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ABSTRACT

The charge separation process occurring in two different solutions of the same electrolyte brought
into contact is studied using Poisson’s equation and the (simplified) equations of transport. The process
is characterized on the basis of the change in observable physical magnitudes. The relevance of the
“diffusional” and “electric™ relaxations is analysed. The results obtained can be applied to problems of
ionic transport across membranes and liquid junctions, and contribute to the study of the transport of
charged matter during the time interval in which the “charge” plays a significant role. Although,
unfortunately the time domain involved in the electric relaxation seems to be inaccessible to precise
experimental measurement, the physical model provides a detailed description of the way charge
separation takes place. The latter is consistent with experimental observations at “large times”.

An equation for the current density has been obtained from the ionic wransport eguations and
Poisson’s equation. By using the former, it has been shown that the classical treatment by Planck
{commonly used for describing the diffusion potential in ionic transport through membranes) implies
neglecting the whole charge separation process (assuming 7. = 0, where 7, is the electric relaxation time),
The inconsistencies involved in this have been shown.

Finally. the significance of the two terms (“conduction” and “displacement” current) in the equation
for the total current density is discussed. Both terms play an important role in ionic transport processes
through totally or partially blocked interfaces.

(I) INTRODUCTION

Itis intended in this paper to describe the charge separation process taking place
when two solutions of the same binary electrolyte at different concentrations are
brought into contact. It is well known that under certain boundary coaditions the
system formed by the two solutions reaches a steady state of material transport.
This steady state can be characterized by observable magnitudes, e.g. the salt flux.

* Dedicated to Salva Navarro {deceased June 1986).
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Our aim is to characterize the nature of the steady state reached from the viewpoint
of the charge transport. This objective requires solving the ionic flux equations and
Poisson’s equation in the so-called “charge-controlled” time domain (¢~ 1077 s
(1.2]).

The problem of solving Nernst-Planck and Poisson equations is not trivial [1-4].
In a relatively simple way, using some approximations, calculations have been made
here for the time evolution of the electric potential difference between the two
solutions and for the ionic fluxes through a fictitious contact plane between them.
The results obtained can be applied to problems of ionic transport across memi-
branes and liquid junctions, and contribute to the study of charged matter transport
during the time interval in which “charge” plays a dominant role.

The scheme of this paper is as follows. First, the relation between Poisson’s
equation and the equation for the electric current is discussed. Next follows a brief
analysis of the classical hypotheses concerning the electric charge along the trans-
port zone: the “electroneutrality” (ELC) and “constant field” (GCF) assumptions.
The inconsistencies arising when the time scale associated with the charge rearrange-
ment is ignored are discussed later and the necessity of taking into account those
time scales for a rigorous analysis of the process is demenstrated.

After establishing the transport problem we describe the technique emploved to
solve it as well as the results obtained: the time evolution of the electric potential
difference, the ionic fluxes and the electric current density. The way these magni-
tudes change shows how, after the first time interval (r = 1077 s), ion fluxes couple
with each other so that an electroneutral salt flux results.

(I} THE CLASSICAL HYPOTHESES

The time variation of charge density, p(x, 7), over the transport zone arising
between two electrolyte solutions at different concentrations has been described
classically by Poisson’s equation:

3% (x, 1) /0x = —p(x, t) /e (1)

where ¢ stands for the electric potential and e for the dielectric constant of the
medium, x and ¢ having their usual meaning. More recent studies {1,5--7] replace
eqn. {I) by the so-cailled equation for the electric current 7 (for the sake of
simplicity, we call it “current” though strictly speaking 7 stands for an electric
current density):

b4 82C_b
[_F;z,..ﬁ—eaxat (2)

Equation (2) was originally introduced by Cohen and Cooley [8]; z, and J, are the
charge number and the flux of ion i, respectively, and » is the number of ionic
species present. Before attempting our analysis, we will discuss the relationship
between eqns. (1) and (2).
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Buck {1} has recently reported a derivation of equn. (2). We are going to prove, by
an alternative procedure to that of Buck, that eqn. (2) is already implicitly included
in the system formed by the transport equations and Poisson’s equation. To do this,
consider the continuity equation for the transport of material between both solu-
tions:

de; aJ,

W = — g H (3)
where ¢; stands for the molar concentration of species /. Multiplying eqns. (3) by
2, F and summing them all up, one easily obtains the continuity equation for charge
transport:

@ —8—_[ n _ B n_' l
az—i-ax\FX!:ziJl}—O p-FXi_‘ﬁc, (4)

i=1,2

[EE LI}

Equation (4) can be rewritten, using egn. {1}, as:

3 ? KR
@{FZZ‘J’%xar}O (5)

I

Equation {5) suggests, by analogy to the purely electrodynamic case considered
by Maxwell {9], that the total current [ can be defined as

I=1 +1, {see eqn. 2) {6)

where [, 18 a term analogous te the electrodynamic displacement current. Note that
in the purely electrodynamic case, charges move exclusively under the infiuence of
electric fields. However, the problem we deal with here is the transport of “charged
matter”, its motion being due to both the electric potential gradient and the
concentration gradient. The relevance of this fact will become apparent through this
paper.

Since eqn. (6} can be derived from eqn. (1), the latter will be employed in our
treatment. (A discussion about the meaning of I, and /; in this problem will be
provided later.)

