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curvature of the quasi-spherical Cbo molecules takes non-near- 
est-neighbor carbon atoms on adjacent spheres further from each 
other than the corresponding atoms on adjacent graphite sheets. 

Computation of the vacancy formation energy is more 
straightforward. As long as relaxation can be neglected, then the 
energy of vacancy formation is just the negative of half the 
s u b l i t i o n  energy since, by definition, half of all bonds that are 
broken when a molecule is removed are reconstituted when the 
molecule is placed on a surface. This gives a vacancy formation 
energy of 20 kcal/mol, which is comparable to the vacancy for- 
mation energy in facecentered cubic metals and much larger than 

(11) Fischer, J. E.; Heiney, P. A,; McGhie, A. R.; Romanow, W. J.; 
Denenstein, A. M.; McCauley, J. P., Jr.; Smith, Amos B., 111. Science 1991, 
252, 1288. 

that for rare gases. The reason for this, of course, is the large 
size of the molecule. Sixty atoms are involved in forming a 
molecular vacancy. 

MI. Summary and Conclusion 
The pairwise central force model was applied to certain mo- 

lecular properties of C,. Starting with a potential whose constants 
were determined from the energy of sublimation and the lattice 
parameter of solid Cm, it was used to compute the second virial 
coefficient of the gas phase, the compressibility, the lattice vi- 
brational specific heat, the surface energy, and the vacancy for- 
mation energy of the solid. Not many experimental data are 
available for comparison, but the results are consistent with existing 
data. 
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A physical model for the dissolution of calcium hydroxyapatite (HAP) is proposed. The experimentally observed self-inhibiting 
dissolution mechanism is modeled by using the scaled particle theory of hard disks. A Langmuir adsorption isotherm is proposed 
for the formation of a calcium-rich layer on the surface that constitutes a charged interface inhibiting dissolution. The model 
provides a quantitative explanation of a number of experimental facts. HAP is the main constituent of bone and dental 
inorganic tissues, and the proposed theory may constitute a new approach for studying related important phenomena like 
carious processes. 

I. Introduction 
Calcium hydroxyapatite (HAP) is the main constituent of 

biological hard tissues such as the bone and dental inorganic 
tissues, and its chemical behavior forms a model for the study of 
important biological phenomena such as carious processes. 
Therefore, the dissolution mechanism of synthetic or natural HAP 
in acid media has been extensively analyzed (see refs 1-8 and 
references therein). A series of experimental studies on the kinetics 
of dissolution of calcium HAP p o ~ d e r ~ - ’ , ~  and human enamel 
powder5s6 has been presented by Gramain and co-workers. In 
particular, the systematic analysis of calcium HAP powder dis- 
solution reported in refs 7 and 8 has been conducted very carefully 
from the experimental viewpoint, but the proposed theoretical 
model is based on a rather phenomenological approach. This 
approach gives a simple first-order law having a rate-reduction 
factor for the flux of the hydrogen ions causing the dissolution 
of the HAP. The aim of this paper is to provide a new, simple 
physicaf model for the formation of a calcium-rich layer of low 
apparent permeability to protons on the HAP surface. The model 
leads to a self-inhibiting mechanism that explains the observed 
rate-reduction factor, allowing the layer that forms to protect the 
surface of HAP from continuous dissolution caused by acid attack. 
The proposed model is based on a Langmuir isothermg for the 
calcium ions adsorbed onto the HAP surface, a hard disk theory’O 
that automatically provides a decrease in the HAP surface area 
available for attack by hydrogen ions as calcium adsorption is 
increased, and a simplified form of the Nernst-Planck equation 
for the calcium transport through the boundary layer” between 
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the HAP surface and the bulk solution. 
The structure of the paper is as follows. First, we introduce 

the dissolution reaction, present the physical model, and carefully 
discuss the simplifying assumptions. Later, we evaluate the 
Langmuir adsorption isotherm parameters and compare the model 
with experiment. Finally, we give some plausibility arguments 
for the order of magnitude of our results. The study of the 
dissolution of HAP involves many concepts from physics and 
chemistry and poses a really multidisciplinary problem. It is hoped 
that by giving a particular physical picture for the HAP disso- 
lution, future experiments aimed to understand the complex in- 
terface behavior can be designed and, ultimately, new ideas for 
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Figure 1. Schematic representation of the adsorbed calcium ions on the 
HAP surface. Calcium ions are assumed to be hard disks of effective 
radius 2LD. 

the study of carious processes will be suggested. 

