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Space–bandwidth product of optical signals and systems
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The space–bandwidth product (SW) is fundamental for judging the performance of an optical system. Often
the SW of a system is defined only as a pure number that counts the degrees of freedom of the system.
We claim that a quasi-geometrical representation of the SW in the Wigner domain is more useful. We also
represent the input signal as a SW in the Wigner domain. For perfect signal processing it is necessary that
the system SW fully embrace the signal SW.  1996 Optical Society of America
1. INTRODUCTION
The price of an optical system is connected with its
space–bandwidth product (SW) requirements. For a
given set of signals, or images, the designer tries to re-
duce the price of the optical system to a minimum. The
term SW emerged at first only implicitly in the context
of the resolution limit, which was due to Abbe.1 Von
Laue determined the number of degrees of freedom be-
hind an object area, from where light could be accepted
within a certain solid angle.2 Lukosz,3 Lohmann, 4 and
others used the term SW explicitly in the mid-1960’s.
VanderLugt refers to it in his recent book.5 We want
to clarify the meaning of the SW. In fact there are two
different but related SW definitions. The SW might de-
scribe either an optical system or an optical signal. The
system may serve to perform imaging, possibly with mag-
nification, or Fraunhofer diffraction, or something else.
The SW of a signal or of a set of signals is defined by
the location sxd and by the range of spatial frequencies
fn  ssin adylg within which the signal is nonzero. The
SW, whether for a system or for a signal, may be either
a pure number (degrees of freedom) or a specific area in
the sx, nd domain, which we will refer to as the Wigner
domain. In Section 2 we will treat the SW as a pure
number. In Section 3 we will consider the SW as an area
within the Wigner domain. And in Section 4 we discuss
the interaction between signal SW and system SW. We
derive some inequalities that guarantee a lossless trans-
fer of information. We also discuss reversibility issues.

2. NUMERICAL SPACE–BANDWIDTH
PRODUCT
The well-known sampling theorem applies to signals usxd
that are band limited [Eq. (1)] and limited in size [Eq. (2)]:
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ũsnd 
Z

usxdexps22pinxddx  0

outside of jnj # Dny2 . (1)

We also assume that

usxd  0 outside of jxj , Dxy2 . (2)

The two features can coexist with reasonable accuracy if
the product DxDn is large compared with unity, which
we assume to be the case.

The signal is completely known if we know it only
at equidistant sampling points separated by dx  1yDn.
The total number of these samples is

NI  Dxydx  DxDn . (3)

The number NI is the numerical SW of a signal or possibly
of a set of signals. I represents the second letter of the
word “signal.”

Now we consider the numerical SW of an optical sys-
tem, abbreviated as NY . The Y is the second letter of
“system.” The optical system may provide an input area
of size jxj # Dx0y2. And the system may accept plane
waves in directions a according to

jxj # Dx0y2, j sin aj # lDn0y2 . (4)

Hence the system is prepared to accept signals with NY

degrees of freedom:

NY  Dx0Dn0. (5)
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Fig. 1. (a) Simple space–bandwidth product SWI sx, nd in the
Wigner domain, (b) SWI of (a) after a Fourier transform, (c) SWI
of (a) after a Fresnel transform, (d) SWI of (a) after passage
through a lens, (e) SWI of (a) after a fractional Fourier transform.
3. SPACE–BANDWIDTH PRODUCT SHAPE
Each signal usxd can be described indirectly and uniquely
by its Wigner distribution function W in the space/spatial
frequency domain6:

W sx, nd 
Z

usx 1 x0y2dupsx 2 x0y2dexps22pinx0ddx0.

(6)
The step from usxd to W sx, nd is reversible, apart from a
constant phase factor:

Z
W sxy2, ndexps2pinxddn  usxdups0d , (7)

jus0dj2 
Z

W s0, nddn . (8)

Similarly, the Wigner distribution function is also related
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to the Fourier transform of the object [Eq. (1)]:

W sx, nd 
Z

ũsn 1 n0y2dũpsn 2 n0y2dexps12pin0xddn0.

(9)

Equations (6)–(9) tell us that it is equally possible to treat
signal processing questions in three different domains:
sxd, snd, and sx, nd. For what follows, the sx, nd domain
is best suited.

Equations (1) and (2) define a rectangular symmetri-
cal area in the sx, nd domain. That rectangle may be
occupied by the W sx, nd of the signal usxd, as shown in
Fig. 1(a). If we replace usxd by its Fourier transform,
the original W must be rotated by 90±, since the roles
of space and frequency have been exchanged [Fig. 1(b)].
A Fresnel transform applied to usxd describes propaga-
tion in free space. The corresponding operation in the
Wigner domain is a horizontal shearing [Fig. 1(c)]. Pas-
sage of the light through a lens corresponds to a vertical
shearing [Fig. 1(d)], and a fractional Fourier transform7

of usxd corresponds to a rotation [Fig. 1(e)]. A magnifi-
cation of usxd means stretching in x and squeezing in n.

