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functions; for rigid molecules, $&) = sin (kLq)/kLq, where 
Lw is the distance between sites a acd y;  S is the matrix of direct 
correlation functions and S* = 3 - k’; kv is the matrix of solvent 
density; and V is a short-range potential which usually, but not 
necessarily, takes the Lennard-Jones 6-12 form. The symbol A 
is a numerical factor introduced to impose consistency between 
the calculated solvent correlation functions and a given value of 
the solvent dielectric constant, e,,, It is given bysFss 

where (d,?) is the average squared dipole moment of the solvent 
molecule. 

By solving eqs A.l-A.3 self-consistently one can obtain hz)(r)  
and c$(r) from which the excess solvation free energy, AG,, of 
introducing a solute into the solvent at infinite dilution can be 
calculated by using the expres~ion~~,~’  

AG, = -E E J d i  {‘/2[h$?,!(r)]2 - @(r)  - f/2hLv(r)c$(r)) 

(A.5) 
where nu is the number of solute sites and n, is the number of 
solvent sites, equal to 3 in the present case. 

The solvent model used in the XRISM method is the rigid 
threasite TIP3P water with minor modifications of the hydrogen 
Lennard-Jones interaction parameters to avoid a Coulombic 
singularity in the interaction potential due to the absence of 
repulsive cores on the hydrogen sitesas9 The empirical potential 
is characterized by the experimental water geometry (ROH = 
0.9572 LHOH = 104.52O) and charges of -0.834 on the oxygen 
and 0.417 on the hydrogen. The Lennard-Jones parameters are 

= 3.15 A, 0.152 kcal/mol) for the oxygen site and (0.40 tC! 0 046 ( kcal/mol) for the hydrogen site. For the Lennard-Jones 
interaction between oxygen and hydrogen sites, the combination 
rules, em = and uq = (au + u,)/2, are used. At 25 OC 
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and p ~ p  = 0.997 g/cm3, the A of eq A.4 is 0.959 to match the 
experimental water dielectric constant of 
B. Results a d  Discussion. The XRISM results in Table XI 

show that the order of the solution pK, is pK,(MeNH3+) > 
pK,(ImH+) > pK,(MeOH) > pK,(HCOOH) for parameter set 
QC; pK,(ImH+) > pK,(MeNH3+) > pK,(HCOOH) > pK,- 
(MeOH) for parameter set CC; and pK,(ImH+) > pK,(MeOH) 
> pK,(MeNHf) > pK,(HCOOH) for parameter set 00. Thus 
for all three parameter sets, XRISM fails to predict the order of 
the absolute and relative pK, values; this results from XRISM 
ovemtimating AG, of anions by 16-36% and underestimating AG, 
of cations by 27-51%. It also underestimates AG, of neutral 
compounds and often yields positive AG, values. These trends 
are also manifested in AG, of water, Cl- and Na+ obtained by Yu 
and Karplus,20 though the errors are smaller (-10%). 

