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Summary

We show that an extension of the space-charge model for electrolyte transport in charged cap-
illary pores, which includes the dependence of the adsorbed pore wall charge on bulk concentra-
tion, has practical and theoretical interest, and can be easily accomplished. It is argued that an
explicit dependence of the adsorbed charge on concentration may help to clarify the physical
description.

Introduction

The space-charge (SC) model [1] for electrolyte transport in charged cap-
illary tubes describes a number of interesting physical situations that arise
when a charged porous medium separates two salt solutions. The quantitative
accuracy of the model has recently been tested by Westermann-Clark et al. for
aqueous [1] and nonaqueous [2] electrolyte solutions, and by Tejerina and co-
workers [3,4].

The theoretical foundations of the SC model are based on the Gouy-Chap-
man approach for the double layer at the pore surface, the Nernst-Planck
equation for the ion fluxes, and the Navier-Stokes equation for describing the
solution flow through the charged capillary tubes. A key parameter of the model
is the immobile, uniform charge density at the pore wall (o). Transport param-
eters like the pore conductivity, the diffusion and streaming potentials, the
membrane selectivity and the solute permeability of the pore critically depend
on this charge density.

One of the most usual simplifications contained in the transport theory
through charged tubes is to assume the charge density ¢ to be constant. The
experimental results have shown that this wall charge is not constant, but
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depends instead on the bulk electrolyte concentration [1-4]. Some recent
studies with alkali chloride solutions suggest that C1~ adsorbs to the pore wall
[1,3]. Thus, even when a uniform electrolyte concentration is considered, com-
parison of theory and experiment requires taking into account a set of theo-
retical curves of parameter o if different concentrations are to be used. (This
is the case, e.g., in measuring the pore conductivity as a function of the elec-
trolyte concentration [1].)

This note is intended to show that: (i) an extension of the SC model to
include explicitly the case of concentration dependent, adsorbed pore wall
charge can be easily accomplished, and (ii) considering the charge density o
to be a free parameter not only tends to obscure the possible contribution of
adsorption processes to the wall charge values but also may lead to some non-
observed asymptotic behaviours when studying the pore conductivity as a
function of electrolyte concentration*. Our treatment is based on two simpli-
fied forms of the Poisson-Boltzmann equation.

Linearized Poisson~Boltzmann equation

The main assumptions included in the SC model have been considered in
detail by Westermann-Clark and Anderson [1]. A solution to the linearized
Poisson-Boltzmann equation is well-known (the basis of this solution can be
found in ref. [6]) and can be written in terms of the modified Bessel function
of order zero, I, as:

Y (r/Ax)=AI,(r/A) (1)

where ¥ is the local electric potential, r and x are the radial and axial coordi-
nates, respectively, A is the Debye length defined as:

1/2
A(x):(eRT/FQZz?EL-(x)> (2)

and A is a parameter (not depending on the radial coordinate) to be deter-
mined. In eqn. (2), € stands for the dielectric constant, F'is the Faraday con-
stant, R is the gas constant, 7" is the temperature, while z; and ¢; denote the
charge number and the axial molar concentration of the ith ion, respectively.

The parameter A entering in eqn. (1) is determined by imposing that the
total charge in the pore has to be equal to the pore wall charge. This condition
can be written in the form:

*Pore conductivity should reach a plateau for low bulk solution concentration if the pore wall
charge is taken to be concentration independent. See Refs. [1] and [5] for details.
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jp(r,x) omr dr:-—fJASUan dr=—2nac (3)
0 0

where o is the pore radius, and p is the local volumic charge density. If we
assume the radial fluxes to be zero, and linearize the resulting Boltzmann dis-
tribution for the radial concentration ¢;(r, x), eqns. (1) and (3) lead to:

o7}
A=/

where I, is the modified Bessel function of first order. From eqns. (1) and (4),
the well-known final solution [6] is:

_oLL(r/A)
e I(a/D)

The solution procedure clearly shows that an extension of the theoretical
treatment to cover the case of non-constant, adsorbed ¢ can be easily obtained
if the charge density o in eqn. (5) depends on bulk concentration.