Common to all these operations is that the size of the W
area does not change. Hence NI , the numerical value of
the SW, remained the same. But the shape did change
in various ways. The changes in the W domain can be
described as an affine transformation:

SWI sx, nd ! SWI sAx 1 Bn, Cx 1 Dnd . (10)

The sABCDd coefficients should satisfy the conservation of
the area. The letter I refers again to “signal.” It is time
now to define the SWI sx, nd more precisely. The SWI is
binary. It is unity where the Wigner distribution func-
tion W sx, nd is essentially nonzero. And it is zero where
W sx, nd is essentially zero. The term “essentially” hides
the fact that we do not set a threshold for W sx, nd and
that we smooth the boundaries of SWI sx, nd. Further-
more, holes within the W sx, nd are ignored.

The definition of the SWI sx, nd becomes somewhat
more precise if it is related to a whole set of signals usxd
instead of to a specific signal. The ensemble average of
the Wigner distribution function W sx, nd is smoother and
most likely without any holes because the W sx, nd is not
only real but almost everywhere nonnegative.

Now we turn our attention from signals to systems.
The shape of the SW of a system, called here SWY sx, nd,
is typically a symmetrical rectangle as in Fig. 1(a), de-
fined by inequalities (4). But the rectangular shape is
not a requirement. For example, a photographic camera,
whose resolution degrades from the center to the edges
of the image field, has an x-dependent local bandwidth
Dn0sx0 d. If Dn0 is sufficiently smooth, the sampling dis-
tance dx0  1yDn0 may vary across the field (Fig. 2).

4. RELATIONS AMONG THE VARIOUS
SPACE–BANDWIDTH PRODUCTS
The numerical SW’s were called NI (for signals) and
NY (for systems). They are measures for the sizes of
SWI sx, nd and SWY sx, nd, respectively. In Section 3 we
saw how the SWI sx, nd may change its shape in many
ways (Fig. 1) but without changing NI , the numerical
value of SWI .

Most systems have a rectangular SWY sx, nd, as shown
in Fig. 1(a). Hence an SWI sx, nd as in Fig. 1(a) may be
able to pass through the system undamaged. But the
other SWI sx, nd [in Figs. 1(b)–1(e)] might be cut off at
their corners by the SWY sx, nd. Hence we conclude, for
a lossless transfer through a system, that the following
conditions hold:

necessary: NI # IY snot sufficientd, (11)

sufficient: SWI sx, nd , SWY sx, nd . (12)

Lossless in this context meant that sNI dINPUT 
sNI dOUTPUT , or briefly NI  N 0

I .
In the lossy case mentioned above, some part of the

signal is irreversibly destroyed. For example, the size
Dx of the input usxd might be too large for the entrance
window Dx0 of the system. Or the spatial frequency spec-
trum ũsnd of the input might be wider than the angular
acceptance of the system.

These statements might suggest that a lossless sys-
tem is not able to enlarge or to compress SWI sx, nd in
a reversible manner. This hypothesis is wrong, as the
following example will show. The original signal usxd
may have a bandwidth Dn and a size Dx. Its SWI sx, nd
may look as in Fig. 1(a). Our system consists of a phase
grating

Gsxd  expfifsxdg 
P

Am exps2pimn0xd (13)

that converts the input usxd into the output vsxd:

vsxd  usxdGsxd . (14)

This system is apparently reversible, since a second such
system Gpsxd  expf2ifsxdg would restore the input usxd.
But the SWI sx, nd belonging to vsxd is substantially en-
larged. We compare the Wigner distribution functions
belonging to usxd and to vsxd:

Wusx, nd 
Z

usx 1 x0y2dupsx 2 x0y2dexps22pinx0ddx0,

(15)

Wvsx, nd 
P P

AmAn expf2pin0xsm 2 ndg

3 Wufx, n 2 n0sm 1 ndy2g . (16)

Fig. 2. SWY of a system with space-variant bandwidth.
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Fig. 3. SWI of a signal, multiplied by a grating.

The SWI sx, nd of vsxd is illustrated in Fig. 3. The new
islands sm 1 n fi 0d are clearly separated if n0 . 2Dn

(which, however, is not essential for our argument). The
important point is that those new islands can be shifted
back to the central location [as in Fig. 1(a)] by means of
the second system, the complex-conjugate phase grating.
This reversibility was possible because the partial signals,
represented by the new islands, were assumed to be per-
fectly coherent when entering the second system. Fur-
thermore, the system (the grating) and its inverse were
lossless. The essence of this gedanken experiment was
as follows: The system Gsxd acting on usxd causes an en-
largement of the SWI sx, nd. And the system Gp applied
upon vsxd causes a compression of the SWI sx, nd. En-
largement as well as compression of the SWI may well
be reversible.
5. CONCLUSION
We have shown that one should distinguish between the
SW of a signal and the SW of a system. That enables
us to define criteria for reversible processes. It is often
not enough to use the number of degrees of freedom as a
SW. Also, the shape of the SW in the Wigner domain is
important. All those considerations do apply also to the
time–bandwidth product.

*The work was conducted during the author’s visit to
Tel Aviv University.
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