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A method for the calculation of the fractional Fourier transform ~FRT! by means of the fast Fourier
transform ~FFT! algorithm is presented. The process involves mainly two FFT’s in cascade; thus the
process has the same complexity as this algorithm. The method is valid for fractional orders varying
from 21 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are
discussed. © 1996 Optical Society of America
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1. Introduction

Most of optics is based on performing operations on
an image or on manipulating its Fourier transform.
The gap between both domains ~spatial and fre-
quency domains! is very seldom used. It is interest-
ing to obtain an analytical expression of the
amplitude distribution in these intermediate do-
mains. This may be accomplished in several ways.
Fresnel diffraction allows the calculation of the field
distribution in cases in which the transformation
from the spatial domain to the Fourier domain is
obtained by free-space propagation ~like in a conven-
tional Fourier transformer!.
Recently, Mendlovic and Ozaktas1,2 introduced a

new tool for image analysis in optics, coined the frac-
tional Fourier transform ~FRT!. This transforma-
tion was defined mathematically by McBride and
Kerr3 based on research by Namias.4 An opera-
tional definition of FRT in optics was stated by the
use of propagation in a gradient-index ~GRIN! medi-
um.1,2 Such a medium provides, by combining self-
focusing and propagation, the Fourier transform of
an input plane at a given distance, which depends on
the fiber. The FRT’s of different orders are defined
as the amplitude field distributions as they propagate
along the medium between the input and the Fourier
planes.
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Lohmann5 gave a different definition of the FRT
that is based on the Wigner distribution functions
~WDF’s!. In that paper he proposed two optical set-
ups for FRT implementation on the basis of bulk
optics ~Fig. 1!. The equivalence between the GRIN
medium and the bulk-optics formulations was proved
in Ref. 6. Many contributions have shown the use-
fulness of the FRT as a tool for optical information
processing.7–9 Problems like optical diffraction the-
ory and optical systems have been treated with the
FRT as well.10–12
Using either operation, the FRT or Fresnel diffrac-

tion, permits a continuous transition from the object
domain to the Fourier domain to be accomplished.
In a more general context, ABCD-matrix formalism
provides a general framework for optical transforma-
tions including, as particular cases, the Fourier, FRT,
and Fresnel transforms ~see, for instance, Ref. 13!.
The final integral expressions obtained with these
transformations provides, in principle, a tool for cal-
culating any diffraction pattern in an optical system.
Nevertheless, in the general case there are no ana-
lytical solutions, so numerical approximations are
needed. Unfortunately, the direct calculation of the
integrals is inefficient from the computational point
of view.
The availability of fast algorithms for digital cal-

culation of the Fourier transform has greatly contrib-
uted to the spread of Fourier processing and
analyzing methods. Even when optics can provide
any ABCD transform in real time, computer simula-
tions of optical setups are often used as preliminary
stages for the final design to provide fast and accurate
preliminary tests. Therefore, it is interesting to de-
sign an efficient algorithm for fast FRT calculation
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with applications in optics and in digital signal pro-
cessing.
The first method proposed for FRT digital calcula-

tion was based on decomposing the input distribution
into the eigenmodes of the FRT operator—the
Hermite–Gaussian functions. A phase-propagation
factor transforms each of these functions indepen-
dently. Addition of the propagated modes con-
structs the final FRT.1,2 This method is time
consuming, especially for large image sizes, because
the algorithm is quadratic with the input size, O~N2!.
In Ref. 14 two efficient algorithms for discrete FRT
calculation were proposed that work in O~N log N!
time. Nevertheless, this method is not appropriate
for low fractional orders as a result of subsampling
fast-oscillating functions. This results in a low ac-
curacy for small orders and, consequently, in an im-
portant loss of information.
Here we propose an alternative method that is con-

ceptually simpler than the above-mentioned one. It
consists of a direct translation of the type II optical
setup @see Fig. 1~b!# into digital calculations. The
full correspondence between the mathematical calcu-
lations and the optical system permits a simple an-
alysis of each step of the process.
In Section 2 we report preliminaries about the dis-

crete Fourier transform ~DFT!. The relation be-
tween the DFT and an optically obtained Fourier
transform is discussed as well. Section 3 contains a

Fig. 1. Schematic diagrams of the optical setups for obtaining an
FRT: ~a! a type I module and ~b! a type II module.
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brief introduction of the Fresnel-diffraction integral
calculation. The requirements for Fresnel integral
discretization is also discussed. In Section 4 we re-
call the optical FRT definition. In Section 5, the
algorithm for the FRT calculation is presented. Fi-
nally, in Section 6 we outline the conclusions.