A reason for the discrepancy between the calculated and ex- 
perimental AG, can be inferred from the work of Yu and Kar- 
plus.2o They have used XRISM to obtain the solute-solvent radial 
distribution functions for a cation (g+), an anion (g), and a 
Lennard-Jones nonpolar particle (BO), with water oxygen and 
hydrogen sites, respectively, at 300 K the nonbonded parameters 
for cation, anion, and nonpolar particle are the same and corre- 
spond to those of a chloride ion. The nearest-neighbor peak in 
the pair distribution function of a cation with the oxygen site of 
water, g,-,+, is positioned 1.28 A further than that of an anion with 
the hydrogen site of water, gH-. Thus XRISM would predict a 
more favorable solvation energy for an anion relative to a cation, 
which lacks favorable hydrogen-bonding interactions. The ov- 
erestimation of anion AG, and underestimation of cation AG, may 
be mainly due to the inadequacy of the HNC closure.llJ” Fur- 
thermore, a comparison of the enthalpic and entropic contribution 
to AG, of the model chloride neutral atom shows that both terms 
are unfavorable with the entropy term dominant. Since solvation 
free energies for neutral molecules are underestimated, and their 
experimental values are all negative, it appears that the magnitude 
of the entropy term is overestimated and/or there is a lack of 
stabilizing energetic interactions with the solvent which would 
make the enthalpy negative. The latter is supported by an integral 
equation calculation” of the solvation free energy of methane using 
the Percus-Yevick closure where a large c(CH4-O) of 0.412 was 
needed in order to obtain the correct experimental value. 
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Transport phenomena through membranes with asymmetric fixed charge distributions varying linearly with position inside 
the membrane are theoretically studied. The limits of applicability of previous models based on Henderson’s assumption 
have been established, and the effects that the asymmetry exerts on the flux and the membrane potential have been found 
to be of minor importance for the physical model employed. The theory is basal on the Nemst-Planck equations, and the 
numerical solution dcriwd doss not show the doubtful results arising from the uw of the approaimated Hcndcr”s amumption: 
the nonzero, steady-state values of the flux and the membrane potential for a situation in which two identical external solutions 
are separated by an asymmetric membrane, and the Occurrence of steady-state reverse transport. Some comments on the 
temporary nature of the experimentally observed asymmetry effects are also included. 

Introduction 
The problem of ion transport through membranes with inhe  

mogeneous charge diatributions has received some attention re- 
cently.’+ The description of the physical phenomena related to 

the existence of a structural or chemical inhomogeneity in a 
membrane requires the revision and extension of the classical 
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models of transport in homogeneous membranes.’ A case of 
special importance is that of asymmetric membranes.“’ Some 
of the transport models proposed so far for asymmetric membranes 
have now been reviewed by Maft and Manzanares.’ One of the 
more relevant approaches to the problem stems to be that of 
Takagi and Nakagaki? who extended the classical Teorell- 
Meyer-Sievers theory’ to account for the asymmetry in fixed 
charge concentration and partition coefficients. They used the 
Nemst-Planck equation for the transport of uni-univalent ions, 
the local electroneutrality condition, and Henderson’s assumption’ 
for the concentration profiles inside the membrane. More recently, 
Higuchi and Nakagawa5 have proposed the inclusion of the 
standard chemical potential gradient in inhomogeneous membranes 
as a new force for ion transport. They also claimed that Hen- 
derson’s assumption leads to some doubtful results in Takagi and 
Nakagaki’s theory: the nonzero steady-state values of the flux 
and the membrane potential for a situation in which two identical 
external solutions are separated by the asymmetric membrane, 
and the Occurrence of steady-state reverse transport (matter 
transport opposite to that expected from the concentration dif- 
ference imposed between the two bulk solutions (Note that the 
gradient of the asymmetric fixed charge concentration within the 
membrane can be opposite to that of concentration imposed ex- 
ternally between the two bulk solutions. j) are two theoretical 
conclusions violating the basic laws of thermodynamics. 

The paper by Higuchi and Nakagawa has prompted us to go 
deeper into Takagi and Nakagaki’s model in order to study the 
limits of applicability of this theory. Some comments on the nature 
of the experimentally observed asymmetry effects are also included. 
Our analysis is based on the numerical solution of the original 
(simplified9) form of the Nernst-Planck equations, and Hen- 
derson’s assumption for the concentration profiles is not included. 
Reiss and co-workers6-’ have recently paid attention to the effects 
of an inhomogeneous charge distribution on the membrane current 
efficiency on the basis of a model containing also the above 
mentioned Nernst-Planck equations. 

