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Motivation: acoustic maps and heterogeneous
regions

observations prediction
I Assessment of the uncertainty!

3 / 28



Covariance functions

C(h)
h=d(s1,s2)
↓= C [Z(s1), Z(s2)] represents the rela-

tionship between the proximity and the sta-
tistical correlation.
We restrict to isotropic functions.

Valid covariance functions
Not all functions are permissible as covariance functions
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Positive-definite functions

Positivity condition
The covariance function must be positive-definite

∀{s1, . . . , sn}, ∀a1, . . . , an,
∑
i

∑
j

aiajC(hij) = a′Σa ≥ 0

In the Euclidean space Ed = (Rd, ·), the family of positive-definite
functions is fully characterized by Schoenberg’s (1938) theorem:

C(h) =
∫ ∞

0
Ω d−2

2
(hλ) dG(λ),

where Ωm(x) = Γ(m+ 1)( 2
x)mJm(x), Jm is the Bessel function of the first

kind of order m, and G is a nondecreasing bounded measure on [0,∞).
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Bochner’s Theorem (1933)
Characterizes the positive-definite (non-isotropic) functions as
characteristic functions (a kind of Fourier Transform) of distribution
functions in Ed.

C̃(h) = E
[
eih
′X
]

=
∫
Ed

eih
′xdFX(x), h,X ∈ Ed (1)

Sufficiency:

∑
i,j

aiajC̃(si − sj) = E

∑
i,j

aiaje
i(si−sj)′x


= E

(∑
i

aie
is′ix

)(∑
j

aje
is′jx

)
= E

[∣∣∣(ai∑
i

eis
′
ix
)∣∣∣2] ≥ 0.

(2)
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Heterogeneous regions

In the presence of barriers, the correlation is not directly associated with
the Euclidean distance.
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A practical approach

Definition: Cost-based distance
Given a cost-surface, the cost-based distance between two sites is defined
as the cost of the minimum-cost path connecting them.

A B C D
Cost-based distance (m) 43 86 142 142

Euclidean distance (m) 43 43 60 120

8 / 28



A practical approach

Definition: Cost-based distance
Given a cost-surface, the cost-based distance between two sites is defined
as the cost of the minimum-cost path connecting them.

A B C D
Cost-based distance (m) 43 86 142 142

Euclidean distance (m) 43 43 60 120

8 / 28



Cost-based geostatistics

I The cost-based distance generalizes the Euclidean distance, which is a
particular case where the cost surface is flat

I It accounts not only for barriers but for general heterogeneous regions
I This definition and its implementation is an original contribution of

the first part of the thesis project

Implementation
I Geographic computation of cost-based distances (GRASS GIS)
I Send covariates, observations and prediction locations with

cost-based distance matrices to R
I Use (modified) geoR functions to perform cost-based geostatistical

prediction
I Return results to GRASS GIS and produce prediction maps
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Validity: a toy example
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D =

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0



C(h) = 20e−( h
2 )2

Z = (Z1, Z2, Z3, Z4) ∼MV N(0, Σ)

Σ =

20.00 15.58 15.58 7.36
15.58 20.00 7.36 15.58
15.58 7.36 20.00 15.58
7.36 15.58 15.58 20.00


Eigenvalues: {58.52, 12.64, 12.64,−3.80}
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Positive-definiteness with cost-based distances

I The positive-definite functions of the Euclidean space may not be
valid with non-Euclidean distances are used

I If Σ is positive-semidefinite,
I the kriging prediction is valid under the interpretation of a BLUP
I it does not guarantee that C is positive-definite, thus, the underlying

Gaussian field of the spatial statistical model might be invalid

I The approach can be used safely, provided that the
positive-definiteness of Σ is verified every time.

Second part of the thesis
Study the mathematical condition of positive-definiteness under
cost-based distances
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Riemannian model

I Define in D ⊆ Rd the following Riemannian metric

gp(x,y) := f(p)2〈x,y〉, p ∈ D, x,y ∈ TpD

where f is the cost-surface and 〈·, ·〉 the Euclidean inner product.

Now, given a curve α in D, its length is given by

L(α) =
∫ 1

0

√
gα(t)(α′(t), α′(t)) dt =

∫ 1

0
f(α(t))‖α′(t)‖ dt.

This is, its Euclidean length weighted locally by the corresponding cost.
The metric τg induced by this Riemannian metric is precisely the
cost-based distance.
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Positive definiteness in Riemannian manifolds

I We are interested in the family of positive-definite functions

P(D, d)

I In this framework the Vector Space (and group) structure is lost
I Generalizing Bochner’s and Schoenberg’s theorems in such an

abstract context is extremely difficult
I Strategy: embedding into more structured spaces
I Embedding into an Euclidean (or Hilbert) space is not possible in

general
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Positive definiteness in Riemannian manifolds
Banach spaces (algebras)

Kuratowski embedding
The metric space D embeds isometrically in the Banach space L∞(D) of
bounded functions on D with the supremum norm. Fixing x0 ∈ D, define

D ↪→ L∞(D)
x 7→ φx : D → R

y 7→ d(x, y)− d(y, x0).

I φx are bounded (triangle ineq.)
I The norm ‖·‖∞ induces a distance in L∞(D) compatible with the

cost-based distance: ‖φx1 − φx2‖∞ = d(x1, x2)
I Rudin (1991, Teo. 11.32) gives a generalization of Bochner’s theorem

in the context of Banach algebras
I Generalization of Schoenberg’s theorem is open
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Euclidean representation

An Euclidean representation of a distance matrix D n× n is a matrix X
whose rows give the coordinates of a set of points x1, . . . ,xn ∈ Rd that
reproduce the distances.