2. Discrete Fourier Transform

When an input transparency u~x! is placed in the
front focal plane of a lens with focal length f, then in
the back focal plane an exact, scaled version of the
Fourier transform ũ~ x̃! is obtained:

ũ~ x̃! 5
exp~ jkf !

jlf *
2`

1`

u~x! expS2j
2p

lf
xx̃Ddx, (1)

where k 5 2pyl. The product lf acts as the scaling
factor between the Fourier transform and the actual
distribution obtained. This definition permits writ-
ing the final amplitude of the optically obtained Fou-
rier transform. However, except for few functions,
the result of the Fourier integral cannot be expressed
in terms of analytical functions, and numerical com-
putations are needed. For doing so, one must sam-
ple the input and output signals at positions x 5 mDx
and x̃ 5 m̃Dx̃, respectively, with m and m̃ being in-
teger variables. The proper sampling interval will
avoid the loss of information while it minimizes the
number of operations.
Given a discrete distribution um, its DFT ũm̃ is

defined as

ũm̃ 5 (
m52Ny2

Ny221

um expS2j
2p

N
mm̃D , (2)

where N is the length of both the input and output
vectors. Note that, with some additional con-
straints, expression ~2! can be shown to be the sam-
pled Fourier transform of the discretized input
function. If one assumes the sampling intervals are
Dx and Dx̃ for the input and output matrices, respec-
tively, Eqs. ~1! and ~2! are matched if the following
scaling relation is fulfilled:

NDxDx̃ 5 lf, LxLx̃ 5 lfN, (3)

where Lx 5 NDx and Lx̃ 5 NDx̃ are the global sizes of
the input and output transparencies, respectively.
The expression shown in Eq. ~2! can efficiently be

calculated when the samples are ordered conve-
niently. It provides a fast algorithm for calculation
that is known as the fast Fourier transform ~FFT!,
which was introduced by Cooley and Tukey.15

3. Fresnel-Diffraction Calculation

The Fresnel integral can be expressed in terms of the
Fourier transform, permitting, in principle, a direct
calculation by the use of the FFT. Nevertheless the
scaling factor impedes the unique calculation for the
full range of distances from the object plane to infin-



ity. Thus a separate treatment of two different cases
is needed.

A. From Middle Range to Fourier Transform

The Fresnel pattern u9~x9! at a distance z of a distri-
bution u~x!, illuminated by a plane wave, is given by
convolution between the input signal and the free-
space propagation kernel:

u9~x9! 5
exp~ jkz!
jlz Fu~x9! p expS j p

lz
x92DG , (4)

where the asterisk denotes the convolution operation.
This can be written in a more explicit form as

u9~x9! 5
exp~ jkz!
jlz

expS j p

lz
x92D

3 *
2`

1` Fu~x! expS j p

lz
x2DG expS2j

2p

lz
xx9Ddx.

(5)

Aside from the factor dependent on z in the first line
of expression ~5! it consists of a Fourier transform of
the product of the input and a quadratic phase factor.
The whole result is also multiplied by an additional
quadratic phase.
To calculate this integral by the FFT and bearing

in mind the relation between Eqs. ~1! and ~2!, one
must sample the above expression with the scaling
factor NDxDx9 5 lz. Then Eq. ~5! converts into

u9m9 5
exp~ jkz!
jlz

expS jp lz
Lx

2 m92D
3 (

m52Ny2

Ny221 HFum expS j p

lz
Lx

2

N2 m
2DG

3 expS2j
2p

N
mm9DJ. (6)

The Fresnel pattern is calculated by means of the
FFT of the term in square brackets in Eq. ~6!. The
above-written sampling condition implies that the N
elements of the input and output vectors fulfill rela-
tion LxLx9 5 lzN; thus for large distances the output
matrix contains the sampling of a larger area of the
output plane.
Unfortunately, this method cannot be applied for

an arbitrary value of the distance z. For small
distances the quadratic phase factor multiplying
the input has a too rapid variation with the spatial
coordinate, impeding an accurate sampling for nu-
merical calculations. Let us estimate the range for
a good sampling area. For a given distribution of
the field, the phase factor increases its frequency
linearly with the distance to center of the vector.
If we assume that in the border of the signal one
period of the quadratic phase factor is smaller than
the sampling interval, it is easy to obtain the ap-
proximate condition

z $ z1 ;
Lx

2

lN
. (7)

