Deviations from Equilibrium at the Interface of a Charged Membrane
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The local equilibrium assumption commonly employed for the transport through the interface of a charged membrane has been analysed

from a simplified ¢lectric double fayer model. This layer is characterized on the basis of a surface potential arising from a non-zero surface

charge density placed on the membrane surface. The dependence of deviations from local equilibrium on the characteristic parameters

of the problem is shown. Connection with the classical treatinent by Donnan is discussed. Although the complexity of the problem calls

for a number of simplifications, the results obtained appears to be significative. Thus, the analysis carricd out displays not oaly that

deviations from equilibrium arc small, but also that in the limit of small fluxes, omission of a detailed study of the electric double layer
is probably justified when characterizing ionic fransport through common synthetic membranes

Introduction

Studies on ionic transport across charged membranes
used to consider local equilibrium conditions at the mem-
brane-solution interface. The approximate character of this
assumption is well-known within the framework of the Teo-
rell-Meyer-Sievers (TMS) theory [t — 2], and has been thor-
oughly studied in a recent paper [3]. This treatment is based
on a modified TMS model accounting for the transport
through an unstirred layer adhered to the membrane and
including space-charge effects via Poisson ggquation.

Most of the electrochemical theories for jonic transpost
are based on the electroneutrality (ELC) and the local equi-
librium (EQL) assumptions, which have given rise to a set
of recent papers focussed on the validity of these approxi-
mations [3—5].

It is intended here to analyse the deviations from the EQL
assumption at the interface of a charged membrane by using
a simplified model for the electric double layer. Although
electric double layer models have been previcusly consid-
ered for the case of an electrode-solution interface support-
ing the passage of an electric current [7, 8], this sort of
models have not been used, as far as we know, to study the
validity of the EQL assumption at the membrane-solution
interface.

In the physical model dealt with here the electric double
layer will be characterized [rom a surface potential due to
a non-zero surface charge density uniformly spread over the
membrane surface. As is well known, description of the
problem from the concept of the surface potential is an al-
ternative procedure to Donnan’s classical treatment, which
involves the phase boundary potential instead [9,107. Both
potentials are related [11], and we will come on this con-
nection later. (For membranes with high surface charge den-
sity it seems interesting to introduce the surface potential,
since in these cases conceniration potentials are due maialy
to the differences between the surface potentials on both
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sides of the membrane, regardless of their relative ionic
permeabilities in most cases [9])

The complexity of the problem calls for a number of ap-
proximations that compromise in some way the validity of
the results cbtained. Still, the dependence of deviations from
EQL on the characteristic parameters of the problem seems
to be very significative.

Formulatien of the Problem

The situation here analysed is shown in Fig. 1. The steady
state ionic transport is supposed to take place along the x
axis (unidimensional model). The system is considered non-
reacting and isothermal. We assume ideal behaviour for the
solutions, which is only justified in the dilute solution limit.
The solvent, water, is characterized through a uniform di-
electric constant, &, following the classical treatment by Gra-
hame [12]. Likewise, soivent flux is negligible. Indeed, the
absence of convective flux is a reliable hypothesis in the
surroundings of x = 0, where we intend to evaluate the
deviations from EQL.

~
-

Fig. 1
Schematic representation of the physical problem dealt with here.
Cation concentration is denoted by ¢,. Simplifying assumptions are
described in the text
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We consider & Gouy-Chapman model for the electric dou-
ble fayer. Then, ions are assumed to be point charges, and
the charge density o is- uniformly spread over the surface.
The possibility of specific ionic adsorption is not considered.
This is a compromising assumption (we will denote it by
H. 1), because any realistic model for the electric double layer
should take into account the finite size of the ions as well
as its posible specific adsorption. Despite this, the Gouy-
Chaprnan's treatment is very usual [7—117. In fact, al-
though a number of refinaments to the mentioned deserip-
tion has been proposed, the model contains many of the
essential trends of the problem [13].

The effective width of the electric double layer is supposed
to be v = Ly, that is, a “few times” Ly, being Ly, the Debye
length of the problem. Likewise, we assume the constancy
of the transport coefficients over 0 < x < 7.

