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Abstract. We describe a novel strategy of hierarchical clustering
analysis, particularly useful to analyze proteomic interaction data. The
logic behind this method is to use the information for all interactions
among the elements of a set to evaluate the strength of the interaction of
each pair of elements. Our procedure allows the characterization of
protein complexes starting with partial data and the detection of
“promiscuous” proteins that bias the results, generating false positive
data. We demonstrate the usefulness of our strategy by analyzing a real
case that involves 137 Saccharomyces cerevisiae proteins. Because
most functional studies require the evaluation of similar data sets, our
method has a wide range of applications and thus it can be established
as a benchmark analysis for proteomic data’.

1 Introduction

When we can define a distance measure among elements of a set, hierarchical
clustering techniques are often very useful to define “natural” groups within that set
[4]. However, the ability of such methods to obtain reasonable classifications depend
on how are the distances among the elements. For example, when many pairs of
clements are at the same distance, it is often impossible to unambiguously define the
groups. This problem arises in many cases, as in the characterization of nets of
irregular topology, in which distances are generally constrained to values between 1
and 5 [1]. The available data on protein-protein interactions generated in massive
proteomic analyses [5-7, 13] can be similarly converted into distances, that measure
the degree of metabolic or functional proximity within the cell. Again, those distances
are constrained. For both prokaryotic and eukaryotic organisms, it has been found that
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distances have very often low values, suggesting that the cellular protein interaction
network has “small world” properties, with a high degree of connectivity and
closeness among components [8, 11].

It is therefore very interesting to generate methods able to deal with those difficult
cases. In this work, we describe a fast, iterative hierarchical clustering algorithm that
uses the information provided by the whole database of distances among elements of
a set (that we will call from now on as primary distances, d) to evaluate the closeness
of two particular elements. The algorithm converts the primary distances between two
elements into secondary distances (d’) that reflect the strength of the connection
between two elements relative to all the other elements in the set. Those secondary
distances can then be used again to perform a hierarchical clustering analysis.

In the following section, we will detail the new algorithm and we will show its
properties by analyzing a simple case. Then, we will describe the results when the
method 1s applied to a real case (a complex set of 137 interacting proteins of the
baker’s yeast Saccharomyces cerevisiae). The last section contains some concluding
remarks about the advantages of this strategy.

2 A New Hierarchical Clustering Strategy

We start by defining the parameters used to perform a typical hierarchical clustering
strategy (see also [10]). Let us consider a set of N elements. For each pair of elements,
we have determined a distance value, that we will call primary distance (d). Let us
now establish in that set a partition P, formed by M clusters (A, A,, ..., Ay). Each
cluster A; contains x; elements (a;, a,, ..., a,;). We can define then a cluster function
for A; (F[A;]) as follows:

x‘:—l X;

FA)= D, D .d,, (1)

k=1 j:k'l‘l

where dj; is the primary distance between element a; and element a;. The number of
primary distances within this cluster is:

n(A) =x; (x;i-1)/2 (2)

Similarly, we can define a function for the whole partition (F[P]) , that includes the
distances among all elements:

N-l y
F®)= Y >.d, 3)

i=l j=i+]
The number of primary distances for the whole partition is:

nP)=N(N-1)/2 (4)

We can then define a global function (F[G]) that evaluates, once the clusters have
been established, the average of the distances for pairs of elements included in the
clusters respect to the average value of distances in the whole partition:
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This F(G) value is minimum when the clustering obtained is optimal. Therefore,
the problem to solve is to minimize the value of F(G) for a certain set of elements. A

typical algorithm of hierarchical clustering is developed in [2]. Starting with N
elements, a maximum number of N clusters are established. An F(A;) value equal to
zero is assigned to all single-element clusters (i. e. intraelement distances are zero).
Then, the best grouping with N — 1 clusters is determined by examining all possible
combinations among the N elements and putting together the two elements that have a
minimum distance (equivalent to minimizing F[G] for that particular number of
clusters). This procedure can be repeated for N-2, N-3, ..., up to 1 clusters. It is
significant that the way that the F(G) values change every time a cluster is eliminated
provides a hint of the quality of the clustering. When a large increment is obtained for
the F(G) value when we pass from X to X - 1 clusters, we can conclude that the
grouping is becoming artificial, i. e. is putting together elements that are too
dissimilar for the clustering to be meaningful [3].

Let us consider now the situation when there are many identical primary distances
between pairs of elements. This situation causes the additional problem that there are
many identically optimal (i. e. with identical F[G] values), but totally unrelated
solutions, both when the same or different numbers of clusters are established. A
typical example will clearly show how this additional difficulty complicates the
clustering procedure. In Table 1, we show a table of distances, generated for
illustrative purposes.