The above assumption may look too weak, as this
yields to a sampling in the border of the image just
within the Nyquist limit. Nevertheless, in real sit-
uations the image is usually padded with zeros in
the border, with a good sampling being obtained for
the region of interest of the image. The main rea-
son for padding with zeros is to avoid, after Fresnel
diffraction, the external part of the image going out
of the support matrix. Moreover, if an FFT algo-
rithm is used, because of aliasing the portion that
runs out of the image will enter by the opposite side
of the matrix. As an example of the validity of the
above-described method, real values can be intro-
duced into expression ~7!. For parameter values
of l 5 632.8 nm, N 5 256, and Lx 5 10 mm, the
method is valid for distances greater than 300 mm.

B. From Object Plane to Middle Range

The Fresnel pattern in the range from the object
plane to z1 cannot be calculated in the same way
described in Subsection 3.A. Bearing in mind that
the difficulty comes from the high frequencies of a
quadratic phase factor we find that it is more conve-
nient to operate in the Fourier domain. Physically
this procedure equals propagating the Fourier trans-
form of the signal instead of the signal itself. In this
domain the convolution in Eq. ~4! is transformed into
the product

ũ9~n! 5
exp~ jkz!
jlz

ũ~n!exp~2jplzn2!. (8)

The relation of the spatial frequency n and the
spatial coordinate in the Fourier plane x̃ is given by x̃
5 lzn, where lz acts as the scaling factor. Discreti-
zation of the quadratic exponential term in Eq. ~8!
produces

exp@2jplz~Dn!2m̃2# 5 expF2jplzSDx̃
lzD

2

m̃2G
5 expS2jp

lz
Lx

2 m̃
2D .

(9)

Now the frequencies of the quadratic phase factor are
low for small z values, just contrary to the previous
method. This result permits the calculation of the
Fresnel pattern for short distances from the object
plane ~provided that the Fresnel approximation is
still valid!. The method consists of performing a
Fourier transform of the input signal, multiplying by
the phase factor in Eq. ~9!, and performing an inverse
Fourier transform on the result to obtain the Fresnel
pattern. In the discrete case, and by the use of the
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DFT, i.e.,

u9m9 5
exp@ j~2pyl!z#

jlz

3 (
m̃52Ny2

Ny221 HF (
m52Ny2

Ny221

um expS2j
2p

N
mm̃DG

3 expS2jp
lz
Lx

2 m̃
2D expS j 2p

N
m̃m9DJ . (10)

The main difference between this method and the
one described in Subsection 3.A is that the use of two
Fourier transforms ~one direct and one inverse! can-
cels the scale factor between the input and output.
The actual sizes of both the input and output matri-
ces are identical ~Lx 5 Lx9!.
As the distance z is increased the Fresnel pattern

will widen, producing aliasing as the object infor-
mation goes across the border of the matrix. This
fact is more marked in the case of small values of z
because the scale is the same for both the input and
output. Aside from this effect, there is also the
need for fair sampling in the quadratic phase factor.
As in the above-described case an estimation of the
validity range can be made, yielding the approxi-
mate relation

z # z2 ;
Lx

2

lN
. (11)

Under the conditions exposed in Subsection 3.A,
both ranges overlap, permitting a calculation in the
full range from the object plane to the Fraunhofer
diffraction region, provided that the proper method is
selected according to the distance.

4. Fractional Fourier Transform

The FRT of the order 0 , upu , 2 of an input function
u~x! can be expressed as10

up~a9! 5 Cp expH j p

tan@p~py2!#
a92J

3 *
2`

1`

u~a! expH2j
p

tan@p~py2!#
a2J

3 expH2j
2p

sin@p~py2!#
aa9Jda, (12)

where Cp is the constant factor

Cp 5
exp~2jp sgn$sin@p~py2!#%y4 1 jp~py4!

usin@p~py2!#u1y2 . (13)

For values of p 5 0 and p 5 62 the FRT is defined
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separately:

u0~a9! 5 *
2`

1`

u~a! d~a 2 a9!da,

u62~a9! 5 *
2`

1`

u~a! d~a 1 a9!da,

(14)

respectively.
Two important properties can be deduced from ex-

pressions ~14!3:

• The Fourier property

~^1u!~a9! 5 ^@u~a!#~a9!