The electric charge behavicur over the transport zone has been described classi-
cally by means of two approximations to egn. (1): ELC and GCF. These assump-
tions were proposed by Planck and Goldman, respectively. These authors also
formulated the conditions under which such hypotheses should be used (see, for
example, refs. 10 and 11). ELC establishes that, to a good approximation, the ionic
concenfrations verify the relationship

iz,-c,- ={ (7)

everywhere in the transport zone; GCF assumes the electric field to be constant over
this region:

d¢/dx = constant (8)
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The consistency of eqns. (7) and (8) with egn. (1) has usually been explained
involving the quotient {L,/d), where L is the Debye length of the system,
L= (eRT/F,y"?, and d is the diffusion zone thickness. In the last expression,
¢y stands for a typical concentration of the problem (“scaling concentration™) and
the constants R, T and F have their usual meaning.

By using perturbation {12,13] and numerical [14] treatments, it has been shown
previously that eqn. (1) tends to eqn. (7) when (L /d) < 1. However, for (L, /d)
— 1, egn. (1) becomes egn. (8). In fact, this result follows immediately from a
simple order-of-magnitude analysis. To show this, let us write egn. {1) as
3%

ax?

where it is assumed that F=10° C/mol and ¢ ~ 10" "' C/V ¢m. Ac denotes the
“excess” of ions {either positive or negative) present in a certain volume over the
diffusion zone. Now consider the cases:

~10" (Vem/mol)-Ac  {mol/cm’) (9)

(ay d=» L,
Suppose, for example, that d= 10" c¢m. The, [0¢/9x| ~RT/Fd=2.6 V/cm.
From eqn. (9) and by integrating 3%6/3x> between x = 0 and x = 4, one gets

9y _[0¢
{ ax }_\':d { 8x >_¥=G

v ~ 10“”{%[" Ac dx} = 10' &¢ (10)
3

Hence, for a 10% change in (3¢,/3x) over a diffusion zone of 4=10"7% cm, a “mean
excess” of Ac= 1071 (0.26 /107 %) ~ 107" mol/cm® is needed.

{b) d~ Ly

Suppose d=10"7cm. Then 19¢/dx| ~ 2.6 x10° V/cm. From eqn. (10) and
proceeding as in the above case, a “mean excess” of Ac=10"° mol/cm’ is required
for a 10% change in (3¢,/0x) over d.

In (a), differences of only 10~ mol/c¢m’ can cause a significant change in the
electric field. However, in the mathematical limit & — L, {case b), the eleciric fields
become so strong and the distances are so small that significant changes in (3¢ ,/8x)
with x call for Ac of the same order of magnitude as that of the scaling electrolyte
concentration of the problem. Obviously, this is not feasible and the electric field is
nearly constant along the diffusion zone [14].

An interesting chapter of physical chemistry concerning transport in electrolyte
solutions is devoted to the problem of consistency between eqns. (7), (8) and eqn.
(1. As a matter of fact, even solving the transport equations by using the ELC
assumption, a non-zero net charge density (a “residual charge”, see refs. 2, 10 and
15) is obtained finally. The problem becomes harder if we notice that, under certain
conditions {11,16], the solution cbtained when using eqn. (8) 1s “exact”, i.e. provided
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that these conditions are met, a strictly zero p 15 found everywhere in the diffusion
zone. What would then be the ornigin of the steady potential difference observed
experimentally in these cases {11,16]?

The answer may be given as follows. The charge separation process requires {imes
7, of the order of 1077 5, and it begins over spatial regions Ly, of the order of 1077
cm (just over the “sharp” zone of contact between the two solutions). It can be
assumed {as usual) that at the time we make our analysis, the system has aiready
reached a “steady state” concerning the transport of material across a given zone of
thickness d > L, (e.g. a membrane). However, the problem is that we have not
considered the way the system develops in order to reach that state. In other words,
the inconsistencies mentioned would arise only when considering times of the order
of the diffusion relaxation time 7; (7;~ 10 s if d =102 ), implicitly taking 7, = 0.
This amounts to ignoring the entire charge separation process between the two
solutions (see Appendix 1). Describing this phenomenon is just the aim proposed
here.

(I FORMULATION OF THE PROBLEM

The problem of charge separation in non-homogeneous electrolyte solutions has
been studied by Hafemann {17} using digital simulation techniques. His results
provide the variation of p(x, f) and the potential difference A¢(7) with time; they
were obtained by numerical solution of the transport equations and Poisson’s
equation (in its integral form). MacGillivray [18] solved Nernst-Planck and Poisson
equations (in a time-dependent scheme), and remarked on both the difficulty and
the interest concerned with the time interval in which charge separation occurs.
However, a specific analytical solution of the problem was not given until Jackson’s
studies {19]. His analysis is also restricted to the magnitudes p(x, 1) and A¢(#), and
conclusions are drawn very clearly. Perhaps a more complete analysis is that
reported recently by Leckey and Horne [7] (analytical-numerical). The present paper
tackles the problem in a similar way to the latter article,

The situation analysed is shown in detail in Fig. 1. Two solutions of the same
binary electrolyte at different concentrations are brought into contact at the
mid-point x =x, at £=0. The absolute values of the ionic concentrations are
assumed to be small enough so that the transport equations can be approximated by
Nernst-Planck flux equations [1]. (Thus, cross-term effects are omitted and activity
coefficients are taken to be unity approximately.) Solvent flux is assumed to be
negligible. The transport coefficients (the ionic diffusion ceefficients, D,, in this
case) and the dielectric constant e are considered to be constant along the diffusion
zone {reasonable approximations due to hypothesis 2 in Fig. 1). There are no
externally applied electric fields.