In the set shown in Table 1, there are 8 elements, named A to H, and all primary
distances have values ranging from 1 to 5. Thus, many of these distances are identical.
When we apply the typical clustering strategy described above, we will find that
several independent solutions, obtained by connecting elements that are separated by
a distance equal to 1, yield identical, optimal F(G) values. Using the data in Table 1,
if we make 20 hierarchical clusterings, we obtain four solutions with identical values
of F(G) (Table 2, left).

Table 1. Matrix of distances among eight elements (A — H). The distances are constraines to
values between 1 and 5

A B C D E F G H
Al - 1 1 2 3 4 S 5
B | 1 - 1 1 2 3 4 ]
1 [l 1 - 2 3 4 5 5
D| 2 1 2 - 1 2 3 4
E|] 3 2 3 1 - 1 3 2
F| 4 3 4 2 1 - 1 1
G| S 4 5 3 3 - 1
H| 5 S S 4 2 1 1 -
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Table 2. Four optimal solutions found using Table 1 distances

Optimal clusterings No. of times found
(A,B,C) (D, E) (F, G, H) 15
(A, 0 ®B,D) E F) (G, H) 2
(A, ©) (B, D) (B) (F, G, H) 2
(A,B,C) D) (E, F) (G, H) 1

Table 3. Secondary distances among the eight elements analyzed
A B C D E F G H

A - 5 1 |21 (2121 ] 21 | 2]
B ) - 5 [ 1712121 ] 21|21
C 1 5 - | 21121 |21 ] 21 |21
D | 21 | 17 | 21 - 6 |21 | 21 | 21
E |21 [21 |21 ] 6 - | 18 | 21 | 21
F 21|21 ]21 |21 |18 | - 4 E
G |21 |21 |21 (2] ]2]1]| 4 - 1
H |21 [21 21121 |21 4 1 -

The results of the multiple replicates can be used to evaluate the strength of the
connection between two elements respect to the connections among all the elements
in the partition. For example, if we apply the clustering algorithm 20 times, it is found
that the four solutions are generated with different frequencies. One of the solutions is
found in 75% of the analyzed cases (Table 2, right). Moreover, connections between
particular pairs of elements occur in several final solutions (e. g. elements A and C are
together in all 20 solutions shown in Table 2). Thus, the strength of the connection
between two elements, respect to the whole set, can be evaluated by considering the
number of times those two elements are found together in all alternative solutions and
the frequency of each alternative solution. Thus, a new table of secondary distances
(d") can be generated that contains the number of times that each pair of elements
appear together for a large and randomly generated set of alternative optimal
solutions. In our example, these secondary distances are shown in Table 3. This
secondary distances are simply calculated as the number of times two elements do not
appear together plus one. Thus, in our case, all elements that never appear together
have a secondary distance of 21 and all those elements that go always together have a
secondary distance of 1 (Table 3).

Table 4. Optimal clustering using secondary distances

(A C)(B(D)(E(FH(G(H [FG) = 0.06086957
(A O(B(D(E(F(G H |FG) = 0.06086957
(A O(B(D(E(FG H _|FG) = 0.15217391

(A, C, B)(D)(E)(F G, H F(G) = 0.20289855
(A, C, B)( D, E)(F, G, H) F(G) = 0.22608696
(A, C, B, D, E)y(F, G, H) F(G) = 0.69297659

(A, C B,D,EF G, H F(G) = 1
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Once these secondary distances are established, we can now use them to make a
new cluster analysis. As an example, we show, in Table 4, the groups obtained by
taking the secondary distances shown in Table 3 and using the heuristic hierarchical
clustering algorithm described above.

In Table 4, the small increments of F(G) up to the establishment to three clusters
together with the large jump in the F(G) value, from 0.226 to 0.693, when two
clusters are established suggest that three natural clusters are present. In fact, they
correspond to those more frequently found in the original analysis using primary
distances (Table 2). However, it would be most interesting to be able to a priori
establish a cutoff value beyond which the clustering results will be considered
unreliable. To do so, we have defined an Affinity Coefficient (AC), as follows:

AC=100 {(1-F[G]) /(1 - F[Gumin])} (6)

Where F(Guy) is the minimum value for the F(G) function. We thus will proceed
to define a particular value of AC and then use it to establish the limit in which the
clustering procedure is stopped. If AC = 100, then only optimal clustering will be
considered. In a case as the one discussed above, that would mean that only elements
with distances equal to 1 will be clustered together. However, by relaxing the
conditions, that is using AC < 100, we will allow some level of non-optimal clustering
to occur. As we will show in the next section, relaxing the conditions of clustering
may be useful when considering incomplete and/or unreliable data, as those generated
in massive proteomic projects.