The question now is to introduce a functional dependence for ¢(c) in eqn.
(5), where c is the bulk concentration. This poses a formidable problem, be-
cause other mechanisms in addition to coion adsorption can affect the pore
wall charge [1,2]. Our treatment will be confined to those cases where o de-
pends only on the bulk electrolyte concentration. This seems to be a reasonable
first approximation for aqueous alkali chloride solutions in track-etched mica
membranes [1] and in microporous polycarbonate membranes [3,7]. For these
cases an approximate dependence is given by:

o(c)=bc" (6)

where b and n are empirical parameters to be determined in each case. For
Nuclepore polycarbonate filters, electrokinetic measurements [7,8] show that
na~1/3, and b depends on the electrolyte salt and the membrane considered.
Such a cube root dependence of o on the concentration in very dilute solutions
has been theoretically predicted, as quoted in ref. [8]. Note that if the mem-
brane matrix is not intrinsically ionizable, it seems natural that its surface
charge in electrolyte solutions may be due to some adsorption phenomena.

From eqns. (5) and (6), electrokinetic parameters like the pore conductivity
or the streaming potential can be derived [1-4]. Since the electrokinetic pa-
rameters involve integration over the radial coordinate, and in some cases over
the axial concentration ¢;, eqn. (6) incorporates no additional difficulty to the
integration procedure provided that a bulk concentration be specified in these
cases. Parameters b and n can be determined in each case by fitting calcula-
tions from the SC model to experimental data, as suggested by Westermann-
Clark and Anderson for their free parameter ¢ [1].

(4)

(5)

Y(r/A, x)
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The introduction of the Debye—Hiickel approximation to linearize the Pois-
son-Boltzmann equation [4] clearly limits the applicability of eqn. (5) as we
will see later, but we would like to emphasize that eqn. (6) can be incorporated
to more complete numerical solutions of the full, non-linearized model [1,3].

Pore conductivity

This note is intended to discuss the items (i) and (ii) stated in the Intro-
duction. Both questions will be analysed from the pore conductivity predicted
by the SC model. Pore conductivity is an electrokinetic parameter that can be
readily calculated since it depends only on the phenomenological coefficient
Ly, (see ref. [1] for details). Introducing eqn. (5) into eqn. (A.1) of ref. [1]
and expanding the exponentials, a rather long but direct calculation gives for
the pore conductivity, k, the following expression:

_e(D.+D.) (a> { ,_Ds=D_ 2Fas (/1)2}+02 { . /<a>}
=Tk U D, +D_ BT \a) | 7 J )
&a)_fo(a//l)[:% Io(a/z)]

) ILi(a/A) | a I(a/l)
where a binary 1:1 electrolyte has been considered and 7 is the solvent viscos-
ity. Equation (7) differs from eqn. (21) of ref. [4] in that an additional term
in o2 has been retained. (If this term is disregarded and we approximately take,
as usual, the ratio of ionic diffusion coefficients to be that of an infinitely dilute
aqueous solution, then eqn. (7) would simplify to the equation corresponding
to a free electrolyte solution for the KCl case. Note also that the contribution
due to the pore surface conductivity has been neglected in eqn. (7).)

In this section we refer to the bulk solution value of the Debye length as 4,
while in the previous section A was a function of x. Note that for pore conduc-
tivity measurements the two bulk solutions have the same concentration and
therefore there is no dependence on x. Besides this, the axial concentration is
equal to the bulk solution concentration for the linearized Poisson-Boltzmann
case.

From eqn. (6), the dependence of g on (a/4) can be included in eqn. (7) by
taking o=b" (a/1)?", where b’ =b(eRT/F ?a®)". If we compare these theoreti-
cal values for x with those measured experimentally in ref. [1], we will find
that agreement between theory and experiment is only possible for (a/4) > 1.
Thus, the model only would work for values close to the bulk phase conductiv-
ities. Of course, this result could be anticipated since linearizing the Poisson-
Boltzmann equation is a valid procedure only if:

‘Fﬁ’fmax F oAly(a/R)

(8)

RT |_ |RT ¢ I,(a/4)
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Condition (8) is only fulfilled if (a/A)>>1, since 6~ —1072? C/m® in ref.
[1]. (It can be proved that eqn. (7) would be valid for (a/1) ~ 1 provided that
|o| <10~ C/m?). The numerical solution employed in ref. [1] proves then
to be necessary and our treatment would not be applicable when (a/4) ~1.

In order to analyse the behaviour of k for these values of a/4, we have solved
the full, non-linearized Poisson-Boltzmann equation under conditions of total
coion exclusion (the limit in which only those ions of charge opposite to that
of the pore wall would fill in the pore). In this case it is well-known that an
analytical solution can be found. This solution is in our case:

Y= (2RT/F) In (1—F*%¢r?/8¢RT)
which leads to the conductivity:

K_~5{F2D+25RT[1+1n5}}
=COVRT n 1-6

oFa
" 4€RT

The electrolyte concentration in the cylindrical pore axis, ¢, is related to o
through the expression:

-1
_ 20 Fao
C__aF(1“4eRT> (10)

which can be readily obtained from eqn. (3).