On the assumptions made above, the boundary conditions can be expressed in
the following way:

L0, ) =J(d, =0 i=1,2 (11)
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Fig. 1. Schematic representation of the transport problem considered. At the instant ¢ = 0, two solations
of the same binary electrolyte at different concentrations (¢ g) are brought into contact at a central
point x, (4). The difference in the concentrations is small compared with their absolute values {2). Two
bulk containers, large compared with the diffusion zone thickness (e.g. a simple, porous membrane of
thickness 4) are located on its two sides (1), As usual, the thickness of the zone through which transport
occurs is much grester than the Debye length typical of the problem {1}, The analysis is carried out for
times smaller than the diffusional relaxation time 7; (3), because we are interested in the charge
separation process, and this involves times 7, = [eRT/Flcy(Dy+ D))< 74 [1,2). This allows it to be
assumed that the fluxes across the interfaces placed at x = 0 and x = 4 are nearly zero, since ions need
abouf 7, § 1o migrate from x = x; to both interfaces.

3
#(0, 1) =0 5f’é(o, ) =0 (12)
(since 0= [do(x, ¢) dx = —e{do(d, 1}/3x — 30, 1)/0x} — Fé(d, 1)/0x = O);
eqns. (11) and (12} yield

3c,(0, 1) deld. 1)
0x - dx N

0 i=1,2 (13)

ep=cgt 8o/ D<x<xy

c,-(x.(})“{ (epgy) =12 (14)

cp=cg—0ce/2 xg<x<d

If we substitute the transport equations into the mass conservation eqns. (3), we
get

Be; =D;-{ 8%, F {ac,. (L 3%

Y O A A | _
3 ax2+( 1) BT\ Fx ax Ciaxzf} i=1,2 (15}
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where z; = —z, = | is assumed. Since 8¢ /cy << 1, we can write ¢;(x, 1) = ¢, + pi(x, 1),
pi(x, 1} < ¢, Using this expression and Peisson’s eqn. (1), eqn. (15} becomes:

ap; azpi i-1 F [dp; 3
s RGN o AR e}

dr Jx2 RT
ap! i 2 -
=D, - + (= 1) (Fep/eRT ) py — pa) i=1,2 (16)

where the condition p; <<c¢, has been used, which allows for linearizing the
equations. The next step is to solve egns. (16} under boundary conditions (11)—(14}.

(TV) SOLUTION

A solution technique previously described by Malvadkar and Kostin [20] has
heen employed here. Take in our case

(x I) = CO + E al)?} im I) C{}S{ }nd"’-rx } (17)

for the sclution of egns. (16), now rewritten in the form
&p, = Di{a.gpl —(Lp) (m _Pz)}

& py= Dz{afpz +(Lp) (o _Pz)}

Then by separating the variables and taking into account eqns. {13) and (14), one
obtains

bn(1) = (28,) H{[(-1)/(D, = D) + (D + D)), + S, | exp(— /1)

(18)

[(=0)7(Dy - Dy) (D + Dy)a,+ S, ] exo(—1/52)) =12
S, =[4D, Dy, + (D, — D)1 +a,)]"
o, = (d/Lp) (1 am)’
(7)) = Hma/dY[(Dy+ D)1+ a,) +(~1)'S,]  i=1.2 (19)

The coefficients a,,, can be calculated from the mitial boundary conditions by
means of the orthogonality property of the cosine function. For the distribution in
Fig. 1, the following is obtained:

a,,, = (2/mm)(cy — cr) sin(maxy/d) i=1,72 (20)

(the equality a,,, = a,, results from the fact that both solutions are electrically
neutral at £==0).

So far, we have applied the technique by Malvadkar and Kostin [20]. Next we
will apply approximations 1-4 (see Fig. 1) to the solution (17) + {19)—(20).
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(V) APPROXIMATIONS

The term a,,, is essentially proportional to 1/m, which suggests that the series
(17) might be truncated. A preliminary question is to study the dependence of
b;,,(£) on m. Since a,, is proportional to {1/m?), this study can be made in terms of
«,,. Consider the cases:

D a, << (mwxd/Ly, ie “large” m, as follows from 1 in Fig. 1)

Then by taking S, = (D; — D,), one gets (7.} ' =m’/7;; (i #j), where =, =
d?/7*D; (i, j=1, 2). Therefore, it readily follows from egn. (19) that b, (1) ~
exp( = m’1/1y;).

