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Motivation: acoustic maps and heterogeneous
regions

observations prediction

» Assessment of the uncertainty!
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Covariance functions

Typical Covariance function
h=d(sy,s2)
C(h) LC [Z(s1), Z(s2)] represents the rela-
tionship between the proximity and the sta-
tistical correlation.
We restrict to isotropic functions. D5 e
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Typical Covariance function
h=d(s1,s9)
C(h) LC [Z(s1), Z(s2)] represents the rela-
tionship between the proximity and the sta-
tistical correlation.

Covariance
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o

We restrict to isotropic functions. D5 e
Distance
Valid covariance functions
Not all functions are permissible as covariance functions J

4/28



Positive-definite functions

Positivity condition

The covariance function must be positive-definite

V{sl,...,sn}, Val,...,an, ZZaiajC(hij) =a'Xa >0
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Positive-definite functions

Positivity condition
The covariance function must be positive-definite

V{sl,...,sn}, Val,...,an, ZZaiajC(hij) =d'Xa >0
J

)

In the Euclidean space E; = (R, -), the family of positive-definite
functions is fully characterized by Schoenberg's (1938) theorem:

C(h) = /OOOQng(h)\) dG(N),

where Q,(z) = T'(m+1)(2)™Jp (), Jn is the Bessel function of the first
kind of order m, and G is a nondecreasing bounded measure on [0, o).
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Bochner’s Theorem (1933)

Characterizes the positive-definite (non-isotropic) functions as

characteristic functions (a kind of Fourier Transform) of distribution
functions in Ej.

C(h) =E [¢*X] = /E e qFy(x), h, X € By (1)

d
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Bochner’s Theorem (1933)

Characterizes the positive-definite (non-isotropic) functions as

characteristic functions (a kind of Fourier Transform) of distribution
functions in Ej.

C(h)=E["¥] = [ eMearc(@), mXeEs (1)
Eq

Sufficiency:

Zaiajé(Si —s;)=E Zaiajei(si—sjyx]

i, k=
~E | (T aet) (z%ewﬂ:)] ®)
A
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Heterogeneous regions
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Heterogeneous regions

A B e (¢

Al BV Ty
In the presence of barriers, the correlation is not directly associated with
the Euclidean distance.
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A practical approach

Definition: Cost-based distance

Given a cost-surface, the cost-based distance between two sites is defined
as the cost of the minimum-cost path connecting them.
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A practical approach

Definition: Cost-based distance

Given a cost-surface, the cost-based distance between two sites is defined
as the cost of the minimum-cost path connecting them.

A B © D
Cost-based distance (m) 43 86 142 142
Euclidean distance (m) 43 43 60 120
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Cost-based geostatistics

» The cost-based distance generalizes the Euclidean distance, which is a
particular case where the cost surface is flat

9/28



Cost-based geostatistics

» The cost-based distance generalizes the Euclidean distance, which is a
particular case where the cost surface is flat

» |t accounts not only for barriers but for general heterogeneous regions

9/28



Cost-based geostatistics

» The cost-based distance generalizes the Euclidean distance, which is a
particular case where the cost surface is flat

» It accounts not only for barriers but for general heterogeneous regions

» This definition and its implementation is an original contribution of
the first part of the thesis project

9/28



Cost-based geostatistics

» The cost-based distance generalizes the Euclidean distance, which is a
particular case where the cost surface is flat

» It accounts not only for barriers but for general heterogeneous regions

» This definition and its implementation is an original contribution of
the first part of the thesis project

Implementation
» Geographic computation of cost-based distances (GRASS GIS)

» Send covariates, observations and prediction locations with
cost-based distance matrices to R

» Use (modified) geoR functions to perform cost-based geostatistical
prediction

» Return results to GRASS GIS and produce prediction maps
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Validity: a toy example

© ° 01 1 2
10 2 1
D=1; 2 0 1
2110
(1) [2]
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Validity: a toy example

© ° 01 1 2
10 2 1
D=1; 2 0 1
2110
(1) [2]

Typical Covariance function

Z = (21,23, Z3,Z4) ~ MVN(0,X)

20.00 15.58 15.58 7.36
15.58 20.00 7.36 15.58
15.58 7.36 20.00 15.58
7.36  15.58 15.58 20.00
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Validity: a toy example

© ° 01 1 2
10 2 1
D=1; 2 0 1
2110
(1) [2]

Typical Covariance function

Z = (21,23, Z3,Z4) ~ MVN(0,X)

20.00 15.58 15.58 7.36
15.58 20.00 7.36 15.58

5 10 15 20

Covariance

i T=11558 7.36 2000 1558
7.36 1558 15.58 20.00
0 1 2 3 4 5
o) :[;583;9(%)2 Eigenvalues: {58.52,12.64,12.64, —3.80}
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Positive-definiteness with cost-based distances

» The positive-definite functions of the Euclidean space may not be
valid with non-Euclidean distances are used
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Positive-definiteness with cost-based distances

» The positive-definite functions of the Euclidean space may not be
valid with non-Euclidean distances are used
» If X is positive-semidefinite,

» the kriging prediction is valid under the interpretation of a BLUP
» it does not guarantee that C is positive-definite, thus, the underlying
Gaussian field of the spatial statistical model might be invalid

» The approach can be used safely, provided that the
positive-definiteness of X is verified every time.

