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The Young-Laplace equation is usually introduced using mechanical 
rather than thermodynamic arguments when teaching surface 
phenomena at an elementary level. We discuss here three mechanical 
methods to deduce this equation, and we intend to avoid certain 
misunderstandings that are found in these derivations, providing thus the 
correct demonstrations. 
 
 
 
 
 It has long been recognized that in order to make an infinitesimal 
increase in the surface area Σ of a single component liquid-vapor interface, 
keeping constant the temperature and the volume of the whole system, an 
infinitesimal reversible work  
 
 δW = - γ dΣ  (1) 
 
is required, where γ is the surface tension, which is always positive and 
depends only on temperature. The physical dimensions of γ are energy per 
unit area (and also force per unit length). It is worth  remarking that in eq. 
(1) we have used the notation δW to indicate that the work is not a total 
differential. The fact that work is required to increase the surface area 
provides evidence for the existence of a presure difference between the two 
sides of a curved surface. Its value for a spherical surface was deduced in 
1805 independently by Thomas Young (1773-1829) and by Pierre Simon de 
Laplace (1749-1827), and is given by   
 

 pα - pβ = 
2γ 
 r   , (2) 

 
where pα and pβ are the internal and external pressures of the spherical 

surface and r is its radius. The Young-Laplace equation shows that the 
pressure inside a spherical surface is always greater than the pressure 
outside, but the difference decreases to zero as the radius becomes infinite 
(when the surface is flat). On the contrary, the pressure difference increases 



if the radius becomes smaller and tends to infinite when r tends to zero. 
However, eq. (2) breaks down before r reaches zero, and so in practice this 
problem can be avoided.  
 The subject of surface phenomena is relevant not only to physics but 
also to neighbouring disciplines such as physical chemistry, life and health 
sciences, as well as chemical engineering. The study of these phenomena 
should be done using the formalism of thermodynamics (Pellicer et al 1995) 
not only because this formalism is  closer to the currently accepted 
viewpoint (Woodruff 1973, Shaw 1992, Tabor 1993), but also because it is 
free from misleading results that occasionally arise when mechanical 
arguments are used. However, since the thermodynamic approach requires 
full understanding of certain thermodynamic functions, it is useful in 
intermediate physics courses (surface science, physical chemistry, 
thermodynamics) for scientists and engineers, but may not be appropriate 
for an introductory physics course. 
  The Young-Laplace equation is usually introduced when teaching 
surface phenomena at an elementary level (Young 1992). In this  case, the 
surface phenomena are often described by using mechanical rather than 
thermodynamic arguments. To obtain a better understanding of the physical 
meaning of the Young-Laplace equation we discuss three mechanical 
methods to deduce it. The simplest method is based on the equilibrium 
condition of a single component liquid drop surrounded by its own vapor 
(Becker 1967, Temperley and Trevena 1979, Young 1992, Somorjai 1994, 
Pellicer et al 1995). The second method considers a liquid drop suspended 
from a syringe (Pippard 1964, Reiss 1965, Adkins 1968). The last method is 
based on a drop of liquid immersed in its own vapor, the entire system being 
enclosed in a cylinder (Reiss 1996, Jaycock and Parfitt 1986).  
 
 
 A simple method to deduce the Young-Laplace equation  
 Liquids tend to minimize their surface area. As the sphere is the 
geometrical form  with the smallest surface/volume ratio, drops are 
spherical in the absence of gravity. Consider a single component liquid 
spherical drop of radius r and internal pressure pα in equilibrium with its 



vapor at pressure pβ and temperature T. Since the surface tension acts to 

reduce the surface area and hence the volume of the drop, while the pressure 
difference between the liquid phase α and the vapor phase β acts to increase 
the volume of the drop, the equilibrium condition is achieved when these 
two tendencies counterbalance each other. If only a hemisphere is 
considered (fig.1), the force due to surface tension is equal to 2πrγ, where 
2πr is the length of the circumference of the hemisphere. The force due to 
pressure difference is    (pα-pβ) times the projected area of the hemisphere, 
i.e., (pα - pβ) πr2.   Therefore, the equilibrium condition  
 
 ( pα - pβ) πr2 = 2πr γ , (3) 
 
leads to eq. (2). 
 