I Not all distance matrices admit an exact Euclidean representation.
I The matrix D from the example does not.
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Pseudo-Euclidean representation
A pseudo-Euclidean inner product in Rd of index k is of the form

〈x,y〉 = (x1y1 + · · ·+ xkyk)− (xk+1yk+1 + · · ·+ xdyd).

(+)

(−)

OA

B

C

0 0

1 1

-1

Figure: Some points and their relative quadratic distances in the
pseudo-Euclidean space E(1,1)
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Pseudo-Euclidean representation

Theorem: All distance matrices D can be represented in a
pseudo-Euclidean space

X = Γ
(
ΛSk

)1/2
, HDH = ΛSkΛ,

where Sk is the signature of the space.
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Pseudo-Euclidean representation

I The pseudo-Euclidean embedding is not strict: there are
configurations that are not representations of any cost-based problem
(e.g., negative quadratic distances; violations of triangle ineq.)

(+)

(−)

P1

P2 P3
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Positive definiteness in pseudo-Euclidean spaces

I At least the trivial constant function is positive-definite in the
pseudo-Euclidean space

I All cost-based problems can be represented in the pseudo-Euclidean
space

I The Euclidean space is a particular case of cost-based manifold

∅ 6= P(E(k,d−k)) ⊆ P(D) ⊆ P(E).
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Generalizations of Bochner’s and Schoenberg’s
theorems

I Bochner’s theorem remain valid in pseudo-Euclidean spaces!

C̃(h) =
∫
Ed

eih
′xdFX(x), h,X ∈ Ed (3)

I Schoenberg’s theorem need to be adapted: integrate over the sphere

x y

z

x y

z

I isotropic positive-definite functions are not the same in the Euclidean
and pseudo-Euclidean spaces
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Integrating on the hyperboloid

I The pseudo-Euclidean sphere has infinite surface, therefore the
integration of a constant is divergent

I We can consider the mean value of the function C̃(h) over the
surface (which is C(ρ), where ρ = ‖h‖).

I The mean of the right-hand side can be formally expressed as the
quotient of two divergent integrals, and then change the integration
order to express it as the integral of a function M(ρ) with respect to
the distribution F .

C(ρ) =
∫
S+
ρ

(∫
Rd
eiω
′x F (dω)

)
s(dx)

/∫
S+
ρ

s(dx) =

∫
Rd

(∫
S+
ρ

eiω
′x s(dx)

/∫
S+
ρ

s(dx)
)

︸ ︷︷ ︸
M‖ω‖(ρ)

F (dω).
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Divergence of the function M

I Defined formally as the mean value of the (bounded) complex
exponential function over the (infinte) surface of the hyperboloid

I Integrate in pseudo-hyperspheric coordinates and reduce the problem
to the quotient of one-dimensional integrals∫ ∞

1
x
k
2 J k

2−1(A2x) dx√
x2 − 1

/∫ ∞
1

xk−1 dx√
x2 − 1

,

where Jν denotes de Bessel function of the first kind, and A2 is a
constant.

I This is the quotient of two divergent functions. The numerator looks
something like (k = 5)
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Spectral density functions of particular cases

I Isotropic correlation function in E(2,1)

f(ω) =


1

2π2‖ω‖

∫ ∞
0

R(ρ2)ρ
(

cos(‖ω‖ρ) + e−‖ω‖ρ
)
dρ, (ω,ω) > 0

−1
2π2‖ω‖

∫ ∞
0

R(ρ2)ρ sin(‖ω‖ρ) dρ, (ω,ω) < 0

I Exponential correlation function in E(2,1)

f(ω) =


1

2π2‖ω‖

(
ϕ2 − ‖ω‖2

(ϕ2 + ‖ω‖2)2 + 1
(ϕ+ ‖ω‖)2

)
, (ω,ω) > 0

−ϕ
π2(ϕ2 + ‖ω‖2)2 , (ω,ω) < 0

where ‖ω‖ =
√
|(ω,ω)|. This goes negative for ‖ω‖ large enough in

(ω,ω) > 0. The exponential function is not positive-definite in E(2,1).

23 / 28



Reparameterization of covariance matrices

I Model the elements of a reparameterization of the covariance matrix
(e.g. Cholesky) as a function of the distances

I We still want covariances to be functions of the distances
I We need all possible covariance matrices to be positive-definite
I No significant progress on this line
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Markov approximations of Matérn fields

I S different approach to irregular regions
I The resulting correlations structure is different from cost-based
I The approach works well, although is less general and has some other

issues (e.g., border effects)
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Conclusions

I Thesis topic: Geostatistical prediction in heterogeneous regions
I Main contribution 1: The cost-based methodology. A practical and

applied approach, and its implementation.
I Main contribution 2: The mathematical framework of the problem of

positive-definiteness with cost-based distances.
I Main contribution 3: Investigation of possible approaches.

Pseudo-Euclidean embedding theorem. Formulas for the spectral
density of an isotropic function in E(2,1).
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Open lines of work

I Combine the cost-based approach with the outcome of a Computer
Model of noise diffusion

I Elaborate known results about positive-definite functions on Banach
Algebras (Rudin, 1991; Berg et al., 1984)

I Elaborate the isotropy characterization of stationary functions under
the action of a group over the manifold, considering a generalized
Fourier transform with respect to the Hausdorff measure

I Mean value of a function over the d-dimensional hyperboloid
I Search positive-definite functions on the pseudo-Euclidean space

using the formulas for the spectral density of isotropic functions
I Brute-force investigation of positive-definiteness for candidate

functions
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