() a,, = I (mr << d/ Ly, ie “small” m)
Now S, = (D, + D))a,, + (D — D,)* /(D; + Dy)). If the D5 are not very differ-

ent (NaCl, KCD), S,, = (I, + Dy)a,,. Then

mt

b = (1720, L3)(Dy+ D) { (14 a,) + (- 1),

—
‘P?i

(Dy+ D)) 2a, L= mi/ny  m=d7/m (D + Dy) i=1
= (D1 +D2)/2amLzD[1 + 20’.”1]
=m?/ 1 +1/7, n=eRT/FH(Dy+ Dy)ey] i=2

Thus

(_1)5—}

bmz(f):exp(_t/ﬂ}:)'{' o [(DI_Dz)/(D1+D2}]

X [exp(— /Te) — exp(—z/'r,f,)] ~exp{ —m?t/7y) (21)

Hence, at a given time 1, b,,(t} decreases exponentially as m?’ increases in both
cases. Since a,,, decreases as 1 /m1, the first terms of the series (17) may be regarded
as a first approximation {assumption II).

On the other hand, the hypothesis d » L, plays a relevant role in our procedure,
It relies upon the nature of the phenomenon itself: d~10"*cm and Ly~ 10" 7em
are typical values. Since a,, = (d/Lp)*(1/7m)%, it seems reasonable, on the above
facts, to take «,, > 1 in our treatment, thus justifying the approximation (21).

In order to evaluate the maximum number of terms that can contribute to the
sum (17), let us consider a,, = 1 which constitutes the limit of validity of the

assumption {II). Then one would get
m< Eld/mlg] (22)
where E[x] denotes “the integer part of x”. As we have accepted assumption (11,

eqn. (22) should be regarded as an upper fimit in our formalism. Its meaning will be
discussed later.




By using the approximations (21), the solution (17) can be rewritten as

o mﬁxo) mTrx
5 j N sm( 7 cos( p )
e{x, ) =co+ :(CL_ Cr) t 2

exp( —?}Tzf/Td)

07 =1 Fi1

(_1)1—1 D,
2a D

L]

;ﬁj (exp(~1/7.) = z)}\ (23)

J

X[1+

and then, from eqn. (21),

. mTx, mAX
N SIn cos

e {x, I):CO+%(C}._CR)E d

m=1

exp{ —m?t/7;) (24)
m

where the series has been truncated at a given term N (N < E[d/mL] at the most),
owing to assumption (II). From egn. (23) we obtain

D, — D,

_ (cL—cr) >
e{x, £y —cy{x, t)=2 p LDD1+D2

X {n;,] sin( mv;xﬂ) cos( m;rx )(%) exp( mzf/'fd)}

X (exp(—t/7,) — 1) (25)

Then

3o o Fox o 2RT (e —ep\ Dy — Dy
T e N e S e

X{ g‘_{ sin( mo;x(}) sin(%) exp(mzr/'rd)}(exp(t/q'e) —1)

w1

(26)

The physical meaning of assumption (II} will become clear later. Nevertheless, a
first interpretation can be given from eqgns. (18). Indeed, as the system approaches
the steady state, d, p, — 0. Therefore, taking into account eqn. (24), eqn. (18) leads to
{see Appendix 2):

— L.12
iPlp-le ~{7}g} (27)

Equation {27) implies that after a certain time has elapsed, the systemn develops in
such a way that the net charge at any point over the diffusion zone is much smaller
than the iomic concentrations there {provided that &> [L,). Therefore, the un-
doubted relevance of the ELC assumption, formulated by Planck in 1889 for the
steady state, is confirmed.
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{¥I) RESULTS
{V11) Liquid junction potential

We denote by the above name the electric potential difference that arises between
the two electrolyte solutions,

A= (d, 1) — (0, 1) = fj(awax) dx

Foa . s 2RT D — D, o —¢
_?fﬁ dxfo dy{e(y, £) —e(y. 1) )“ch D]+D7( ~ew)
max,

X{nélfz(;;) exp( —m’t/7, f dxwﬁ(sm(T))}(e‘(p —t/7,)—1)

. MTXy .2 mT
S| ——

_4RT D~ D, ¢y — ¢ N sin P ,
= F D, D, < ,,El " exp( " f/'rd)
x(1 —exp(~1t/7.}) (28)

Let us take x,=d4/2. In addition, we are interested in the time interval invelved in
the charge separation process, 0 < ¢~ 7, < 7y (usually 74~ 107 7.); so we have
exp(—m*t/7,) = 1. Therefore,

N osind il
4RT Dy~ D, 8¢y | { (T
A~ = nF D+ D, ¢ HE] m (L—exp(—t/7))
RT D, — D, 8¢
=F D, iD, o, Loexp(—1/7)) (29)

since [T _, sin’(mm/2)/m]=a/4. (Note that N <10 from eqn. 22.) The term
sm(mmx,/d) i eqn. (28) actually depends on the mid-point xg. Note that if,
instead of taking x,=4/2 in eqn. (28), we ¢stimate the contribution of the sine
funection to the sum in the following way:

sin( mZYO ) df dx, sin{mrx,/d) =2 sin*(mm 2} /mm (30)

we get the same resuli as that of eqn. (29). Indeed,
a2 & 4 mw 3 8 =’ _
;;Lﬂ;l S1i (T)/ﬂ’t = 2] =1

Now in the situation outlined in Fig. 1, d = L, and then the liquid junction
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potential App obtained by Planck (with the ELC assumption) for the steady state 1s
excellent [2,19]:

A(,’Dp:—ED—I:WDi HE=E_D1———D211—11+§EQ
F D+ D, ¢ F D+ Dy Fa
~ED1—_D2% {31)
T F D+ D, g

By comparing eqns. (29) and {31) we have

Ab, = App(1 —exp(—1/7))  0<i-= (32)
This result is in gualitative agreement with earlier analyses based on different
techniques: Hafemann’s [17], digital simulation; Jackson’s [19], perturbative analy-
sis; Mafé et al’s [2], numerical and order-of-magnitude analysis. Leckey and Horne
have also shown the role times of the order of 7, ~ 107" s play in the development
of the steady liquid junction potential.