Formulation of the Problem 

Nernst-Planck equations for uni-univalent ions 
The basic equations describing our problem are the steady-state 

the local electroneutrality assumption 

cI - c2 + e = o (2) 

and the conditions of zero electric current (eq 3a) and steady-state 
(constant) fluxes through the membrane (eq 3b) 

JI - J 2  0 (3a) 

Ji J(const) (3b) 

Equations 1-3 are the basis of many simplified treatments for 
onedimensional transport phenomena in charged membranes, and 
their origin and limitations can be found elsewhere? Here J,, D,, 
and c, denote the flux, the diffusion coefficient, and the local molar 
concentration of the ith species, respectively. Subscript 1 refers 
to cations, and subscript 2 to anions. On the other hand, $ stands 
for the local electric potential in RT/F units, 0 for the local fixed 
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F i  1. Schematic diagram of the membrane system. Parameters e(0) 
and B ( d )  are the fixed charge concentrations at the membrane bounda- 
ries., cL and cR being the external bulk solution concentrations. 

charge concentration, and x for the spatial coordinate inside the 
membrane (the membrane-solution interfaces are located at the 
points x = 0 and x = d; see Figure 1 for details). Constants F, 
R, and T have the usual meanings. According to previous models? 
we define the parameters r and re as r 0(x= 
O)/B(x=d) where cL and cR are the left and right bulk solution 
concentrations, respectively. 

Our study will be confined to the case of an asymmetric fixed 
charge distribution varying linearly with x: 

(4) 

The boundary conditions for the concentrations c, can be o b  
tained from a simplified form of the Donnan equilibrium rela- 
tionship&’ at  the membrane-solution interfaces (partition coef- 
ficients are taken equal to unity) 

ci(0) = -6(0)/2 + [(e(0)/2)~ + cL2I1l2 (Sa) 

c*(O) = q(0)  + e(0) = CL2/C,(O) (5b) 

c2(d) = cl(d) + 0(d) cR2/cl(d) ( 5 4  

cL/cR and re 

e(x) = e(o) + (Ae/d)x Ae e(d) - e(o) 

C l ( d )  = 4(d ) /2  + [(8(d)/2)2 + C R ~ ] ” ~  (5C) 

In eqs 2 and 5 we have assumed, without loss of generality, that 
the membrane has a positive fixed charge. Note also that single 
bathing salts are considered at the two sides of the membrane so 
that anion and cation concentrations are both equal to cL in the 
left compartment and to CR in the right one. 

The above equations have no analytical solution as they stand. 
To overcome this problem, Takagi and Nakagaki solve first for 
d+/dx and J, (eqs 5 and 3 in their paper2), and then ussume the 
ion concentrations within the membrane to be given by the 
Henderson equation: 

(6) 
where b(x) is the same for the two mobile ions and then for the 
fixed charge groups, and verifies 6(0) = 0 and 6(d) = 1. S u b  
stitution of eqs 6 into eqs 5 and 3 of ref 2 leads (after integration) 
to the membrane potential and the flux, respectively. However, 
these expressions show two rather surprising results2 (i) the 
existence of nonzero, steady-state values of flux and membrane 
potential for a situation in which the two external bulk solution 
concentrations are identicul ( r  = 1) and (ii) the possibility of 
steady-state reverse transport for certain values of r and r,. It 
seems that these results violate the first5 and second laws of 
thermodynamics. 

A transport theory should give the correct equilibrium limit,I0 
and this equilibrium limit seems to comspond to r = 1 in our case. 
To check this point, consider eqs 1,2, and 3. From eq 1 for i = 
1, 2, it is readily obtained that 

cf = q(O)[l - b(x)] + c,(d)6(x) i = 1, 2 

Integration of eq 7 from x = 0 to x = d yields 

CI(O)C~(O) - cl(d)cdd) = J x d ( c 2 / D l  + cl/D2) dx JI (8) 

where I is the final value of the integral. Note that I is a nonzero 
~ ~~ ~ 

(10) Mason, E. A.; Londale, J.  Membr. Scl. 1990, 51, 1. 
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positive number. Now, according to q s  5b and 5d, the left side 
of eq 8 can be written as 

(9) 

Thus, the case r = 1 (cL = cR) leads to J = 0, that is, to a strictly 
zero flux. 