 
The method of the syringe: piston subjected to surface 
tension 
 Let us now consider a more complex configuration, illustrated in fig. 
2, in which a single component spherical liquid drop is formed from the 
bulk liquid at the end of a syringe whose hollow needle tapers to an 
infinitely fine point. The set up is in thermal equilibrium with the 
surroundings at temperature T in absence of any external field. Through 
application of pressure by means of the piston, a spherical drop can be 
formed at the end of the needle. Since the process is reversible, the pressure 
of the vapor phase surrounding the drop and the syringe is always the vapor 
pressure of the drop. 
 At the beginning, in absence of the drop, the piston only subjects the 
bulk liquid to pressure pβ, but in order to form a drop of small radius it is 

necessary for the piston to apply a slightly higher pressure in excess, pα. If 
we assume that the liquid is incompresible and that no motion takes place 
until pα is reached, no work is performed while the pressure is being 
increased. Once the piston begins to move, the reversible work may be 
computed as follows. The work performed by the piston on the liquid is -
pαdVα, where dVα is the increment in the volume of the drop. But the drop 



performs work on its environment because it displaces vapor at pressure pβ. 
This work is -pβdVβ. Thus, the total work performed on the liquid is  
 
 δW = - pα dVα - pβ dVβ . (4) 
 
For an incompresible liquid dVβ = - dVα, and thus, from eq. (4), 

 
 δW = - (pα -pβ) dVα . (5) 
 
Evidently, this work is employed to increase the surface area of the drop, 
keeping constant the temperature and the volume of the whole system. 
Therefore, this work can be written as in eq. (1), and then eq. (5) becomes 
 

 pα - pβ = γ  
dΣ

dVα
  . (6) 

Unfortunately, the above conditions are not considered in some texts 
(Pippard 1964, Adkins 1968). 
 
 The connection between Σ and Vα is purely geometric. Since 
 
 Σ = 4πr2 (7) 
and 

 Vα = 
4
3  πr3 , (8) 

 
by introducing eqs. (7-8) into eq. (6) we get eq. (2). Some authors (Becker 
1967) develop this method following a very simplistic approach, which 
leads to lack of accuracy in the demonstration. 
 

 
The method of cylinder: piston not subjected to surface 
tension 
 In fig. 3 we have a single component spherical liquid drop in 
equilibrium with its vapor at temperature T. The whole system is enclosed 
in a cylinder and may exchange work with the environment through the 
action of the piston. The pressure in the drop is denoted by pα and that of 
the vapor by pβ. Notice that the piston makes contact with the system only 



through the vapor, i. e., the piston is not subjected directly to the surface 
tension. Thus, in this configuration any work exchanged between the system 
and its environment will be volume work performed at the pressure pβ. 

Therefore, 
 
 δW = pβ dV , (9) 

where 
 dV= dVα + dVβ ≠ 0 , (10) 
 
being Vα the drop volume, Vβ the vapor volume and V the total volume of 

the system.  
 Since the molar volume of a component in the vapor phase is larger 
than its molar volume in the liquid phase, the decrease in total volume due 
to the external work increases the amount of matter in liquid phase and 
therefore the drop size. If this increase in drop size takes place at constant 
temperature, then Kelvin's equation (Jaycock and Parfitt  1986) predicts 
both a decrease in pα and pβ. As a consequence, the size of the drop 

increases continuously. In any case, the total work (9) can be also expressed 
as 
 
 δW = pα dVα + pβ  dVβ -γ dΣ . (11) 
 
Taking into account eqs. (9) and (10), using eq. (11) and simplifying 
 
 (pα - pβ) dVα = γ dΣ , (12) 

 
that leads again to eq. (2). 
 Finally, we point out that some demonstrations based on this method 
(Jaycock and Parfitt 1986) are not completely rigorous. 
 
Final thermodynamic comment 
 The elementary surface phenomena are also explained in terms of 
the Helmholtz free energy F when we use the formalism of thermodynamics 
in intermediate physics courses. At constant temperature, we know that the 
Helmholtz free energy F of an isothermal, closed system, is equal to the 



work received by the system. Therefore, the change in F of the system made 
up of a single spherical liquid drop of radius r (phase α) immersed in its 
vapor (phase β) is (Pellicer et al 1995) 
 
 dF = pα dVα + pβ dVβ - γ dΣ . (13) 

 
Since the system is closed, the total volume remains constant and                
dVβ = - dVα. In order to decrease the energy of the system, the area of the 

interface must become smaller. This, however, causes a decrease in the 
volume of the liquid phase, which in turn increases the energy of the 
system. The size of the liquid drop is then determined by a compromise 
between these two tendencies, so that the overall reversible work done by 
the system is zero under equilibrium conditions, and dF in eq. (14) vanishes. 
The condition of mechanical equilibrium is then that of eq. (2). 
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Figure captions 
 
Figure 1 
Imaginary hemispherical section of a spherical liquid drop. The arrows 
pointing radially  outwards  represent  forces  due  to  the  pressure  
difference  (pα - pβ). The arrows pointing to the left represent forces due to 

surface tension. 
 
Figure 2 
The syringe method: piston subjected to surface tension. 
 
Figure 3 
The cylinder method: piston not subjected to surface tension. 
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