5 *
2`

1`

*
2`

1`

u~a!exp~2j2pa9a!dx.

• The semigroup property

^a@^bf# 5 ^a1bf. (15)

Note that, from these properties, the orders P 5 4k,
with k being an integer number, correspond to an
exact image of the input. The FRT of order two can
be interpreted as imaging with spatial inversion.
Thus, the FRT of an arbitrary order of an input vector
can be calculated by the performance of the FRT of
the nearest integer order ~which reduces to a trivial
case! and the computation of the FRT of the result by
use of the remainder order. Therefore, the
operational-orders range reduces to @0, 1#.
The above mathematical expressions @Eq. ~12!# can

be physically interpreted and rewritten in a more
suitable form. Mendlovic and Ozaktas1,2 proposed
the FRT calculation of an input function by means of
its propagation through a GRIN medium. The ker-
nel of the FRT obtained is based on the Hermite–
Gaussian functions and leads to the same result as in
Eq. ~12!. Lohmann5 showed, through the WDF
properties, that the FRT can also be optically ob-
tained by interleaving free-space propagation and
lenses.
Two possible FRT setups are shown in Figs. 1~a!

and 1~b!. It is interesting to think about these set-
ups in terms of operations in the Wigner domain.
The pth-order FRT of an input vector is connected by
a rotation of ppy2 of its WDF. This rotation may be
decomposed into three shearing operations of the
WDF—one in the x direction, one in the y direction ~n
shearing!, and finally another in the x direction. A n
2 x 2 n shearing will provide the same result.
These operations can be performed optically by
means of free-space propagation and lenses. After
free-space propagation the WDF of the resulting sig-
nal is an x-sheared version of the WDF of the original
signal. Analogously, a n shearing of theWDF is con-
nected with the action of a lens. The setups shown
in Fig. 1 can be interpreted in these terms.
At this point we have three different means of ob-



taining the FRT of the order p of a distribution:
GRIN media, type I systems, and type II systems.
To reach the purpose of this paper, one must choose
the appropriate way, which is the one to provide the
shortest calculation time when discretization is per-
formed. GRIN-media-based algorithms present a
calculation time that depends on the squared number
of samples. The calculation time is reduced down to
the N~log N! order when algorithms based on bulk-
optics systems are considered. Type II systems need
only one Fresnel transformation, so the final algo-
rithm will be based on that configuration.
In Ref. 5 the final output obtained through a type II

system @Fig. 1~b!# is expressed as

up~x9! 5
exp~ jkz!
jlz * Fu~x!expS2j

p

lf
x2DGexpF j p

lz

3 ~x2 1 x92 2 2xx9!GexpS2j
p

lf
x92Ddx.

(16)

Writing the physical parameters of the system as f 5
f1ytan~ppy4! and z 5 f1 sin~ppy2!, with f1 being an
arbitrary fixed length, Eq. ~16! converts, aside from
constant factors, into Eq. ~12!. The scaling factor of
the transformation is determined by the product lf1.
Note that the phase factor exp~ jkz!yjlz coming

from the Fresnel-diffraction integral has no corre-
sponding term in Eq. ~12!. One can notice that writ-
ing z as f1 sin~ppy2! in this factor yields a phase that
depends on f1yl; thus there are different combina-
tions of l and f that provide the FRT with the same
scaling factor except for a different global phase fac-
tor. On the other hand, with GRINmedia the phase
factor in Eq. ~13! depends on only the fractional order,
without explicit dependence of the physical charac-
teristics of the fiber.
Because of the arbitrary phase factor that is intro-

duced when the FRT is performed through bulk-
optics systems, the FRT obtained by GRINmedia has
to be the reference definition; Eqs. ~12!–~14! have
been adopted here for the final calculations.

5. Digital Fractional Fourier Transform

A direct calculation of expression ~16! by the FFT is
complicated because the same problem that arises for
Fresnel diffraction appears here. With type II sys-
tems the free-space propagation distance can be cho-
sen to be small, and we can apply the same method
that was used for the short-distance Fresnel-
diffraction calculation ~see Section 3.B!.
The whole algorithm consists of writing the sampled

versions of the transformations performed in the optical
system. Note that here Lx 5 Lx̃ 5 Lx9, so the
sampling intervals are Dx5 Dx̃5 Dx9 5 =lf1yN, in the
object, Fourier, and fractional domains, respectively.
The different steps are as follows:

1. Action of the first lens: This consists of the
multiplication of the input matrix by the quadratic
phase factor, given by

expF2j
p

N
tanSp p

4Dm2G .
2. Free-space propagation of the result of step 1:

According to Section 3.B this is accomplished by
~a! the FFT,
~b! multiplication of the output matrix by the

quadratic phase factor:

expF2j
p

N
sinSp p

2Dm̃2G ,
~c! the inverse FFT.