On the other hand, substitution of Jz = 0 in eq 1 would give 
the well-known Nemstian potential difference through the mem- 
brane 

CL’ - CR’ = JI 

$(4 - $(O) = -In CZ(O)/C2(4 (10) 
And the sum of the interfacial Donnan potentials is simply 
[$(o) - $Ll + [$R - $441 = In cZ(O)/cL + In cR/cZ(d)  

In c,(O)/rc2(d) (1 1 ) 

Therefore, it is clear from eqs 10 and 11 that the total membrane 
potential A$ qR - $L is also strictly zero for r = 1, and we 
conclude that the case r = 1 corresponds indeed to the equilibrium 
state. But eq 9 contains even more information: J and (cL - cR) 
will always have the same sign, and then steady-state reverse 
transport cunnot occur in our model. (It is worth noting that all 
these conclusions do not depend on the particular fixed charge 
distribution assumed within the membrane.) 

It becomes clear at this point that the above discussed results 
in Takagi and Nakagaki’s theory come from the use of Hen- 
derson’s assumption (CQS 6) to calculate the flux and the membrane 
potential, as anticipated by Higuchi and N a k a g a ~ a . ~  Indeed, eqs 
6 have been imposed onto eqs 1-3 rather than deriued from them. 

However, taking into account the wide use of Henderson’s 
assumption in membrane transport theory,’ it seems necessary 
to go a step further and try to show which are the sufficient 
conditions for the validity of eqs 6 in transport through membranes 
with an asymmetric fixed charge distribution. (Studies on the 
validity of Henderson’s assumption are not very usual in the 
literature even for the case of homogeneous membranes.) Her- 
eafter we will consider, for the sake of simplicity, a linear rela- 
tionship for b(x), b(x) = x/d, for the approximate distribution 
of the mobile ions. From eqs 1 and 6, we have that 

= const (12) 
CI J1/D1 + dcl/dx 
CZ 5 2 / 0 2  + dcz/dx 

-- = 

Thus, the following relationship can be obtained 

and eqs 5b and 5d lead then to 
CZ(O)/C,(O) = cz(4/c1(4 (13) 

~1(0) /~1(4  = re (14) 
Finally, eqs 5a, 5c, and 14 give 

r = re (15) 
as the sufficient condition for the validity of Henderson’s as- 
sumption. This condition is very restrictive since rand re are two 
independent parameters for each experimental situation (re has 
a characteristic value for a given asymmetric membrane, while 
r has to do with the concentration difference externally imposed 
between the two bulk solutions). Fortunately, the equality r = 
re is not u necessary condition for the validity of eq 6. It can be 
expected that for e(O), B(d) >> cL,R (fixed charge concentration 
within the membrane much greater than external bulk solution 
concentrations), the concentration profiles cI and cz would follow 
the linear relationship imposed to 8 (eq 4) because of the elec- 
troneutrality condition (eq 2). Thus, Henderson’s assumption 
should also be valid for this limiting case. 

Now, the next step is to solve numerically the “exact” eqs 1-3 
according to the boundary conditions imposed onto concentrations 
(eqs 5) and electric potential (h = 0). This numerical solution 
is necessary in order to (i) overcome all the mentioned short- 
comings arising from the use of Henderson’s assumption, (ii) check 
the previously suggested applicability conditions for this as- 
sumption, and (iii) establish theoretically which are the actual 
effects that the asymmetric charge distribution exerts on the flux 

Manzanares et al. 

and the membrane potential in the particular model used. 