11. Formulation of the Problem 

HAP can be written in the form 

(n, - 1)H20 + Ca5(P04)30H - 5Ca2+ + 

1. Dissolution Reaction of HAP. The dissolution reaction of 

~ [ x , P O ~ ~ -  + x ~ H P O ~ ~ -  + X3H2P04- + x4H3P04] + n,OH- 

where n, is the number of protons consumed when 1 equiv of HAP 
is dissolved, and xi (i = 1-4) define the mole fractions of the 
different phosphate forms present in the solution. Clearly n, and 
the xI)s are related by the demands of stoichiometry. The 
phosphate ion equilibria are6 

(1 1 

H3P04 - H2P04- + H+, pKl = 2.19 (2.4 

HP042- - H+, pK3 = 12.3 (2.4 

H2PO4- HP0:- + H’, pK2 = 7.18 (2.b) 

If a congruent dissolution is assumed: the hydrogen ion flux 
JH and the calcium ion flux Jca are related through eq 3, where 

-JH = RcJca (3) 
R, = n,/5 gives the number of protons consumed when one calcium 
ion is released. According to eqs 2, we have that 

R, = [I + 3(X2 + 2x3 + 3~4)] /5  (4) 
It is clear that R, depends on the pH of the solution through the 
phosphate equilibria defined by eqs 2. For instance, R, = 1.43 
for pH = 3.5, but R, = 1.30 for pH = 6.5. 

2. Reactive HAP Surface Area: Scaled Particle Theory for 
Hard Disks and Langmuir Adsorption Isotherm. As stated in the 
Introduction, the formation of a calcium-rich layer prevents the 
solid surface of HAP from continuous dissolution by acid a t ta~k .~J  
Here we will simulate this layer by replacing the adsorbed calcium 
ions and the electrostatically unscreened regions around them by 
hard disks. The equilibrium distribution of disks on the HAP 
surface is supposed to be the equilibrium distribution of calcium 
ions that repel each other if they get closer than a screening 
distance (twice the so-called Debye length, LD”). [In a more 
sophisticated analysis, the actual variation of the electrostatic 
potential on the surface, due to an equilibrium distribution of 
calcium ions would be calculated and the corresponding local flux 
of hydrogen ions to the surface would be computed as a function 
of this locally varying potential. In this first approach we use the 
hard disk model to avoid this obviously difficult theory.] We 
assume as a first approximation that a hydrogen ion is a disk of 
the same size as that corresponding to a calcium ion (Le., both 
have a radius LD), even though calcium ions have a higher charge. 
Figure 1 is a schematic representation of the proposed picture. 
The dotted disk around each hard disk marks the distance of 
closest approach between centers and therefore defines the 

Figure 2. So/S vs f according to eq 5 in the text. The plot provides a 
measurement of the protection afforded by the adsorbed ions as a func- 
tion of the fraction of surface available for reaction f = *LD2N/S. 

“exclusion disk” of an ion, forbidden to the center of another ion. 
The total surface area of the HAP is denoted by S. The shadowed 
area outside all the dotted disks represents the domain where 
hydrogen ions can attack the HAP surface. The relationship 
between S and the available area for hydrogen attack, So, can 
be very well approximated (at equilibrium) using the scaled 
particle theory (SPT).I0 It can be shown by means of SPT (see 
Appendix A) that 
So/S = (1 -A exp{-(3 - 2flf/(1 -A2], f d D 2 N / S  (5) 

where N is the number of disks (adsorbed calcium ions) on the 
surface. The radius of the disks is taken to be LD, the electrolyte 
solution Debye length, which can be estimated as 

LD = (ERT/F’CO)’/~ (6)  
In eq 6, E is the dielectric permittivity of the solution (which can 
be approximated by that of pure water), R is the gas constant, 
T is the absolute temperature, and F is the Faraday. co is a typical 
solution concentration, and according to the data in ref 8, it can 
be represented in our case by co = 0.1 M. Then, LD = 1.1 X 
cm = 11 A. The total area covered by disks is rLD2N = jS, f 
being the covered fraction of the surface, Le., the “packing 
fraction”. Figure 2 is a plot of eq 5 for different values off. It 
is clear from this figure that the fraction So/S decreases dra- 
matically beyond f = 0.4. This fraction provides an index of the 
protection afforded by the adsorbed calcium ions. 

