
Using semantic causality graphs to validate MAS

models

Guillermo Vigueras1, Jorge J. Gómez2, Juan A. Botía1 and Juan Pavón2

1Facultad de Informática

Universidad de Murcia

Spain

2Facultad de Informática

Universidad Complutense de Madrid

Spain

Abstract Multi-agent systems methodologies de�ne tasks and tools cov-

ering all the development cycle. Modelling and implementation activities

are well supported and experimented. However, there has been few e�ort

invested in debugging and validation techniques for MAS compared to

modelling and implementation stages. This paper addresses the lack of

tools to debug and validate a MAS. We propose a visual tool to debug

and validate some multi-agent system speci�cation, capturing causality

among messages sent by agents and showing semantic information re-

lated to interaction protocols used by agents.

Keywords: Intelligent agent-based systems, MAS debug, MAS validation.

1 Introduction

Modelling multi-agent systems is a delicate task prone to errors. Most of the
times, it is a problem of lack of specialised veri�cation and validation tools. One
of design parts that developers should specially take care of, is interaction proto-
cols speci�cation. By means of these protocols, agents communicate to achieve
their individual or common goals. So analyzing interactions provides valuable
information to determine agent behavior. Agents methodologies o�er to devel-
opers tasks and activities, along MAS development cycle, to model multi-agent
systems. However the number of debug and validation tools o�ered by these
methodologies is not comparable as the number of development tools o�ered.
Visual tools that represent an abstract view of the system can help developers
to perform debug and validation tasks. In this way causality is and important
concept from distributed systems that can be adapted to multi-agent systems.
Causality of a concrete event (i.e. a message exchanged, an undesired result
of the interaction studied, an unexpected conversation, etc.), in the context of
multi-agent interactions, may be loosely de�ned as the cause which directly or
indirectly leaded to generate the event. What we propose in this paper is adding,
to causality graphs proposed in [6], semantic information speci�ed inside some
interaction protocol. Semantic information de�nes how received and sent mes-
sages a�ect to agents, i.e. what actions are executed and how agents mental



state are modi�ed by those actions. In order to add semantic information, we
propose to use the meta-models de�ned in INGENIAS methodology [5] and the
information provided by those meta-models about the MAS. Using this infor-
mation, developer will be able to perform a better diagnose and �nd the reason
of possible error in the agents behavior more quickly.

The rest of the paper is organized as follows. Section 2 introduces the notion
of causality in the context of a MAS interaction. Section 3 describes INGENIAS
methodology. Section 4 describes a MAS example modelled using INGENIAS
and how semantic causality graphs can help developer to debug and verify it.
Section 5 puts our causality graph in the appropriate context and �nally, section
6 enumerates most important conclusions and open issues.

2 Representing causality through MAS interactions

In order to integrate debug, validation and veri�cation in the MAS development
cycle, it is important to o�er tools performing these tasks in an easy way. This
kind of tools should o�er an abstract view of a MAS where errors can be de-
tected in an easy and fast way. The paper proposes a tool that uses causality
to guide the developer towards the root of the problem. To illustrate the role
of causality, a brief example follows. There is a MAS in which an agent (de-
noted by Initiator) wants to search bibliographic references about some subject.
To perform this task the Initiator communicate with another agent (denoted by
Broker) using the FIPA Brokering interaction protocol, and delegate on the Bro-
ker to do the search task. The proxy message sent by Initiator agent, contains
the following information: a referential expression denoting the target agents to
which the Broker should forward the requested task and the communicative act
to forward. After notify to Initiator that the petition is accepted, the broker
agent forward again the search request, using the communicative act (request)
and the target agent list, received both from Initiator. The target agent list
contains two agents, denoted by Searcher1 and Searcher2, respectively, so Bro-
ker communicate with Searcher1 and Searcher2 using FIPA Request interaction
protocol . Searcher1, communicate with agents BookSeller1, BookSeller2, and
BookSeller3 representing each one some e-library, to perform the search, using
the FIPA Request interaction protocol. Searcher2, is not able to understand the
request, so it doesn't send some message. After, some interactions, Searcher1
receives only failure messages, which are forwarded to Broker, which forward
again the failure to Initiator. The example described above is shown in �gure 1.