We describe the transport process from the Nernst-Planck
equations for the ionic fluxes. Thus, any coupling between
1onic fluxes is not considered, and ionic concentrations re-
place ionic activities throughout. Again, this is only strictly
justified in the dilute solutions limit. The use of Nernst-
Planck equations for the transport through the interface is
a hard assumption (H. 2) since the mentioned equations are
based on a macroscopic kinetic model. Probably, distances
of the order of Lp are very near to the limit of a “continuous”
model. Although at that distance scale a set of eguations
based on molecular theories would be more appropriate, the
fact is that application of Nernst-Planck eguations is very
usual [3,4,7,8].

Deviations from equilibrium are supposed to be very
small. This condition {H.3) is introduced through the ionic
fluxes J; (J/; <€). Of course, this is another hard hypothesis
but leads to a closed analytical solution for a very compli-
cated problem [3,7,8]. Likewise, the limit J; < is expected
to reproduce some of the essential characteristics of the
probiem.

Finally, we assume the validity of the Poisson-Boltzmann
equation for the description of the electric potential
over 0 < x < y{H.4). This is also a first approximation to
the problem, since it incorporates equilibrium concepts to
an essentially non-equilibrium problem. However, this sort
of equilibrium/non-equilibrinm superpositions have already
been employed previously [7]. The approximation is con-
sistent with the previous one for the ionic fluxes {small de-
viations from equilibrium), and avoids the use of a numerical
technique for the solution of Nernst-Planck and Poisson
equations [14,15]). We will check the validity of the ap-~
proximation from the results obtained.

The fundamental equations for the steady state ionic
transport are the Nernst-Planck equations. I we consider,
for the sake of simplicity, the case of two ionic species of

charge numbers z;, = 1 = —z,, these equations read
dc, d

J’I—:in(_C-i_Zici_w): ng—?; i:1:29 (1)
dx dx

where ¢;, J;, D; are the molar concentration, the flux, and
the diffusion coefficient of the i-th ion, respectively. p is the
dimensionless eleciric potential, related to the dimensional
one ¢ through the equation v = (F/RT} ¢, where F is the

Faraday constant, R is the gas constant and 7'is the absolute
temperature.
Egs. (1) must verify the continuity Eq.,

d.J;

dx =0

0<x<y, 2

and the Eq. (3) for the electric current [ (supposed to be zero
here),

1=F(JI—J2]=O, J[=J2=J. (3)

(Note that the continuity Eq. for i = 2 can be readily ob-
tained from Eq. 3).

We will split ¢; into two parts:
g=c +8c, dofcf<€l, i=12, (4)
where 8¢; are the local deviations of the concentrations from
their eguilibrium (zero ionic flux) value, ¢

The relationship between the concentration and the local
electric potential is given by the Poisson-Boltzmann equa-
tion, which is

o=Flet—d), 0=x<y, (5)

where o(x) is the volumic charge density. Note that in Eq. (5)
we have approximated (¢, — &) & (] — %) (hypothesis H.4).
Likewise, Eq. {4) implicitly contains the assumption of small
ionic Auxes (hypothesis H.3).

Procedure

Substitute Eq. (4) into Eqs. (1). 1t readily follows the set
of equations

(6a)

(6b)

From Eq. (6a) and bearing in mind that cf(y) = ¢ (the
bulk solution concentration, see Fig. 1}, we obtain the well
known result
) = cexpl—zp(0], i=12, (7a)
where we have taken into account the vanishing of the dou-
ble layer effects at x =~ v ([p(0)] = |wo] & Jwiy} = 0.

Similarly, from Eq. (6b) and condition de;(v) & 0, we have
(see App. 1 for details):

b = ﬁ—gjexp[ﬁzf-zp(x)}}exp[z,-Lp(t)]dt, i=1,2.  {7b)

Actually, Eq. (3) should not be restricted to the spatial
interval 0 < x < 7y, since w{x) decreases very fast, but never
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vanishes strictly, from the interface to the buik solution.
(However, this fact leads to a very small effect on ¢(x) for
X > Lp, and then we have taken d¢,(y) & 0). Thus, solution
of Eq. (3} under boundary conditions w(x), {dy/dx) — 0
for x — oo (which is equivalent here to consider x > 7,
because we have taken y as the distance where double layer
effects vanish), is [177:

a —}—bexp(—kx))
Hxy=2In|—————— =2 b
w(x) ln(ambexp(—kx) In H{x),
a=exply/2) + 1, b=explp/2) — 1, {8)

k= L5'=(ERT/2F )2,

Then, for 7= Lp (2.8, ¥ = 5 Ly}, we have p(y) =~ 0.
From Eg. (8}, Eq. (7b} reads:

be, = —%[H(x}]% THOT"de, =12, )

By evaluating the integral (see App. 2), Eq. (9) takes the
form:

e, = = [0 {FI2)] - FL21}
| (10)

1+0 ,
FIO4] = m(l + 5 ) 20, 0,09 = [H(X)]".