Numericrl Solution 
Equations 1-3 can be solved numerically by applying previous 

finitedifference algorithms11J2 to the case of an inhomogeneous 
charge distribution within the membrane. This is probably a 
reasonable procedure to study multiionic ~ y s t e m s ~ ~ - ~ ~  where ions 
of different charge numbers can occur, as well as for treating 
problems involving space charge effects via the PoissOn cquation.l2 
However, only two ions are considered here, and the space charge 
effects can be ignored since the membrane thickness is much 
greater than a typical Debye length? Moreover, according to 
previous work,l” a detailed treatment1‘ of the double layer at the 
membrane-solution interface is not included. Thus, we will show 
that the relative simplicity of our transport problem finally leads 
to a set of transcendental equations whose solution can k ac- 
complished by means of trivial numerical procedures. 

First, we solve for the electric potential gradient from eqs 1 
and 2 

Equation 16 is introduced now in eq 1 for i = 1. In order to 
simplify the resulting expression, we make use of the new variable 
y = c1/B. The final nonlinear differential equation for y is 

dY 
dx dx )y + + e(i + 2y)- = o 

(17) 
which can be rearranged in the form 

where 

i = l , 2  JI 

g‘ E 2D,(dB/dx) 
Solving for the quadratic algebraic equation in y that appears in 
the denominator of eq 18 yields the two roots 

(20a) 

Yz = gl/Yl (20b) 

1 + g1 + gz + [(I + gl + gzY - 4g11”2 
2 YI = - 

Equation 18 can now be rewritten as 

whose integration is immediate 
0, - yl)“ 0, - y2)l-“B = const 

AE- YI + 1/2 
YI - Y z  

In terms of concentrations cI and 0, eq 22 takes the form 
(cI - yIB)B(cI - yze) = const 

The flux J can now be obtained by imposing the appropriate 
boundary conditions (eqs 5 )  to eq 23 
(Cl(d)  - Yl~(4 )B(c l (4  - Y Z O )  = 

(CI(0)  - Yl~(o))B(cI(o) - Yze(0)) (24) 

(11) Man, S.; Pellicer, J.; Aguilella, V. M. J.  Compur. Phys. 1988, 75, 

(12) Brumlevc, T. R.; Buck, R. P. J .  ElectroanaI. Chem. 1978, 90, 1. 
(13) Man, S.; Aguilclla, V. M.; Pelicer, J. J. Membr. Scl. 1988,W, 497. 
(14) Bauignana, 1. C.; Rei=, H. J.  Phys Chem. 1983,87, 136. 
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Figure 2. Concentration profiles inside the membrane: (-) exact com- 
puted profiles; (---) Henderson’s profiles; ( - 0 )  assumed fixed charge 
distribution. Bulk solution concentrations are cL = 5 X 1V mol/cm3 and 
cR = 5 X lW5 mol/cm3. Fixed charge concentrations at x = 0 and x = 
d are B(0) = 1P mol/cm3 and B(d) - le3 mol/cm3, respectively. 

Equation 24 is a transcendental equation in J that can be solved, 
e.g., by the standard bisection method.ls Once the value for J 
is calculated, the constant appearing in eq 23 becomes determined 
and this equation can be used to compute the concentration profile 
cI(x) for a set of points between x = 0 and x = d. Our solution 
procedure makes use of Newton’s rulets for each point within the 
membrane (a total number of some 104 points was considered). 
Finally, when the concentration profile cI(x) and the flux J are 
known, the diffusion potential within the membrane can be 
computed by Romberg’s numerical integrationts of the electric 
potential gradient obtained from eqs 1 and 2 

- 2 .  

- 3  

Equation 25 is to be added to eq 11 for the Donnan potentials 
in order to calculate the total (dimensionless) membrane potential. 

It should be noted that eqs 24 and 23 are not valid for re = 1. 
In this case, they should be written in the form 

(hl + h2)CI(d) + Md) 

h2 0 (26) 

Act h2 - hi - 
8(d) + 2(hl + h2) In [ (ht + h2)CdO) + h t W )  

10 .................... - 

X (hi + h2);j 0 (27) 

respectively. In q s  26 and 27, B(d) has been taken as the 
(constant) fixed charge concentration, and h, 

The numerical procedure briefly outlined above was imple- 
mented on a HP-9000/330 computer under the latest FORTRAN 
version. When the initial values for the bisection method are 
properly chosen, the solution procedure lasts less than one minute. 