To employ eq 5 in each practical case, we need to estimate the 
number N of ions adsorbed on the surface. This can be calculated 
from the surface concentration of adsorbed calcium c, as follows: 

(7) 

where NA is Avogadro’s number. Equation 7 introduces the 
well-knowng Langmuir adsorption isotherm for c,. This adsorption 
isotherm relates the volume concentration cs of calcium ions just 
outside of the adsorption layer with c, the surface concentration 
in this layer, through the constants n, (number of adsorption sites 
per square centimeter) and K (a constant exponentially related 
to the binding energy). The latter are two free parameters to be 
obtained by fitting theory to experiment. According to eq 7, the 
fraction of exposed surface is 

The HAP/solution interface is calcium saturated in the pH range 
analyzed according to the solubility product of calcium HAP7l8 
in contact with bulk solution. Therefore, c, in eq 8, as a function 
of the solution pH, are those characteristic of saturated HAP 
solutions (see Figure 4 in ref 8). 

3. Transport Equation. The transport of calcium ions from 
the HAP surface to the bulk solution is assumed to m r  through 
a boundary layer of thickness d (see Figure 3). It seems necessary 
to include this layer in the model since experiments7t8 show that 
the dissolution kinetics are stirring-dependent. Figure 3 assumes 
a quasi-steady state for the calcium transport. This is a reasonable 
first approximation, since typical experimental times7l8 are of the 
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Figure 3. Schematic picture of the concentration profile of calcium ions 
through a boundary layer of thickness d .  We denote by c,, c,, and cb the 
surface concentration, the volume concentration just outside the ad- 
sorption layer, and the bulk concentration of calcium, respectively. A 
quasi-steady state with a linear concentration profile gradient is assumed. 

order of 1 min, while the diffusional relaxation time for calcium 
ions is rd = &/Oca = 1 s for d = 5 X cm, and a diffusion 
coefficient Dca = cm2/s. Electing to look a t  the system on 
this temporal scale means that our treatment ignores (1) the initial 
time needed for the establishment of an equilibrium layer of 
adsorbed calcium ions and (2) the transient, i.e., the time evolution 
of the calcium concentration profile in the boundary layer toward 
the final linear profile.12 Moreover, it should also be emphasized 
that exceedingly long times cannot be allowed in our model if we 
wish to ignore the change in surface area due to the dissolution 
of HAP. (A study on the variation of particle size with time under 
the dissolution conditions of ref 6 can be found in ref 13.) 
However, according to refs 7 and 8, the surface area corresponding 
to the “sides” of the HAP platelets is negligible compared to the 
total area, so that if uniform dissolution is assumed, the change 
of surface area with time is found to be negligible, at least up to 
30% dissolution.8 We can then analyze the problem without 
considering changes of the total surface area with time so that 
the model exhibited in Figure 3 can be used in a wide temporal 
interval of experimental interest. 

The transport equation describing the calcium ion flux is the 
(simplified) Nernst-Planck equation’ ’ 

Jca = -Dca[ + 2c 2 1 (9)  

where c is the calcium concentration, x the spatial coordinate, 
and C#J the electric potential in units of RT/F. Note that the 
transport is assumed to occur only in the direction normal to the 
surface (see Appendices B and C for details). The activity 
coefficient yCa is taken to be constant through the boundary layer. 
This assumption considerably simplifies the problem and is mo- 
tivated by the absence of information on the change of yca with 
concentration for the complex multicomponent system analyzed 
in refs 7 and 8. Moreover, the use of a supporting electrolyte in 
the experimental studies (0.08 M potassium chloride in refs 7 and 
8) allows us to neglect the term involving the gradient of electric 
potential in the boundary layer (see ref 11 for a detailed analysis 
of the validity of this assumption throughout the volume of a 
boundary layer). In our case, it is clear that the adsorbed calcium 
ions create an electric field at x = 0. However, the concentrated 
potassium chloride solution employed as supporting electrolyte 
causes this field to be screened within a few Debye lengths from 
x = 0. Bearing in mind that d = 5 X cm >> LD lo-’ cm, 
it is reasonable to neglect the second term in the right-hand side 
of eq 9. Thus 

(12) Dejardin, P. J.  Colloid Interface Sci. 1989, 133, 418. 
(13) Hsu, J.; Lin, M. J.  Colloid Interfoce Sci. 1991,141,60. Hsu, J.; Liu, 