A very interesting limit of this rather cumbersome solu-
tion is that of {y,| < 1, especially in the case of synthetic
membranes [10,18]. For this case, we can take [17]:
explpo/2) = 1+ wo/2, p(x) & pexp(—kx). (1)
{For the i, values contained in Ref. {18], the mean error
resulting from approximation (11} would be lower than 5%).
An expression for H(x) consistent with Eq. {11) is

H{x) = 1+ (po/2)exp(—kx) (12)

Then, by substituting Eq. (12) into Eq. (10), we obtain

2+ z;(po/2) exp( —m)
- 2:{po/2) exp(—kx)
= 2[1 + z(po/2)exp{ —kx)].

FIO.00] =~ In(
(13)

Now, it is clear that |z;(ip/2)| exp{—kx) < 2. Therefore,
Eq. (13) yields.

FIOQxG—-FIQM] =~ k(x —7) — zyn {14}
Texp(—kx) — exp(~ky)].
Finally, by-using Eqgs. (11) and (14), Eq. (10) gives
dc; = —(Jik D1 — z,pgexp{—kx)] {15)

Akl — ) — zapo[expl{ —kx) — exp{—ky)]}.

A consistency argument for the validity of Eq. {15} would
be to obtain this result from the general solution (7b). In

order to accomplish it, we first introduce the assumption
i) < 1into Eq. (8). Then, we insert the resulting value for
p(x) into Eq. {7b). By integrating, the same result shown in
Eq. (15) is obtained {see App. 3}

Results
a) Special Cases

Gbviously §ci{x = y) = 0. Likewise, in the surroundings
of the membrane surface,
8¢,(0) = (J/k DY — ziwpo) ky + zapo). (16)

Letky = 5and ipy =
the values

—0.5 (o < 0). Then, 6¢;(0) takes

(17)

Thus, if Dy = D, (as it occurs for the systems KCl and
NaCl), then 8¢; > e, That is, the electrostatic interaction
between the negative charge (on the membrane surface) and
the ions becomes the predominant effect on d¢;. However,
if Dy > (27/11) Ds, then 8¢, < 8¢, and now diffusion is the
predominant effect. Nevertheless, it must be borne in mind
that:

1. Conditicn
e(0) = {0} + Bci(0) > & (O + §c3(0) = €2(0)

is still fulfifled, as in the equilibrium case, since ¢, (0}
= 3¢ (0
Typically,

ef 0y = cexplz 0.5) ~ 107 molfem® » 36,0} ~ (pJ/
D) ~ 1078 molfem?,

2. Ta the description of the problem we have omitted the
“non-equailibrium” (diffusion) potential, in the sense that
the o{x) appearing in Eq. (5) is that of equilibrium. Al-
though the mentioned potential takes small values in our
cases, as we will show later, the fact is that it can change
the 6c;(x} profiles appreciably, particularly when D, and
D, are very different, (note that this is the case where we
may obtain the rather surprising result 8¢, < dcy).

Another limit case is that of s — 0. Then,

lim 3¢, (0) = (Jy/D) > 0.

wo —

(18)
If & — 0, then no double layer would exist, and the result

obtained is simply that of an unstirred layer of thickness ».

b} Estimating the Correction on ¢ (0) and %

Fet us define the relative corrections

_Ba@]
CTHEO) T kD

{1 — zpo)(ky + z1p0)
exp(—z1pg ) I

A , (19)
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and

o [e7(0) + 3e{0)] — wo[ci{O)] |

4r= ol O] § @)

y

being 1pp the Donnan potential, which relates ¢ to ¢? at the
interface x = 0. Eq. (20) can be written as

Ay, =

In[1 + 8c;(0)/cf (O)JF _ [Be:(0ye? (ﬂ)} A,

= = 2
nT0)c] T v T

Since |yo] < 1, Egs. (19) and (21) are dominated by the
ratio (J v/D; ¢). Typically, this quotient takes the values
10—*—$07%, which clearly shows the negligible importance
of the corrections. Since flux J depends on the inverse of
membrane thickness d, the small value of the corrections
(15)—(21) comes from the fact that d » vy (see Ref. [2])
Indeed, for common synthetic membranes we have that
(p/dy ~ (10781079 = 10~ Corrections might be impor-
tant for biolegical membranes meeting the condition d ~
4 = Ly However, the complicated transport mechanisms
appearing in this type of membranes make difficult to extra-
polate the present results.