Results 
Transport of an ideal electrolyte with charge numbers z1 = +1 

and z2 = -1 and diffusion coefficients DI = 10’’ cm2/s and D2 
= 2 X I@’ cmz/s is considered throughout this section. Results 
have also been obtained for other diffusion coefficient values, but 
no significant qualitative changes were found. Two groups of 
results are presented. The first one corresponds to the values of 
J and A$ derived from the “exact” eqs 1 4  the second one is that 

J4/2Db(d) .  

(15) Reu, W. H.; Flannery, B. P.; Tenkobky, S. A,; Vetterling, W. T. 
Numerical Recipes; Cambridge Univ. Press: New York, 1984. 
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Figure 4. Flux vs log r,: (-) exact computed results; (- - -) results 
obtained by using Henderson’s assumption. The figures on the curve3 
refer to values of r. The values % = lW5 mol/cm3 and @(a) = 1W3 
mol/cm3 have been used in the computations. 

of the values obtained by using Henderson’s assumption for the 
concentration profiles in the equations of J and A$ (see ref 2 for 
details). 

Figure 2 shows the concentration profiles inside the membrane 
for the case r = 10 and re = 0.1. The exact profiles show some 
curvature, and the observed deviations from Henderson’s profiles 
are important. Note that if the profiles were to vary linearly with 
x,  eq 12 could never be fulfilled since c2 increases and cI d e c m s a  
with x in Figure 2. The numerical solution for other values of 
parameters r and re showed that the smaller the difference betwem 
r and r, the more linear the exact concentration profiles, as was 
anticipated in the previous section. 

Figures 3 and 4 are plots of the membrane potential and flux 
vs log (re) for different values of r, respectively. It is important 
to note that Henderson’s assumption leads to steady-state nonzero 
values for the membrane potential and the flux for r = 1. In 
addition, the cases r = 10 and r0 << r show reverse transport (this 
reverse transport cannot be obtained for a sufficiently high value 
of r; we obtained that this value was r pcl 20 in our case). The 
exact results show neither nonzero steady-state values for mem- 
brane potential and flux in the case r = 1 nor permanent 
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steady-state reverse transport, according to our previous analysis. 
In addition, the values obtained by means of Henderson's as- 

sumption agree with our exact computed results when r0 is of the 
order of or greater than r, i.e., when the sufficient condition r = 
r0 is fulfilled or the fixed charge concentration is high compared 
to bulk solution concentrations. (The computations carried out 
with smaller fixed charge concentrations showed that agreement 
between the exact results and those obtained by using Henderson's 
assumption was only possible for r = rp)  

The exact membrane potential is nearly constant, irrespective 
of the fixed charge asymmetry. Henderson's assumption leads 
to values of membrane potential lower than the exact ones for 
re < r. The exact fluxes and those obtained via Henderson's 
assumption are also quite different. On the other hand, we see 
for the case r = 10 that the exact fluxes in the range re << 1 are 
almost twice those corresponding to a homogeneous membrane 
with e(x) = O(d). This is not an asymmetry effect, since the mean 
fixed charge concentration in this range is approximately B(d)/2. 