E. Ibid. 1991, 144, 597. 
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Figure 4. So/S vs pH. The full squares represent the experimental points 
in ref 8. The continuous line corresponds to eq 5 in the text with the 
adsorption parameters of eq 12. 

where the quasi-steady state assumption assumed in Figure 3 has 
been employed. Note that the effects of stirring observed in refs 
7 and 8 can be incorporated into the model through a stirring- 
dependent value of d.  From eqs 3 and 10, it is clear that 

where we introduce the total specific surface area S, and refer 
jH to mol g-* 6’ and JH to mol s-I. Equation 11 can be readily 
compared to the final eq 4 of ref 8. If we define POca = DcaS/d 
and introduce activities a instead of concentrations c, then eq 11 
is identical to eq 4 in ref 8, except for the fact that we now have 
a particular interpretation for the phenomenological coefficient 
1/(1 + k)  introduced in ref 8 to reconcile theory and experiment 
(this coefficient is (So/* in our model). We will show in the next 
section that this interpretation of the adherent surface layer can 
explain the observed dependen~e’,~ of 1 /( 1 + k )  on experimental 
conditions. 

111. Results 
1. Evaluating Parameters K and II, of the Adsorption Isotherm. 

Parameters K and n, can be readily evaluated by comparing our 
theoretical expression for So/S (see eqs 5 ,  8, and 11) to the 
experimental results for 1/(1 + k) in Figure 3 (full line) of ref 
8. This latter figure is a plot of 1/(1 + k) vs pH obtained from 
the experimental slopes of the proton uptake fluxes jH vs mean 
calcium activities (see Figure 2 of ref 8). The fitting procedure 
is as follows. First, we choose five different values for the pH 
and read the corresponding c, values from the theoretical curve 
in Figure 4 of ref 8 (calcium concentrations of saturated HAP 
solutions vs pH). Then, we substitute the values for c, in eq 8, 
and the latter into eq 5 ,  so that five different theoretical points 
(So/S, pH) are obtained as functions of the two parameters K and 
n,. On the other hand, from what has been said above the ex- 
perimental So/S values can be read as 1/( 1 + k )  from Figure 3 
in ref 9. Finally, a nonlinear least-squares fitting procedure is 
applied to the set of five points (So/S, pH), and the values of the 
adsorption isotherm parameters are found to be 

n, = 2.60 X lo-” mol/cmz = 1.56 X 1013 sites/cm2 = 
1 site/640 AZ (12.a) 

K = 1.76 x 105 M-1 (12.b) 

The experimental value8 S = 45 mz g-’ has been used in the above 
computations. 

2. Variation of So/S with pH. Given the n, and K values of 
eqs 12, it is possible to plot So/S vs pH and compare our theory 
with experiment. This is done in Figure 4, where the experimental 
points have been read from Figure 3 of ref 8 and are represented 
by full squares. It seems clear that the agreement between the 
two parameter theory and experiment is quite good and provides 
a physical interpretation of the phenomenological “rate-reduction 
factor” 1/( 1 + k) introduced previously9 in order to reconcile 
theory and experiment. [It should be emphasized that such a good 
agreement cannot be obtained with any other trivial fitting (e.g., 
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Figure 5. Simplified view of the crystalline HAP surface. A circle of 
radius LD s 11 A centered at one common vertex is represented. 

So/S = A + B exp (pH)) or even with three-parameter fittings 
(e.g., So/S = A + B pH + C pH2). Therefore, it is the functional 
dependence of So/S with pH obtained from our physical model 
which leads to the agreement rather than the fact that we have 
a two parameter theory.] According to the previous experimental 
st~dies,4,’*~ this reduction factor is caused by the formation of a 
permselective charged layer on the HAP surface. 

Note also that our final equation foriH has the same functional 
dependence on experimental parameters as eq 4 of ref 9, so that 
it can also explain a number of experimental facts quoted in that 
paper. In particular, it is clear that the experimental results in 
Figure 2 of ref 9 can also be explained from eqs 4, 5 ,  and 11 in 
our theory. Moreover, the sample conditioning effects, discussed 
thoroughly in ref 8, can also be understood qualitatively, since 
in this model the physical state of the interface is specified. 
However, our model ignores the transient involved in both the 
formation of the calcium rich layer and the establishment of the 
diffusional steady state and thus cannot provide a quantitative 
description of these processes. 

