_{2i} = 2.1604$ $x_{3i} = 42.31$

1.- Entre ambas especificaciones del modelo Ordenado elegiría:

- a- El modelo Logit Ordenado ya que presenta un AIC-Akaike (1.751132) mayor AIC-Akaike del modelo Probit Ordenado (1.740331)
- b- El modelo Logit Ordenado ya que presenta un logaritmo de la función de verosimilitud (Log likelihood -430.7831) mayor que el logaritmo de la función de verosimilitud (Log likelihood -428.0828) del modelo Probit Ordenado.
- c- El criterio de la función de verosimilitud (Log likelihood) no sirve para seleccionar modelos ordenados.
- d- Ok El modelo Probit Ordenado ya que presenta un logaritmo de la función de verosimilitud (Log likelihood -428.0828) mayor que el logaritmo de la función de verosimilitud (Log likelihood -430.7831) del modelo Logit Ordenado..

3.- La probabilidad de tener un aparato telefónico a través del modelo Logit es:

a- Prob(
$$y_i = 1/x_i$$
, b , c) = $\Lambda(c_1 - x_i b)$

b- Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) = $\Lambda(c_2 - x_i \boldsymbol{b})$.- $\Lambda(c_1 - x_i \boldsymbol{b})$.

c- Prob(
$$y_i = 1/x_i$$
, b , c) = $\Lambda(x_i b)$.

d- Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) = $\Lambda(c_1 - x_i \boldsymbol{b}) - \Lambda(c_2 - x_i \boldsymbol{b})$.

4.- La probabilidad de tener un aparato telefónico a través del modelo Logit estimado es:

a- Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) =
$$\frac{1}{1 + e^{-(14.23319 - 3.333134x_{1i} - 1.651607x_{2i} + 0.003066x_{3i})}}$$

b- Ok Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) = $\frac{1}{1 + e^{-(16.38635 - 3.333134x_{1i} - 1.651607x_{2i} + 0.003066x_{3i})}}$

$$-\frac{1}{1+e^{-(1423319\cdot3.333134\epsilon_{1i}-1.651607\epsilon_{2i}+0.003066\epsilon_{3i})}}$$

c- Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) = $\frac{1}{1 + e^{(16.38635 - 3.333134x_{1i} - 1.651607x_{2i} + 0.003066x_{3i})}}$ -

$$-\frac{1}{1+e^{(14.23319-3.333134x_{1i}-1.651607x_{2i}+0.003066x_{3i})}}$$

d- Prob(
$$y_i = 1/x_i$$
, \boldsymbol{b} , c) =
$$\frac{1}{1 + e^{-(1423319 \cdot 3.333134 \epsilon_{1i} - 1.65160 \Re_{2i} + 0.003066 \epsilon_{3i})}}$$
-

$$-\frac{1}{1+e^{-(16.38635-3.333134x_{1i}-1.651607x_{2i}+0.003066x_{3i})}}.$$

- 5.- La probabilidad de disponer de un aparato telefónico cuantificada a través del modelo Logit estimado para x_{1i} =4.2; x_{2i} =2 y x_{3i} =22 es:
- a- 0.04734756
- b- 0.29973191
- c- Ok 0.25238435
- d- -0.25238435
- 6.- Calcular el ratio Odds (cociente entre coeficientes Odds) probabilidad de ir una vez al cine frente a ir dos veces al cine a través del modelo ordenado Logit estimado para x_{1i} =4.2; x_{2i} =2 y x_{3i} =22 es:
- a- Ok 0,23590214
- b- 1.25973591
- c- 0.53811438
- d- 0,99933786
- 9.- La probabilidad de disponer de un aparato telefónico a través del modelo Probit Ordenado estimado para x_{1i} =4.2; x_{2i} =2 y x_{3i} =22 es:
- a- Prob($y_i = 1/x_i$, \boldsymbol{b} , c) = $\Phi(8.245685 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22) = = 0,0392$
- b- Ok Prob($y_i = 1/x_i$, \boldsymbol{b} , c) = $\Phi(9.478410 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22)$ $-\Phi(8.245685 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22)$ = =0,2981.- 0,0392
- c- Prob($y_i = 1/x_i$, \boldsymbol{b} , c) = $\Phi(9.478410 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22) +$ $+ <math>\Phi(8.245685 - 1.959272 \times 4.2 - 0.927821 \times 2 + 0.003335 \times 22) =$ = -0,2981.+ 0,0392
- d- Prob(y_i =1/ x_i , \boldsymbol{b} , c) = $\Phi(9.478410 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22) + \Phi(8.245685 1.959272 \times 4.2 0.927821 \times 2 + 0.003335 \times 22) = =0,2981.+0,0392$