After MAS execution, the developer realizes that Initiator's search returns
failure, but the source of the error is not evident. Looking at the graph shown
in �gure 1, the developer discovers that Initiator's search has failed because
Broker returns failure too. Looking at the bottom of the graph, it seems Broker
behavior is correct, because all messages received are failures. Tracking back
agents interaction, developer realize that all responses received by Searcher1,
are failures too, and Searcher2 does not do anything. The MAS programmer,
reviews agents code and �nds which databases are been accessed by agents.



Once databases are found, the programmer checks whether the bibliographic
reference searched by Initiator agent, exits or not in e-libraries that are accessed
by BookSeller1, BookSeller2 and BookSeller3. He discovers that the searched
reference does not exist and realizes that the problem is in the target agent list
elaborated by Initiator. Probably, it was caused by wrong information about the
environment, maybe provided or modi�ed by some information source. Related
with Searcher2, developer, after reviewing agent's code, realizes that this agent
is not able to process a request message, so the other cause error is found too. In
this example, causality graph is useful for developer to �nd error causes, but he
has to inspect agents code, inspection that implies consume more development
time.

Figure 1. Example in which agents search bibliographic references.

The graph shown in �gure 1, can help to developer to discover which agent
has a wrong behaviour, respect to what is expected. But once the agent is found
the developer can't know which is the internal agent state that cause the wrong
behavior. We propose in this paper to add semantic information, extracted from
agents interaction protocols, to the graph shown in �gure 1 to increase MAS
execution information and reduce, in this way, debug and validation time.

3 The INGENIAS Methodology

INGENIAS de�nes process, methods and tools for developing MAS, from the
more abstract analysis, with use cases and system goals, to implementation of
code. In order to cope with the complexity of MAS speci�cation, each MAS is
considered from �ve complementary viewpoints [5]:

� Agent viewpoint. This viewpoint is concerned with the functionality of each
agent: responsibilities (what goals an agent is compromised to pursue) and



capabilities (what tasks is able to perform). The behaviour of the agent is
de�ned through three components: (1) the mental state (an aggregation of
mental entities such as goals, believes, facts, compromises, and others), (2)
the mental state manager, which provides for operations to create, destroy
and modify mental entities, and (3) the mental state processor (which de-
termines how the mental state evolves and it is described in terms of rules,
planning, etc.).

� Organisation viewpoint. The organisation describes the framework where
agents, resources, tasks and goals coexist. This viewpoint is de�ned by
the organisation structure (with group decompositions), social relationships
(power relationships mainly), and functionality. The functionality of the or-
ganisation is de�ned by its purpose and tasks.

� Task/Goal viewpoint. It considers the relationships among goals and tasks or
plans, and describes the consequences of performing a task, and why it should
be performed (i.e. it justi�es the execution of tasks as a way to satisfy goals).
For each task, it determines which elements are required and what outputs
are expected. To identify which goals are in�uenced by a task execution,
the methodology de�nes satisfaction and failure relationships. Finally, the
tasks/goals model can detail how a solved goal a�ects other existing goals
by using decomposition and dependency relationships. It is useful to know
that by solving a sub-goal, a super-goal can be solved too.

� Interaction viewpoint. The interaction viewpoint addresses the exchange of
information between agents, or between agents and human users. The de�ni-
tion of an interaction requires the identi�cation of: actors in the interaction
(roles or agents), interaction speci�cation (the protocols, the notation for
the protocols, the interleaving of task execution during interaction, the infor-
mation exchanged during the interaction), context of the interaction (goals
pursued, mental state of the participants before, during, and after the inter-
action), and nature of the interaction (coordination, negotiation, planning,
etc.).

� Environment viewpoint. It de�nes the entities with which the MAS inter-
acts. These entities are resources (elements required by tasks that do not
provide a concrete API, like CPU, �le descriptors, or memory), applications
(they o�er some local or remote API), or other agents (from other organisa-
tions). In the diagrams used to de�ne this particular viewpoint, agents are
associated to resources or applications. Also, the perception relationships are
established, de�ning the sensors of the agent, and actuators, by making an
agent responsible of a resource or an application.