Figures 1-3 show a comparison between the experimental pore conductivity
values obtained in ref. [1] and those provided by eqns. (7) and (9). It can
easily be noticed that each one agrees quite well with values from ref. [1] in
their respectives ranges of applicability.

Note that Figs. 3 and 4 inref. [1] (pore conductivity in aqueous alkali chlo-
rides vs. a/A) give an asymptotic behaviour for the conductivity when the quo-
tient (a/1) takes values close to unity. It can be thought [1] that the theoret-
ical curves asymptotically approach a constant value as (a/1)—0 (where total
coion exclusion is expected to hold). But this is only true if we assume that the
pore wall charge is maintained constant even when the bulk solution concen-
tration tends to zero. However, this predicted asymptotic behaviour is not fol-
lowed by the experimental values which take instead decreasing values over
the concentration interval flanking the quotient (a/A) =1. This is just the ef-
fect accounted for in eqns. (6), (9) and (10), since the limit (a/1) -0 implies
that 60, and then a continuous decreasing of x with (a/4).

=1 (9)

Conclusions

We concluded that considering an explicit dependence of o on concentration
leads to a theoretical behaviour perhaps clearer than taking o as a free param-
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Fig. 1. Pore conductivity vs. (a/A) for the KCl 34A case, see ref. [1]. The expression
o= —8.47x10~7 (a/2)%*** has been used. Curve 1 corresponds to the case of total coion exclusion
and curve 2 to the case of the linearized Poisson-Boltzmann equation.

1070 -

=i
m-cm )

=4

k {oh

1071 100 10! 102
ali

Fig. 2. Pore conductivity vs. (a/A) for the NaCl 103A case. The expression o= —1.31x107°
(a/2)°3* has been used. Curves 1 and 2 corresponds to the cases mentioned in Fig. 1.

eter. Note that the (non-observed) predicted behaviour for (a/A) ~1 in ref.
[1] arises from considering o=constant as we move from (a/1)21 to
(a/4) <1, which is not in agreement with the observed adsorption phenomena.
This is clearly stated in Fig. 5 of ref. [1] (surface charge densities determined
by fitting calculations from the SC model to the experimental pore conductiv-
ities) and shows the need of taking a set of theoretical curves of parameter o
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Fig. 3. Pore conductivity vs. (a/4) for the KCl 265A case. The expression o= —3.60X10"7
(a/2)%4" has been used. Curves 1 and 2 corresponds to the cases mentioned in Fig. 1.

to compare theory and experiment, as done by Westermann-Clark and
Anderson.

Thus, it can be anticipated that introduction of egn. (6) into the numerical
solution employed in ref. [1] would lead to a unique theoretical curve (con-
taining the free parameters b and n) that would not show any asymptotic limit
for (a/2) ~1.

Although we have considered two non-exact treatments based on simplified
forms of the Poisson-Boltzmann equation, Figs. 1-3 show that both treat-
ments have practical interest. (Levine et al. [9] observed that the transition
between the solutions of these two simplified forms is relatively smooth. ) Like-
wise, the incorporation of eqn. (6) to the more complete, exact numerical treat-
ments by Westermann-Clark and Anderson [1], and Tejerina and co-workers
[3] seems to be feasible and the dependence of the diffusion potential on o
[1,3] may be studied from a viewpoint similar to that considered here for the
pore conductivity.

It seems necessary to point out that eqn. (8) involves two free parameters
(b,n) rather than one (o). Likewise, eqn. (6) assumes some mechanism of
adsorption to be the main origin of the pore wall charge, what can be only
approximately valid [1,2]. However, parameters b and n have already proved
to be useful for describing o in previous experimental studies [7,8]. In fact, ref.
[8] contains a simplified SC model with o=bc!/%. It might be argued that the
fitting of these parameters could account indirectly for some side effects not
included explicitly in the model*. Despite this we think that an explicit depen-

*Activity coefficients are usually assumed to be unity at any concentration in the SC model. A
recent paper by Huerta and Olivares [10] is devoted to the calculation of the mean activity coef-
ficient of an electrolyte solution inside a charged cylindrical micropore.
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dence of the charge density o on concentration may help to clarify the physical
description in those cases where this dependence can be introduced.
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