Second part of the thesis

Study the mathematical condition of positive-definiteness under
cost-based distances
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Riemannian model

» Define in D C R? the following Riemannian metric

gp(z,y) = f(p)*(x,y), peED, z,yecT,D

where § is the cost-surface and (-, -) the Euclidean inner product.
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Riemannian model

» Define in D C R? the following Riemannian metric
g(@,y) =fp)*(x,y), peD, x,yeT,D

where § is the cost-surface and (-, -) the Euclidean inner product.

Now, given a curve « in D, its length is given by

= [ Voo @@, @) dt = [ stati)lald)lde

This is, its Euclidean length weighted locally by the corresponding cost.
The metric 74 induced by this Riemannian metric is precisely the
cost-based distance.
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Positive definiteness in Riemannian manifolds

» We are interested in the family of positive-definite functions

P(D,d)
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Positive definiteness in Riemannian manifolds

» We are interested in the family of positive-definite functions
P(D,0)

» In this framework the Vector Space (and group) structure is lost

» Generalizing Bochner's and Schoenberg’s theorems in such an
abstract context is extremely difficult

» Strategy: embedding into more structured spaces

» Embedding into an Euclidean (or Hilbert) space is not possible in
general

13/28



Positive definiteness in Riemannian manifolds

Banach spaces (algebras)

Kuratowski embedding
The metric space D embeds isometrically in the Banach space L>°(D) of
bounded functions on D with the supremum norm. Fixing x¢g € D, define
D — L*°(D)
T ¢ D—R
y = 0(x,y) — 0(y, o)
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Positive definiteness in Riemannian manifolds

Banach spaces (algebras)

Kuratowski embedding
The metric space D embeds isometrically in the Banach space L>°(D) of
bounded functions on D with the supremum norm. Fixing x¢g € D, define
D — L*°(D)
T ¢ D—R
y = 0(x,y) — 0(y, o)

v

¢ are bounded (triangle ineq.)

v

The norm |||/ induces a distance in L (D) compatible with the
cost-based distance: ||¢z; — Pzsllco = (21, 22)

v

Rudin (1991, Teo. 11.32) gives a generalization of Bochner's theorem
in the context of Banach algebras

v

Generalization of Schoenberg’s theorem is open
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Euclidean representation

An Euclidean representation of a distance matrix D n X n is a matrix X

whose rows give the coordinates of a set of points 1, ..., x, € R? that
reproduce the distances.
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Euclidean representation

An Euclidean representation of a distance matrix D n X n is a matrix X

whose rows give the coordinates of a set of points 1, ..., x, € R? that
reproduce the distances.

» Not all distance matrices admit an exact Euclidean representation.
» The matrix D from the example does not.

15/28



Pseudo-Euclidean representation

A pseudo-Euclidean inner product in R? of index k is of the form

(,y) = (x1y1 + - - + 2xYk) — (Tpt1Ykt1 + - + Zaya)-
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Pseudo-Euclidean representation

A pseudo-Euclidean inner product in R? of index k is of the form

(,y) = (x1y1 + - - + 2xYk) — (Tpt1Ykt1 + - + Zaya)-

Figure: Some points and their relative quadratic distances in the
pseudo-Euclidean space E(; 1)
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Pseudo-Euclidean representation

Theorem: All distance matrices D can be represented in a
pseudo-Euclidean space

X = (AS;)">, HDH = AS,A,

where S, is the signature of the space.

1
0 1 ?
° ° | 1 -
X=1_1 % —3
1
o -1 1
o (2]
da=(0-1"+(1-0°~(3+5)°=1°
dis=0+1)°+1-0°-(%+2)=1’
1_1)2:22
2 2

l &y = (0—0)>+ (1+1)> — (
] l ]
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Pseudo-Euclidean representation

» The pseudo-Euclidean embedding is not strict: there are
configurations that are not representations of any cost-based problem
(e.g., negative quadratic distances; violations of triangle ineq.)

(=)

Py

Py 1 P
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Positive definiteness in pseudo-Euclidean spaces

> At least the trivial constant function is positive-definite in the
pseudo-Euclidean space

I # P(Ek,d—k))
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Positive definiteness in pseudo-Euclidean spaces

» At least the trivial constant function is positive-definite in the
pseudo-Euclidean space

» All cost-based problems can be represented in the pseudo-Euclidean
space

» The Euclidean space is a particular case of cost-based manifold

@ # P(Ek,d-r) S P(D) C P(E).
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Generalizations of Bochner’s and Schoenberg’s

theorems

» Bochner's theorem remain valid in pseudo-Euclidean spaces!