¢) MNon-equilibrinm Potential

We assume that this potential consists of a diffusion po-
tential preventing from a steady net charge transport. At
the most, it could take the value

Dy— D,

i e (0)
D+ D,

(
¢

I}

. (22)

|
l

_| D, ;
(Wl = [ }Di D o

This is an upper bound for gy because it has been cal-
culated from the cation concentration ¢, (0) instead of doing
it from ¢;(x = 0). So the potential drop owing to the inter-
face has been introduced on ¢,. {Note that if we had taken
e {x 2 0) = ¢ + B¢ (x), then jyyy] would be proportional
to 8¢yfc < 1) For instance, in the case of very dilute solu-
tions we have that

I} < 0.6 fwel, HCL
[1pa] < 0.2 fwel, NaCl
twairt < 0,02}, KC1

Therefore, Eq. {22) seems to support the use of Poisson-

Boltzmann equation to describe the electric potential over -

0 < x < v (assumption H.4), at least when D, = D,

An argument of consistency results from integrating twice
the “non-equilibrium”™ charge density ¢ = £ (8¢, —d¢a).
Then, a potential difference of some 1072 mV is obtained.
Typical values for (RT/FY by,) are of the order of 10 mV
[18,19].

d) Estimating the Charge Density ¢

Charge density ¢ and surface potential y, are related by
Gauss theorem. Then, the following relation between ¢ and
2(0) is obtained (see App. 4):

g — o ly = — 2Ly Fesinh () )]

The surface potential v, can be obtained experimentally
from the flux J, the overall potential diffusion associated to
the electrolyte solutions bathing the membrane, and the
membrane potential [10, 18]. For the experimental situation
analysed in Ref. [18] {see also Ref. [19]), we have thatc =
1073 moljem®, Ly = 1077 cm and = — 0.61 (system
NaCi (1072 M | 2.2-107% M) in a Nuclepore polycarbonate
membrane). Thus, Eq. (23) gives ¢ ~ —1 mC/m?.

¢) Relation between 5 and X

We have mentioned previously that the contribution of
the interfacial potential to the overall potential can be eva-
luated either from the classical treatment by Donnan or,
alternatively, from a surface potential based on the Gouy-
Chapman model [9,11]. It can be readily shown from our
analysis the equivalence between both procedures. Let us
denote by (w F X) the uniform, volumic charge density wi-
thin the membrane { —4 < x < ), where w stands for the
sign of the charge. Cousider, e.g., a cation exchange mem-
brane (w = —1}. If the Donnan potential yp, and the surface
potential, 1, are equivalent forms to describe the same phy-
sical problem (the potential drop across the interface), the
physical magnitudes they come from, (— F X) and o, must
be related. But the former is a volumic charge density. Be-
sides this, the Donnan potential results from considering:

1. A sharp interface {(of zero thickness) between the mem-
brane and the solution {(x = 0},

2. Equilibrium conditions at x = 0,
while the surface potential is based on:

i. A small (but finite) thickness for the interface (0 < x <),

2. Equilibrium (or non-equilibrium) conditions over 0 < x
< .

Then, equivalence between both forrmulations seems to re-

quire that

_F¥ =~ lim (ij”g(x) dx) — ol0) & —2Fesinh(yy).  (24)
+—0

7o

From Eq. (24), it readily follows that:

wo & aresinh{(F/2¢) = m((X/2¢) + [1 + (X727 ]} = ps.

That is, the smaller the equivalent double layer thickness
v, the smaller the difference between i, and wp, (y = 0 leads
to —FX¥ = p(0), and then v, = pp)

Discussion

We have studied the non-equilibrium problem at the in-
terface of a charged membrane from a simplified electric
double layer model. To accomplish it, we have introduced
a set of simplifying assumptions, some of which are certainly
compromising {H.1—4).