Cn the other hand, if, foliowing Guggenheim [21], we admit that Planck’s
analysis is concerned with a steady-state liquid junction potential which is not
dependent on d, provided that the thickness 4 is artificially maintained constant
(e.g. by means of a membrane), then Planck’s steady state is reached for 1= 7.
That is, Planck ignored in his formalism times shorter than those associated with the
establishment of A¢p, which amounts to writing 7, = 0. This fact {which is proved in
Appendix 1) leads to the inconsistencies mentioned at the beginning of this paper.

(V12) Eleciric charge density

From eqn. (25) it turns out that p{x, f) may be written as
eRT cp—cg Dy — Dy
Fd* ¢ D+ D,

olx, 1y=F(c,—c;)=2m7

x{ %lm sm(%"l) cos(m;—x) exp(—mzi/q'd)}(exp(r/ﬂ'e) ~1)

= - KT 222 (exp(- /) 1) (33)

The connection between eqn. (33) and the expression for the net charge density
in Planck’s formalism is not straightforward because the latter is not referred to a
diffusion zone meeting exactly the conditions stated in our case. However, if we
consider 73 7, (or we assume that 7,=0) in eqn. (33), exp(—i/7)= 0, and the
resulting expression can be compared, concerning orders of magnitude, with the
“residual charge density” of Planck {2,10]:

¢RT D, — D, d*In ¢, cp— 0

p()() = F DT + Dq dxz C; £ (34)
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Yet eqn. (33) verifies the charge conservation law

fdp(x, ydx=0
o

(35)

while expression (34) does not verify this law [10]. Once again, we see that ignoring
what occurs in the charge separation time domain leads to inconsistencies as far as

p(x, 1) 1s concerned.

(VI.3) Ionic fluxes

Ionic fluxes are calculated from the Nemnst-Planck equation simply by sub-

stituting ¢;(x, 1) (eqn. 23) and 9¢/0x (eqn. 26) in it. Then one obtains

i1 0,0, 2 —¢cg

J{x, 1) =J,P(x, t){l +{=1) D, + D, 1+ — U{x, 1)

X(exp(—t/g)——l)} i=1,2
where
Jo=—2D(eg—c)/d  i=1.2

Y
Plx, )= 3. sin( AR ) sin( mwx) exp(—m’t/7y)

m=1 d d

_{mTxg max

Y sm( " )cos( 7 )
Ulx, t)y= Y ~ exp( —m’t/7;)

m=1

Since (¢; — cg)/cq = 8cy/c; << 1, we can make the approximation

v 1) = 0P e, D14 (<1 DL (expl(=1/2) ~ )

D,—D
JoP(x, Y1+ 2" exp(—1/7)| i=1
2D,

i=2

Dl_D2
Sy P(x, f)[l D, exp(—1/7.)

Jo= —2Dy(cg ~cp}/d Dy=2D,D,/{ D, + D,)

(36)

(37)

(38)

Assume that x, = d/2. Then at the contact point between the two solutions one

gets
N2

P(ds2, Y=Y, exp(—(2k+ 1)2t/1'd)
k=0

Ulds2, 1) =0

(39)
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whence
{N/Z . 1
JA{d/2, 0 =JD<{ Y exp( -2k + 1)";/¢d)f
k=0
i— D, — D’J .
X1+ (=1) 12;D3-w:;l exp{ut/'re)] i=1,2 (40)

In eqn. (40) we can distinguish a contribution of the salt as a whole (first term) and
a specific contribution for each ion (second term). The latter is characterized by the
electric relaxation time 7. Now consider the following three time intervals:

{a) For r <7, exp(—t/%)~ 1 and exp(— {2k + 1)*¢/7,) = 1. Therefore,

i—1 i
2D, ,+(-1)7"'D, +(~-1)'D ,
Jz(d/z,:)=N’Jo{ o ;gpq o E}INJ,m;O

(41)
(N'=N/2) jo=j(d/mlp)ty i=1.2

where the definition of J, given in eqns. (37} has been used.
{by From >, onward (but stll << 7)), we have that exp(—¢/7,)— 0 and
exp(— 2k + 1Y*t/7;} < 1. Then

J(d/2, )=Mhy<jo  jo=(d/alp)Jy (M <N') (42)

Fluxes lose their individual ionic character when r becomes greater than 7,. M is
less than N’ because as ¢ increases, the number of terms whose contribution to the
sum is not negligible becomes smaller.

{¢) For ¢ <7, close to the limit of validity of hypothesis 3 in Fig. 1, eqn. (40)
vields
Ji(d/2, 1) ~ (43)
Since exp( —1/7.) = 0 and the sum of the series is now of the order of its firs{ term,
exp{—¢/74)~ L.