O(h) = / e qFy (), h, X € Ey 3)
JE,
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Generalizations of Bochner’s and Schoenberg’s

theorems

» Bochner's theorem remain valid in pseudo-Euclidean spaces!
G(h) = / e dPy (@), h, X € Ey (3)
Eq

» Schoenberg's theorem need to be adapted: integrate over the sphere

» isotropic positive-definite functions are not the same in the Euclidean
and pseudo-Euclidean spaces
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Integrating on the hyperboloid

» The pseudo-Euclidean sphere has infinite surface, therefore the
integration of a constant is divergent
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Integrating on the hyperboloid

» The pseudo-Euclidean sphere has infinite surface, therefore the
integration of a constant is divergent

» We can consider the mean value of the function C'(h) over the
surface (which is C(p), where p = ||h]|).

» The mean of the right-hand side can be formally expressed as the
quotient of two divergent integrals, and then change the integration
order to express it as the integral of a function M (p) with respect to
the distribution F'.

Clp) = /y (/w ciw'® F(dw)) S(d;c)/!/slj (IR
/ﬂ%d </5i ' Lsa(clw)//sj S(daz)) F(dw).

M. (p)
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Divergence of the function M

» Defined formally as the mean value of the (bounded) complex
exponential function over the (infinte) surface of the hyperboloid

22/28



Divergence of the function M

» Defined formally as the mean value of the (bounded) complex
exponential function over the (infinte) surface of the hyperboloid
> Integrate in pseudo-hyperspheric coordinates and reduce the problem
to the quotient of one-dimensional integrals
dx

ce k dl' Y
z2Jr (A9x) —— / . A%
A Wﬁ/l R

where J,, denotes de Bessel function of the first kind, and As is a

constant.
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Divergence of the function M

» Defined formally as the mean value of the (bounded) complex
exponential function over the (infinte) surface of the hyperboloid

» Integrate in pseudo-hyperspheric coordinates and reduce the problem
to the quotient of one-dimensional integrals

© g dx &9 dx
x2J Aox) —— / gkl —
/1 571( 21) \/$2—1/ 1 2 —1

where J,, denotes de Bessel function of the first kind, and A is a
constant.

» This is the quotient of two divergent functions. The numerator looks
something like (k = 5)
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Spectral density functions of particular cases

> Isotropic correlation function in E(3 )

g | RPe(conllellp) + e 1) dp, () > 0
flwy = 2Tl

| Ny
o [, R sin(lelo) . (w,w) <0

» Exponential correlation function in E3 1)

N ! )
>0
22w<2—|—w22 +w27(w7w)
flw) = { 2l (% + llel?) (o + fleoll)
—¥
e+ [P A
where ||w|| = /|(w,w)|. This goes negative for ||w|| large enough in

(w,w) > 0. The exponential function is not positive-definite in E(y ).
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Reparameterization of covariance matrices

» Model the elements of a reparameterization of the covariance matrix
(e.g. Cholesky) as a function of the distances
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Reparameterization of covariance matrices

Model the elements of a reparameterization of the covariance matrix
(e.g. Cholesky) as a function of the distances

v

We still want covariances to be functions of the distances

v

v

We need all possible covariance matrices to be positive-definite

v

No significant progress on this line
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Markov approximations of Matérn fields

» S different approach to irregular regions
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Markov approximations of Matérn fields

» S different approach to irregular regions
» The resulting correlations structure is different from cost-based

» The approach works well, although is less general and has some other
issues (e.g., border effects)
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Conclusions

» Thesis topic: Geostatistical prediction in heterogeneous regions
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Conclusions

» Thesis topic: Geostatistical prediction in heterogeneous regions

» Main contribution 1: The cost-based methodology. A practical and
applied approach, and its implementation.

» Main contribution 2: The mathematical framework of the problem of
positive-definiteness with cost-based distances.

» Main contribution 3: Investigation of possible approaches.
Pseudo-Euclidean embedding theorem. Formulas for the spectral
density of an isotropic function in E ).
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» Combine the cost-based approach with the outcome of a Computer
Model of noise diffusion

» Elaborate known results about positive-definite functions on Banach
Algebras (Rudin, 1991; Berg et al., 1984)

» Elaborate the isotropy characterization of stationary functions under
the action of a group over the manifold, considering a generalized
Fourier transform with respect to the Hausdorff measure

» Mean value of a function over the d-dimensional hyperboloid

» Search positive-definite functions on the pseudo-Euclidean space
using the formulas for the spectral density of isotropic functions

» Brute-force investigation of positive-definiteness for candidate
functions
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