3. Action of the second lens: this again means
the multiplication of the matrix by the quadratic
phase factor:

expF2j
p

N
tanSp p

4Dm92G .
Note that there are no axial distances in the process.
The fractional order or the rotation angle of theWDF,
which are not dependent on the actual setup, is used
instead.
The conditions for a fair sampling will be

UsinSp p

2DU , 1, (17a)

UtanSp p

4DU , 1. (17b)

Condition ~17a! is always fulfilled, whereas condition
~17b! will hold for only upu , 1. The properties of the
FRT permit extension for an arbitrary range.
As was explained in Section 4, there is not complete

equivalence between Eq. ~12! and the result obtained
with our algorithm. A constant factor of exp~2ipy
4!yusin~ppy2!u1y2 is introduced instead of the constant
Cp @Eq. ~13!# when the FRT is calculated with our
algorithm. So, if a completely equivalent result is
desired, a matching constant Mp,

Mp 5 expH2ip sgnFsinSp p

2DGY41 ip
p

4
1 py4J, (18)

has to be introduced. This phase is not important
for experimental implementations because it cannot
be measured. Nevertheless, it is important for the-
oretical calculations.
As an example of the application of our method, we

have applied it to a rectangle function @see Fig. 2~a!#
for which an analytic solution is possible. The re-
sults of the direct calculation are presented in Fig.
2~b!. In Fig. 2~c! the calculation has been done with
an algorithm based on the propagation of a GRIN
fiber.1,2 Finally, in Fig. 2~d! the FRT obtained
through the algorithm introduced here is presented.
The methods that yielded the results shown in both
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Figs. 2~c! and 2~d! provide quite similar results, but
the calculation time for our algorithm is significantly
faster than the one based onHermite–Gaussian func-
tions. Using MATLAB routines on a PC computer for
the implementation of these algorithms for an input
vector of 128 elements shows that the time ratio is 15.
As the complexity of the GRIN-media-based algo-
rithm is of the order of N2, whereas that of ours is
O~N log N!, the time ratio will dramatically increase
with the size of the input.
Comparing these results with the exact calculation

means that two different sources of error must be
considered. First is the sampling error, which pro-
duces a loss of fine details. This effect appears when
one discretizes the quadratic phase factors ~or the
Hermite–Gaussian function for the first method! and
when one samples the output. The second is due to
aliasing, which is especially noticeable for x coordi-
nates in the border of the image. To avoid these
effects, oversampling the input matrix is advisable.14
In this case, to obtain the original size of the matrix,
decimation at the end of the algorithm is necessary.

6. Conclusions

The FFT has been used to obtain a numerical calcu-
lation of the FRT. The algorithm is based on the
performance of the FRT by the application of a lens,
free-space propagation, and a second lens. Free-
space propagation is accomplished in the Fourier do-
main to avoid undesirable scaling. Two FFT’s and
multiplication by three quadratic phase factors are

Fig. 2. ~a! Input vector for the calculation of the FRT. ~b! Mod-
ulus of the FRT of the order 0.5 of the vector in ~a!, calculated
through direct integration. ~c! Same as ~b! but calculated through
Hermite–Gaussian functions. ~d! Same as ~b! but calculated
through the algorithm introduced in this paper.
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needed, the process being of the order of O@N log~N!#.
Because of the incomplete equivalence between the
FRT’s calculated through GRIN media and bulk op-
tics, the introduction of a matching phase factor is
discussed. The same principles can be used to cal-
culate the Fresnel diffraction in the near and far
fields, in this case with different algorithms.
Although we have designed the algorithm for one-

dimensional signals, the results can easily be extended
to two-dimensional cases, provided that all the opera-
tions performed are separable. Thus, performing the
FRT of a bidimensional input matrix reduces to the
calculation of the FRT in the x and y directions in
cascade. The calculation time in this case is in-
creased up to O~N2 logN!, in contrast with a complex-
ity of O~N3! for a GRIN-media-based algorithm.
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