The steady state concerning matter transport which would be reached for ¢ > 1, is
well known, both theoretically and experimentally. If ¢; — ¢y = 8¢, were to be
maintained constant, that steady state would be characterized by a “steady salt
flux™ J;. Since this is not the case here, ¢y — ¢ as diffusion takes place, and then
J — 0 (slowly because we have assumed that /> d). This aspect is not analysed
here 1227 because our study is focused on the charge separation process (r <€ 73)
which enables us to maintain the initial assumption of zero fluxes at the interfaces.

Equations (41)—(43) follow from constdering the “exact” eqn. (40) for three time
intervals. Two interesting phenomena underlying these expressions are (i} the
coupling of ionic fluxes so as to give an electroneutral salt flux and (ii) the rising of
a flux J, for 7 < 74, because the factor by which the fluxes are multiplied tends to be
of the order of unity as ¢ — 7; (this factor has an upper limit, as follows from eqn.
22). Indeed, when ¢— 7, the number of terms contributing te the series (40)
becomes smaller.
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(VI.4) Electric current

It is evident that /, has a non-zero value in the charge separation process studied
here, at least locally {over distances of about Lp) and during the “charge-con-
trolied” time domain, Actnally, the ELC assumption may be introduced either via
“cp= ¢, or via “I, = 0" (see Appendix 1). Inconsistencies wiil appear in both cases.

From eqns. (36)-(38) one gets

I(x, 1)=F(J,—])
=7,P(x, r){ 1+ ii?[](x, l‘)] exp{—1/7,) — ——S——U( )}

=I,P(x, tYexp(—1/7,)

where
Io=F(Jyg— D) = —2F(Dy — Dy) —c)/d (44)
and at the contact point x = d//..,
N
I(d/2, 1) = 10{ Y. exp(—(2k + 1)2r/¢d)} expl —1/7,) (45)
k=0

Again, the “electric steady state” is characterized by 7.. Indeed, consider eqn.
(45). Tt readily {ollows that

142, r)—{ N'Iyexp(—t/7.) <ijexp(—1/7.) O<i~m,
0 >,

where i, = (d/7Lp) ;. (In eqn. 46 note that, for the first interval, we could assume
that [(2k + 1)1/ + t/7.] ~ £ /7, since (2k + 1)t /7, < AN+ D1 /7, < [(2d/mL )
+ 117t /75 = 4t /1,. However, for the second interval we have exp{ —t/7.) = 0.)

The decreasing rate of J/, with respect to ¢ is in agreement with the relaxation
equation for Ag, obtained previously (eqn. 32): the rising of the potential gradient
that slows down the fastest ion and pulls up the slowest one, so that J; =J; (I, = 0),
also requires 7, s.

(46)

(V13) Estimating the charge carried

The charge carried through the contact plane placed at x;=4/2 can be esti-
mated below a certain limit:

0.= ['1{d/2, 1) dt = NIy (1~ exp(=1/%.)) < igm (1 — exp( —1/7.)) (47)
0
where eqn, (46) has been used. For ¢ > 1,
)
Q1= 1)=Qy=N'lyr, <igr, = %F(DI - Dz)i@ch o (48)
I

A previous estimate [2] for Oy is F(D; — D:)( 8¢y /d )7, (Notice that Ly, replaces d
in g, because we have considered the upper limit for the electric current (i)




71

corresponding to the limit beyond which assumption I is nc longer valid.) If we
were to take (D~ Dy)~107% em®/s, 8¢y~ 107° mol/em®, d~ 1072 cm and
Lp~10""em, then Q, =10 ¥N") C <1077 C = g,.

(VII) DISCUSSION

The transport equations (approximated by Nernsi-Planck {lux equations) and
Poisson’s equation have been solved for a given experimental situation outlined in
Fig. 1. The charge separation process has been characterized on the basis of the
physical magnitudes evaluated in Sections (VI.1)-(VL35). The relevance of the
relaxation times 7. and 7, has been clearly shown. The process of electric relaxation
that leads to a steady state for the charge transport is represented schematically in
Fig. 2.

Equations {41)-(42), (46) and {47)-(48) involve the number of terms N remain-
ing once we have truncated the series by applying assumption {II). We also found in
these equations the upper limit that ensures the validity of that assumption. The
sruncation of the series seems not to be an elegant procedure and might suggest that
the representation chosen (egn. 17) for the time range studied is noi compietely
appropriate. This possibility has to be kept in mind. As a matter of fact, one of the
authors who has contributed most to the analytical solution of the eguations
{MacGillivray, refs. 12 and 18) reported as early as 1970 that “it would seem
appropriate to attempt to find analytic solutions valid in the same range 7, <<t << 7,7
{(we use here our notation) but “of course this may have already been tried and
found impossible.”

In any case, although admitting the generality of the solution (17)-{20}, assump-
tion {(II) and the consequences that follow from it seem fo have a clear physical
meaning. The “effective” thickness of the diffusion zone is not d initially, because
the charge separation process occurs over a Ax ~ [(D, + D,)t]"/%. The characteristic
tirne in our study is 1., whence Ax ~ L, (1.e. the thickness d becomes relevant only
for t ~ 7). Therefore, the concentration gradients giving rise to the initial thixes of
matter and charge develop over distances much shorter than 4, and so these fluxes
are larger than those observed for ¢ ~ 7. This fact 1s accounted for in our formalism
through the N appearing in the series {40). Thus, for r < r; the “effective” thickness
hecomes d and the factor & disappears (eqn. 43) for the reasons given in the last
paragraph of Section (V1.3). This fact is in agreement with what is observed in the
steady state for matter transport.