INGENIAS speci�cations are produced with an editor supporting the cre-
ation of diagrams for these viewpoints, the INGENIAS Development Kit (IDK).
From those diagrams the IDK is able to automatic generate code to execute the
modelled MAS. Moreover the IDK o�ers a framework for the implementation of
modules that allow to browse viewpoints described above. Combining both the
generation code and viewpoints browser utilities it is suitable to build tools to



debug and validate the MAS speci�cation. An example of those tools is the one
explained in the following section.

4 Debugging an Example INGENIAS MAS Model

This section shows an example of how semantic causality graphs can aid devel-
oper to get more information about a running MAS under development. For this
purpose, this section presents an example MAS speci�cation modelled with IN-
GENIAS. Later, it is shown how debug and validation tasks are performed using
semantic causality graphs. Taking account that the goal is extending causal-
ity graphs that appear in �gure 1, to show how agents interactions a�ect to
agent internal state, di�erent INGENIAS viewpoints has to be browsed. In the
next section it is described the MAS speci�cation used and which INGENIAS
meta-models are used.

4.1 MAS Example speci�cation description

The system intends to provide a ticket selling service where a user representa-
tive can contact each cinema and proceed with the transaction. The case study
considers a user connecting to the system and instructing a representative (User
assistant) to obtain a cinema ticket. The assistant contacts another represen-
tative (buyer) so that this representative obtains the ticket. The representative
contacts di�erent cinemas representatives (seller) until an adequate cinema is
located (adequate means there are free seats and the price is good enough).
Once obtained, the ticket is delivered, through the di�erent representatives, to
the user.

Taking into account that semantic information associated to agents interac-
tions is the main concern, the INGENIAS Interaction viewpoint and Task/Goal
viewpoint is consulted. The �rst one gives information about which tasks are exe-
cuted by one agent when receives a message. Focusing on these tasks is necessary
because modi�cations performed by some task when a message is received will
in�uence the next message. Related to the interaction viewpoint, the Task/Goal
viewpoint informs of the modi�cations to perform over an agent mental state,
those executed by enacted tasks. In the system described above there are two
interactions. The �rst one between User assistant agent and Buyer agent, in
which User assistant instructs Buyer to get a cinema ticket. The second one be-
tween Buyer and Seller agent negotiates the buy of the cinema ticket required.
In �gure 2, it is shown a diagram from Interaction viewpoint for specifying the
interaction protocol used by buyer agent and seller agent, to negotiate cinema
ticket required. On the right, it appears a detailed speci�cation of the task Pro-

cess o�er from Task/Goal viewpoint. In the interaction protocol speci�cation,
messages sent by agents are represented through Interaction units, each one con-
taining one speech act or performative. When a message is sent by one agent
(or role) this is speci�ed by means of relation UIInitiates. When a message is



received, it is represented by means of relation UIColaborates. Semantic informa-
tion is de�ned associating one task to a sent or received message event. For each
task into Task/Goal viewpoint it is identi�ed entities from agent mental state
being consumed/produced, and environment entities being used. Due to space
limitations, only one task is shown. As the reader can see, the task de�ned in
�gure 2, satis�es the goal GetTicket (relation Satisfaction) and the role Buyer
is responsible of execute the task (relation WFResponsable). In addition, the
task will produce the fact Pay the money if the buyer agent is interested in the
ticket o�ered, and will produce the fact Not interested if isn't interested. Taking
account this semantic information, in the next section it is shown an example of
semantic causality graph.

Figure 2. De�nition of interaction protocol to buy a cinema ticket, in which interaction

semantic information is added. On the right the task Process o�er is de�ned too

4.2 Validating the example using semantic causality graphs

There is a system in which there is one user and his user assistant agent ,
one Buyer, and two sellers (Seller1 and Seller2) representing one cinema each
one. Let's suppose that the user instructs the User assistant to obtain a cinema
ticket. The User assistant starts an interaction with Buyer agent, to get the
cinema ticket. Later on, Buyer agent starts another interaction with Seller1 to
buy the required ticket. The ticket o�ered is refused by Buyer so it starts a new
interaction with Seller2 and again the o�er is refused. The developer, looking at
the resultant execution, begins to think about the reasons for the refused o�ers.
The graph shown in �gure 3 allows the developer to know the reasons that lead
to Buyer to refuse tickets o�ered, getting semantic information from the running
MAS (shown inside black rectangles in �gure 3), and without necessity to inspect



agents code. By means of semantic information, the developer can realize that
the tickets are refused due to the o�er sent by each seller to Buyer agent (see
facts O�er produced by Seller1 and Seller2 in �gure 3). In both cases the price
of the o�er is very high, as is shown in the attribute Price of o�ers from Seller1
and Seller2. To solve the problem, by means of semantic information added, the
developer realizes that the code of the task Determine availability, that is in
charge of elaborate the refused o�er, should be reviewed.