For a total of R replicates for the hierarchical clustering analysis using primary
distances, the clustering strategy may be described as follows:

Select AC value
Repeat_from N = 0
Random ordering of elements;
Hierarchical Clustering (d, AC);
Increment d‘ counters according to the solution found;
N=N4+1
To N = R

3 Application to Real Proteomic Data

Protein-protein interaction data are rapidly accumulating and the analysis of these
data may provide very important hints about cellular function. In the yeast
Saccharomyces cerevisiae, massive interaction data have been obtained using two
different strategies, namely massive two-hybrid system analyses [7, 12] and affinity
purification of complexes using tagged proteins [5, 6]. However, there are two
problems with the information generated using those techniques. On one hand, false
positive interactions are generated by proteins that are “promiscuous”, that is, able,
under the conditions of these experiments, to anomalously bind to multiple partners.
The number of false positive interactions may be up to 50% [13]. On the other hand,
purification of complexes using tagged proteins is often partial, that is, the complexes
obtained do not contain all the proteins that constitute them in vivo. This is shown by
the fact that different complexes that however share several, often many, subunits are
found (data from [5, 6]).
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Fig. 1. Summary of results for septin-interacting proteins of S. cerevisiae, with AC = 100%.
The light gray tones correspond to low secondary distances between proteins. Proteins that are
part of a complex are shown consecutively in this figure. Asterisks indicate two examples of
putative promiscuous proteins, characterized by having similar secondary distance values with
proteins belonging to several different complexes. These results were obtained after 1000
replicates

Our clustering strategy may contribute to the resolution of these problems,
especially for the data provided by complex purification experiments. In order to
implement this strategy, we started by creating a simple measure of distance among
proteins, that ranges from 1 (when direct interactions are known) to 5 (unrelated
proteins) (Mars, Arnau and Marin, submitted). Once distances are determined for a set
of relevant proteins, the clustering strategy detailed in the previous section allows to
determine secondary distances among proteins. When a protein is promiscuous, it has
primary distances of 1 with many proteins. This fact determines that the secondary
distances of this protein with many others are similar and often much higher than
expected for a protein that belongs to a particular complex. On the other hand, when
different independent complexes are found that have several proteins in common, and
thus most likely correspond to partial purifications of a same, bigger complex, those
common proteins obtain values of distance equal to 1. When secondary distances are
established, proteins of these complexes with common subunits have values that are
much smaller that those found for proteins that belong to independent complexes.

We have used this strategy with the set of proteins that interact with a group of S.
cerevisiae cytokinesis and cell cycle regulators, the proteins known as septins. Using
data obtained by Gavin ez al. and Ho et al. [5, 6], we established that septins interact
with a total of 137 proteins that were purified as part of 13 complexes. We then
generated a 137 x 137 matrix of distances by compiling all the information available
for those proteins, and used our hierarchical clustering strategy to determine
secondary distances among proteins under different AC values, ranging from 100%
(only distances equal to 1 are used for clustering) to 70% (a much more relaxed
condition, when proteins with distances equal to 2 or even 3 were allowed to cluster
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together). Figure 1 shows our results for AC = 100% using gray tones to represent
secondary distances.

The first important result is that our analyses allowed the recognition of eleven of
the thirteen complexes, demonstrating that the clustering strategy is correctly
functioning. Moreover, our results also established the existence of a very strong link
between proteins of the remnant two complexes, that suggests these complexes
actually may be just partial purifications of a single, larger complex. Examination of
the components of those two highly related complexes led us to the finding that they
have related functions, and most likely are part of a single complex, which function
would be to coordinately generate multiple aminoacyl-tRNAs in order to locally
increase protein synthesis. A similar complex had been hitherto characterized in
animals U (see [9] and references therein), but never in yeasts as S. cerevisiae. In
summary, our method has demonstrated its usefulness to deal with real proteomic
data, generating significant information to interpret complex interaction results.

4 Conclusions

In this paper, we propose a strategy of hierarchical clustering with two distinctive
features: iterative generation of multiple solutions and control of the quality of the
clustering, using the AC parameter. We also show that it can be used to analyze real
proteomic data. It is known that protein complexes are often partially characterized
and that a certain amount of false positives are obtained when massive interaction
data are generated. Our strategy allows detection of those anomalies.

Our implementation of this method is relatively fast. Data presented above for 137
proteins generated a dataset of 9316 distances. A total of 1000 replicates to obtain
reliable secondary distances from that dataset can be obtained in about an hour on an
IBM-compatible PC computer running at 1.7 GHz. The examined dataset contains
about 2.5 x 10™ of all possible interactions in S. cerevisiae (that has about 6000
different protein products) and perhaps about 10 of all possible interactions in
human cells (assuming 100000 different proteins, in part determined by alternative
RNA processing). That means that analysis of the whole datasets for eukaryotic
species would require parallelizing our algorithms. However, research of most
scientists is focused on particular cellular processes that involve limited groups of
proteins. Those applications require the analyses of much smaller datasets, as the one
showed above, that can be easily performed on a standard personal computer in a
short time. Thus, we think our strategy can be of very general use, and its simplicity
allows it to potentially become established as a benchmark for proteomic data
analysis.
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