The upper iimit for & is of the order of 4/L 5 and this is not by chance. Indeed,
this parameter shows how much larger is the zone over which the concentration and
electric potential gradients will be established finally and compares it with the zone
in which those gradients are considered ““initially”. The significance of L, as a
“minimum distance” then becomes clear, because the Debye length indicates the
limit of applicability for the macroscopic treatment underlying the equations {1].

The dependence of the “effective” thickness of the diffusion zone of ¢ might
suggest considering a transformation of the type y =x/yr for the solution of the
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Fig. 2. Schematic representation of the time evolution of the ionic fluxes (a), the tonduction current
intensity {b), the liquid junction potential (¢} and the charge carried (d) during the time interval involved
in the charge separation. We assume that xq=4¢ /2 and that Dy > D;. The upper limits for J,, [ and ,
are represented.

problem outlined in Fig. 1. The fact is, however, that.this formalism does not lead to
a simple analytical solution either, but gives perturbation [19] or numerical [23]
solutions.

Equations {40)-(42) can be interpreted as follows. lons “exist” for 0 <s< 7. in
the sense that ionic fluxes become the flux of the salt for > 7, (1.e. the ionic fluxes
lose their identity and give rise to the electroneutral salt flux defined in egn. 38). As
¢ increases and D, decreases, 7, becomes longer: ions behave “independently” for
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longer times. This result seems logical since coulombic forces are weaker and ionic
diffusion is slower in this case. On the other hand, Leckey and Horne {7} have
shown that the liquid junction potential might depend on ionic magnitudes for
¢t < 1.. Equations (38) support this possibility in the case of the material flux. The
above procedure may be considered again, now introducing ionic activity coeffi-
cients v, 7], and studying the relationship between J{v;) and Jy(v,,} during the
charge separation process. Of course, this may be a difficult task, especially in the
case of multi-ionic systems where the ion—ion interaction is not simple. However,
the mathematical part of the problem is accessible, since reliable numerical tech-
nigues for its solution are available [3-5,7].

On the other hand, the study of the charge separation process in ion-exchange
membranes might provide a basis for a better comprehension of their selective
behaviour, especially in those membranes where the hatrix-fixed charge exhibits an
oscillating behaviour [24]. These topics are open to further investigation.

§till, the enormous experimental difficulties involved in testing the present results
should be mentioned as well [7,17]. Even the simple fact of establishing the instant
“r— (0" is troublesome. Likewise, times of the order of 7.~ 1077 s seem to be
beyond any experimental analysis (zlthough some ways of “delaying” the process
have been proposed {7]).

In addition to the above-mentioned shortcomings, another difficulty is found: the
charge separation process is initiated over regions whose size is of the order of the
Debye length [22]. On thus scale of distance, the use of macroscopic transport
equations is questionable [1-3]. (There would be no problem with the time scale,
since the Nernst—Planck equation can be derived from a Langevin formalism for
> 107721077 s [1])

Summarizing, one can safely say that the lquid junction potential reaches its
steady-state value “instantly”, and the experimentally observable magnitudes, such
as the salt flux, for instance, involve times of the order of =; or even greater. Indeed,
although for r > 7,, J(d/2, t) — Jy, the salt flux is measured from the change in the
volumes on the left of x =0 and on the right of x =4 (Fig. 1). These changes take
at least 1 > 7.

Despite the above shortcomings, this type of treatment should not be underval-
ued: it provides a particular physical model for describing how the charge separation
process takes place, and the results arising from it are consisfent with the experimen-
tal observations for “large” times. Of course, the transport of macroscopic quanti-
ties of matter (salt) involves times of the order of 7, and distances of the order of 4.
But the fact is that the model predicts that charge transpori invelves times 7, and
distances .. Another problem is that 107° s and 10~ 7 cm are “small” magnitudes
for a human to observe {191
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APPENDIX 1: PLANCK'S ANALYSIS

It has been reported previously that Planck’s treatment for the liquid junction
potential involves ignoring implicitly the charge separation process (i.e. 7, =0). In
order to show this [2], consider the following dimensionless transformation over the
equation for the electric current (2):

¥=x/d c=c/¢; =6{F/RT} D,=D/(D +D,)
i=t(a? (D, +D,)/2d*)  I=I{d/(D,+D))e,F) (A1)
gy =J{d/ (D + Dy)eg)

Thus, one obtains

,.)_

T- Lad- (/s (A2)

If no electric field is applied externally, 7= 0 (open circuit). If we ignore the time
interval involved in the charge separation, 7, = 0 (actually (7, /) = 0). By differen-
tiating the resulting equation with respect to X, one obtains:
W af " n
0= = — I,C; A3
2 “f a Z ! az at {Z ICI} ( )

fe= i=1 i=1

where we have used the continuity equation (3). Now the process studied occurs in
an initially {7 = 0} electroneutral system:

2215,(5 1=0)=0 C<x<d (A4)
i=1

Equations {A3) and (A4) lead to
Y e (X, 1)=0 O<x<d (AS)

which 1s the ELC assumption proposed by Planck for the electric charge behaviour
along the diffusion zone.
The above approximation seems quite reasonable when & > L, since then

7= (2/m)[d*/(Dy+ Dy)] > LL/(Dy + D) =+, (46)
7, being the time scale that ensures that the fluxes J, are constant along the
diffusion zone. This last hypothesis, together with ELC, is basic in Planck’s analysis.
Now when d = L, the processes of “electric” and “diffusional” relaxation nearly
overlap; therefore, the potential difference Ag¢p obtained by Planck with 7, =0
{d > L) is no longer valid.
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From a mathematical point of view, the above fact leads to a revision of
assumption II: the liquid junction potential Aép is now the leading term of a series
in powers of (7./7,) = (Lp/d)?. The fatter statement has been reported in classical
perturbation treatments [12,13,25] and more recently in numerical analyses of the
problem {2,14]. Its importance goes beyond the mere inclusion of “correction terms”
[13,25] on Ag,. Indeed, eqn. (27) written in the form

B Te

P { Tg } (A7)
shows that if 7, and », were comparable, the basic ELC assumption would not be
valid. As a matter of fact, according to the excellent work by Guggenheim {21], the
“steady state” assumed by Planck would not be reached in the sense that the
thickness 4 is mainiained constant artificially, but the liquid junction potential
depends on d {through the correction terms for A¢p containing powers in (L, /d)?
[25).

However, as noted before [2], when 7, ~ 74 (L.p ~ d), not only the ELC fails, but
also the continuum hypothesis itself, underlying the transport equations and Pois-
son’s equation, becomes questionable.

Finally, it should be mentioned that assuming both bulk solution concentrations
to be kept constant artificially, the ELC assumption is not enly inconsistent ai the
very beginning of the charge separation. Once the steady siate (for material
transport) is teached, let us write ELC in the form c{x)=c¢,(x}=c{x) By
calculating the sums (J, /D, +J,/D,) and (J; +/,) from the two Nernst—Planck
flux equations, it readily follows that

Co __RT a(l, /) de
dx? 2F (D, — D,)c? dx (A8)
alJy, ) =5 (Dy/ Dy -1} +L(Dy/Dy = 1)

In order to ensure consistency of ELC with Poisson’s equation, the latter should
take the form of a Laplace equation, d*¢/dx” = 0. This would be the case if (a)
de/dx =0 and/or (b) a(J,, J5) = 0. Neither of the two solutions makes sense: (a)
is false because ¢; # ¢y, and (b) implies that J, /S, = D,/D,, which amounts to
considering z, = z,! (Obviously, b would hold provided that J, =.J, = (.} In other
words, a steady transport of matter {accompanied by zero net charge transport)
requires in our probiem a non-zerc local net charge density. This fact is well known
[10,15,26].

APPENDIX 2: DERIVATION OF EQN. (27)

It is straightforward that 3, p; — 0, as the system approaches the steady state. In
this case, eqn. (18) leads to
aaz il | 1 — 2l
P 9x? L3

(A9)
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Taking into account that ¢,(x, 1) = ¢y p,(x, ) and x,=d/2, eqn. (24) yields

2 d o
aa;;i _ ifzo {MZ ﬁ;][m sm{ > ) exp( — mzz/Td)} COS{ ”ld\ )}

s ¥ . o
o { 273 {m( DS, L exp(——amz)] cos( mdk )l ke

” )

(A10)

where 8,,,,_, is the “delta of Kronecker” function, a =t/7, <1 and & is a positive,
integer number, {Note that the m — tk term of the series is non-zero only when there
is a solution to the equation m =2k — 1. k € N). The series (A10) is an oscillating
one and converges rapidly due to the factor exp(—am®). Thus keeping in mind that
8¢g~p;, |0%p,/8x7 | ~ p,/d”. Combining this result with eqn. {A9) leads to eqn, (27).

APPENDIX 3: ANALYSIS OF /, AND Iy

In our treatment, we have maintained the assumption of no externally applied
electric fields (open circuit condition). This condition (which amounts to writing
T =19 everywhere in the analysis) is already contained in the formulation of the
problem: 3/ /0x =0 (eqns. 5 and 6) and [{x =0, 1)=0=I{x=d, ) (eqn. 11}.

According to this, although 7+ 0 for ¢ <7, even in this time range /, + 7, =10,
In order to verify this, let us consider eqn. (26). One then obtains the following
expression for 1

9%  2RT ¢, —cx Dy — D,

L= "5 "Fe, —d D,+D,

X / g: Sin( mzxu) sin( m:;x) exp(“mzr/'rd)}

2 2
m* 1 m
X{—[;;-;—TT:] eXp(I/’Te)+Td} (All)
where we can introduce the approximation
[ [m® 1 m® exp(—1/7,)
l|:*i'j—+g eXp(—I/TC)-FTd“}—WT (All)

valid for ¢ <7, (see eqn. 46 for 7). Therefore, using eqn. (44), eqn. (All) finally

vields

_ Fleo(Di+ D))\ 2RT ¢ —cp Dy — Dy
eRT “Fe, d D T

= —I,P(x, t)exp(—1t/1)=—1, (A13)

It

Id P()C, f) CXP(—I/’T,:)
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