Discussion 
We have considered a simple model for ion transport through 

inhomogeneous membranes whose asymmetric fixed charge dis- 
tribution varies linearly with position inside the membrane. The 
numerical solution worked out here dots not show the doubtful 
results arising from the use of the popular Henderson assumption 
in Takagi and Nakagaki's model and establishes some restrictive 
conditions for this assumption to be valid. However, the effects 
that the asymmetry exerts on the flux and the membrane potential 
have been found to be very small in our case, and more elaborate 
theories incorporating other asymmetry effects are now under 
development. 
When we compare our results to experiment, a case of particular 

importance is that of r = 1. Experimental re~ul tsz '~  have shown 
nonzero values for the flux and membrane potential under this 

(16) Kamo, N.; Kobatake, Y. J .  Colloid Inreflace Sci. 1974, 16, 85. 

condition. According to our computations, these results should 
be regarded as of trunsient (not permanent) nature, as previously 
pointed out by Higuchi and N a k a g a ~ a . ~  This question deserves 
more attention. A necessary experimental condition for a nonzero 
asymmetric membrane potential when r = 1 id6 'no permeation 
of ions across the membrane". (Under this condition the mem- 
brane potential is simply the sum of the two interfacial Donnan 
potentials, and this sum is not zero for r = 1 because of the fixed 
charge distribution asymmetry; see eqs 1 1  and 5.) This is an ideal 
limiting condition that can be approximated in practice with 
asymmetric membranes of high compuctness. Just two examples: 
in ref 16, the membrane was so compact that "the membrane 
resistance was high and hardly depended on the salt 
concentration", and in ref 2, inspection of Figure 6B leads to the 
estimation 0, = lo+' cm2/s for the membrane salt diffusion 
coefficient (this value is to be compared to the typical one, 0, = 

cm2/s, for diffusion in a free electrolyte solution). Therefore, 
given an initial thermodynamic state of the membrane system, 
it would take a typical relaxation time Td = 810, = ioS s (one 
day, approximately) for the diffusion through a membrane of 
thickness d = lo-* cm to reach the steady state (this state would 
be that of equilibrium for r = 1). 

The above facts may suggest that the asymmetry effects ob 
served for J and A$ when r = 1 are not permanent, steady-state 
properties of the membrane system but depend on the initial 
thermodynamic state of this system. Thus, these effects will 
eventually vanish after some (long) relaxation time has passed, 
even if the external bulk solution concentration (the same at both 
sides of the membrane) is kept constant. (However, a complete 
theory for this transient behavior is clearly beyond the scope of 
the simple model considered here, and calls for a careful exper- 
imental analysis to guide it. Therefore, we prefer not to insist 
on these tentative comments at this stage.) 
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An analytical expression is obtained for a minimal average heat consumption of a separation process driven by heat from 
constant-temperature reservoirs. The classical equilibrium expression for heat consumption is obtained in the limit of an 
average feed flow of zero. A numerical method is proposed for computing the minimal heat consumption for reservoirs with 
variable temperatures. The analysis is based on energy, entropy, and material balances and on analogy with finite-time 
thermodynamics analysis of a heat engine with a nonuniform working fluid. 

Iatroduetioa 
Among all the categories of physical and chemical procedure$, 

separation processes are probably the most wasteful of energy, 
when they are evaluated by free energy change from feed to 
products, per unit of energy used to drive the process, Le., by the 
natural generalization of efficiency. The purpose of this paper 
is to lay the groundwork for analyzing the performance of sepa- 
ration procarses and then to optimize that performance, especially 
when the process must operate at a nonzero rate. 

Many heatdriven separation processes can be analyzed as heat 
engines, working between two reservoirs at different temperatures 
TH and TL and praducing enthalpy and energy flows out of the 

system (instead of power output of conventional heat engines). 
In finite-time thermodynamics it is well-known that the average 
power output of a heat engine is bounded.'I2 The analogue of 
this result for a separation process is the existence of an upper 
limit on the average enthalpy flow through the system when the 
average entropy flow through the system is fixed or a lower limit 
on the average entropy flow if the average enthalpy flow is fixed. 
With some additional assumptions on inputs and outputs this is 
equivalent to the existence of an upper limit for the average feed 

( I )  Curmn, F. L.; Ahlborn, B. Am. J .  Phys. 1975, 43, 22. 
(2) Orlov, V. N.; Berry, R. S. Phys. Reu. A 1990,12, 7230. 
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