Figure 3. Example in which agents search bibliographic references.

5 Related works

There are previous works on using causality and visual debugging for MAS, and
specially the later ones. Causality graphs are used extending them to capture
causality among di�erent MAS events. in [3]. In that work, a developer de�nes
agent concepts and causal relation among those pre-de�ned concepts is shown
(e.g. a believe created as a consequence of a received message). The work [3]
is complementary to the one presented, because the causality graph is at intra-
agent level and not at inter-agent level.

An example of visualization tool to assist in testing and debugging MAS
is the one described in [2]. Simple communication graphs are used there, i.e.
nodes are agents and arcs exits between nodes if they exchanged any message.
However, when these communication graphs get so complex to be visualized (i.e.



many agents and many arcs), a simpli�cation process based on clustering is used
to group agents. Di�erent criteria are used to decide on the grouping.

Keeping the attention on visualization tools for MAS, other interesting exam-
ple is the one presented in [4]. In this case, the developer can use di�erent kinds
of visual diagrams. For example, Gantt based diagrams show decomposition, de-
pendency and ordering among agents tasks. Using 3D graphical representation,
in [1] is proposed a tool to debug some MAS. This example follows a sequence
diagram model and allow to �lter events occurred in the MAS, by means of
special queries, depending on user interests.

6 Conclusions

This paper has proposed a visual representation of MAS behavior aimed to aid
the developer in MAS debugging, veri�cation and validation tasks. This visual
representation allows a deeper and quicker understanding of the system behavior.
The deeper understanding is provided by means of causality concept, which
allows to know the cause message of a given message, and through semantic
information, which shows agents mental state that leads to send a message to
each agent.

We keep working on a generic algorithm for producing semantic graphs using
as input INGENIAS models. Moreover semantic information can lead to program
tools to perform automatic reasoning about MAS behaviour.Error causes could
be automatically extracted as much as some suggestions to solve the problem. In
addition we plan to develop di�erent methods to simplify the graph, for example
to show only both interaction and semantic information about one agent. This
can be helpful in complex graphs with a high number of agents.

7 Acknowledgements

This work has been supported by the Spanish Council for Science and Education
under grant TIN-2005-08501-C03-02 and the project "Methods and tools for
multi-agent systems modelling" supported by Spanish Council for Science and
Technology with grant TIN-2005-08501-C03-01.

References

1. S. Ilarri, J.L. Serrano, E. Mena, and R. Trillo. 3D monitoring of distributed multia-

gent systems. In International Conference on Web Information Systems and Tech-
nologies (WEBIST 07), Barcelona (Spain), pages 439�442. INSTICC Press, ISBN

978-972-8865-77-1, March 2007.

2. Juan M. Hernansaez Juan A. Botia and Antonio F. Gomez-Skarmeta. On the

application of clustering techniques to support debugging large-scale multi-agent

systems. In Programming Multi-Agent Systems Workshop at the AAMAS, Hakodate,
Japan, 2006.



3. D. N. Lam and K. S. Barber. Comprehending agent software. In AAMAS '05:
Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 586�593, New York, NY, USA, 2005. ACM Press.

4. Divine T. Ndumu, Hyacinth S. Nwana, Lyndon C. Lee, and Jaron C. Collis. Vi-

sualising and debugging distributed multi-agent systems. In ACM Press, editor,

AGENTS '99: Proceedings of the third annual conference on Autonomous Agents,
pages 326�333, 1999.

5. J. Pavon, J. J. Gomez-Sanz, and R. Fuentes. Agent-Oriented Methodologies, chapter
The INGENIAS Methodology and Tools, pages 236�276. Idea Group Publishing,

2005.

6. Guillermo Vigueras and Juan A. Botia. Tracking causality by visualization of multi-

agent interactions using causality graphs. In Programming Multi-Agent Systems
Workshop at the AAMAS (to appear), Honolulu, Hawai, 2007.