The analysis carried out (valid only for smali fluxes) not
only shows that deviations from equilibrium play a very
small role, but zlso seems to support the omission of a de-
tailed study of the electric double layer when characterizing
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ionic transport through common synthetic membranes. This
omission is very usual in the lterature [17, though there are
only a few studies justifying it. Indeed, the concept of equi-
librium due to Donnan [20,217 is much simpler, and is
based on a fundamental hypothesis supporiing any mac-
roscopic transport theory, d $ Lp.

It is interesting to notice that is also the above mentioned
hypothesis what justifies the second of the classical assump-
tions usually made in ionic transport problems (electroneu-
trality, ELC [227). Thus, ELC is a very good assumption in
the bulk of a thick membrane, not in the vicinity of the
interfaces {over distances y 2z Lp). Conversely, EQL is valid
at the interfaces if transport occurs, as usual, over zones
much Iarger in size than the interface width {e.g. a synthetic
membrane). An intuitive physical argument supporting EQL
assumption is that y is “so small” that concentration and
electric potential gradients over 0 < x < 7y are much greater
than fluxes J; {Eq. 1 can be approximated by Eq. 6a). There-
fore, ELC {but not EQL) is valid at the bulk of an elecirolyte
solution or membrane, where transport occurs; and EQL
(but not BLC) 1s valid at the interfaces appearing in the
problem. Certainly this a very fortunate fact, since the co-
existenice of deviations from both hypotheses simultanecusly
poses & non-trivial problem at all.

Financial support from DGICT, PBR7-0016, Ministry of Edu-
cation and Science, is gratefully acknowledged.

Appendix 1

In order to solve Eq. {6b) we use a well-known result {167 from
the theory of ordinary differential equations. An ordinary differ-
ential equation of the kind

Y+ Px)y=0() (A1)
under boundary condition

yia)=b, (A2)
have the solution

y = bexp[— A(x)] + exp[— A(x)] f O(t)exp[A(r)]dz, (A3)
where a

A{x) = Ep(t)dx. {Ad)

Application of Egs. (A3—4} to Eq. {6b) readily lcads to Eq. (7b).

Appendix 2

Evaluation of

160 = | [H@Ods (A3)
7
is made easier by the change of variable
V= [HE), Vi~ — 5’% H dt, o= (22)". (A6)
Thus, substituting for ; we obtain
e A (A7)

k ¥ily) 1=V ’

Let us define:

Q=|V, d¥,=20,449, (A8}
Then,
p=2 T 29 Lo an - rroon)
P=— T = T {5 (X ] — Esl 3
k 244 179,7 k 4 (Ag)
Flog=ln % _ap
[&]= n1_Q s

Appendix 3

Eq. (8) under the assumption || < 1 gives p(x) & g exp(—kx).
Inserting this result in the general solution (7h} yields:

g 3
fie; = *Eexp[*zrﬂb’oexpf“k-‘f)]jexp[-’ii#’n exp{—kt)1di.
' (A10)

Now, the argument [z; iy exp{—kt)] is always small, since

[z expl{—k8)] — Zitpg, as t—0

(ALD)
[z:poexp(—kD)] — zw(x) =0, as t—7,
with hpe] < 1. Then, let us approximate
explziypoexp{—kt)] & 1 + zpg exp{— k). (A12}
Substituting the previous result into Eq. (A 10)

. J 3
Sepan — 5 [1—zippexp(—kx)] j [14 z;pgexp(—4&i)] di

= —{J/ED)[Y — zips exp{—kx}] (A13)

~{elx =) — zipo [exp(— kx) — exp(— &)},

which agrees with Eq. (15).

Appendix 4

In this appendix we relate o and ¢(0) through the surface poten-
tial y. In order to achieve it, consider Gauss theorem for an infinite
plane of uniform charge density . 1t readily follows that:

(R T) dy
F / dx

On the other hand, it can be shown [173 from the Poisson-
Boltzmann equation that

o

==, (A14)

x =gt £

dip 2.
— = — — sinh{igp/2). A1lS
ax] . 7 {iro/2) {A15;
Then,
T .
7 = ————sinh (1p/2). (Ado}
D
Bearing in mind that | < 1,
sinh{ip,/2) = sinh{ip,)/2, (ATT)
and
RT 1
g R — E‘, — (—2Fcsinhyy) = — Ly o{0), (A18)
e Ip

which is the result we are looking for.
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