IV. Discussion 
A model for the dissolution of HAP has been presented. The 

proposed self-inhibiting mechanisms (Langmuir adsorption plus 
hard disks approximation) is very simple and introduces only two 
free parameters, K and 4, that characterize the adsorption iso- 
therm. It provides a physical picture by means of which the 
charged interface, invoked in previous ~ork ,~*’*~  inhibits dissolution. 
Given the biological importance of calcium HAP, the proposed 
theory might constitute a first approximation for the study of 
related important phenomena, e.g., carious processes. Such studies 
can be motivated by consideration of the orders of magnitude of 
n, and So/S derived from a comparison of our theory with ex- 
periment. To this end, consider the crystallographic datal4 for 
HAP. The surface of crystalline HAP can be viewed as composed 
of rhombi of side a = 9.4 A and area s = 75 A2. If we draw a 
circle of radius LD centered at one common vertex (see Figure 
5 ) ,  we see that nine rhombi are approximately totally or partially 
included within it. Suppose now that only one calcium ion can 
adsorb onto one of these rhombi. Then, we have one adsorption 
site per 9 X 75 A2 = 675 A2. This figure can now be compared 
to the previous result of n, = 1 site/640 A2 obtained from our 
theory. That is, according to our model, if a calcium ion is placed 
on a site, it protects a minimum area of some lo3 A2 of HAP 
against dissolution. In fact, this area is much greater because 
of the exclusion effect introduced in our model via the hard disk 
theory. 

Besides this quantitative agreement, there is the fact that the 
theory reproduces the experimental requirement that the rate be 
proportional to c, - cb. It is not immediately evident that this would 
have to be the case. For example, if the calcium ions were very 
mobile, one might expect that the boundary concentration would 
be sufficiently smeared out, so that it was more like (So/S)c, than 
c, itself. Appendices B and C address this point and lead to the 
conclusion that the adsorbed calcium ions are relatively immobile 
and that the equilibrium configuration of the disks is established 
by the constant dissolution of the surface itself. 

~ ~ 

(14) Lide, D. S., Ed. CRC Handbook of Chemistry and Physics; CRC 
Press: Boca Raton, FL, 1990-1991. 

Figure 6. General representation of the volume over which the diverging 
diffusion of calcium ions occurs. Boundaries a, and a b  represent ele- 
ments of the inner and outer surfaces of the Nernst layer, respectively, 
while R, is any boundary (impermeable to diffusion) connecting R, and 

- -  

. I . . .  

-h- 
Figure 7. Sketch of the situation considered in Appendix C. The heavy 
lines at the bottom indicate exposed source lengths. 

Figure 8. Approximate map of the diffusional flux lines corresponding 
to the shaded area in Figure 7. 

Finally, we must mention that the ideas developed here could 
be formulated in a more rigorous theoretical basis. In particular, 
the Langmuir adsorption isotherm is clearly an oversimplified 
description of the complex kinetics of the problem. For example, 
to be consistent the isotherm should make use of the available 
space S,,. Adsorption isotherms incorporating differences in the 
calcium and hydrogen ions were also attempted, but they did not 
lead to significant improvement. Therefore, a very simple a p  
proach showing some of the experimental trends of the self-in- 
hibiting mechanism was preferred. New experimental data 
throughout a wider range of pH could motivate the development 
of a more rigorous theory. 
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Appendix A. Evaluation of the Reactive Surface Area 
The SFT for hard spheres and hard disks can be found else- 

where.I0 We give here a brief exposition of the part of SPT 
relevant to our theory of HAP dissolution, and derive eq 5 in the 
text. Suppose a plane of area S contains N particles so that the 
bulk uniform surface density is p, = N/S. Define Po(r) as the 
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probability that a circular region of at least radius r, free of particle 
centers, will be found. The empty circular region of radius r is 
bounded by a circular shell of area 2ur dr. Let p(r,p,) be the 
conditional density of centers in this shell. The basic technique 
is to define a function G(r,p,) so that 

p(r,p,) = PsC(r9Ps) (A. 1) 
Thus, 2mp,G(r) dr has the meaning of the probability of finding 
a particle center in the shell of a cavity of radius r (we have omitted 
the explicit dependence of C on ps for the sake of simplicity). The 
chance that the shell is empty is given by [ 1 - 2urp,G(r) dr], and 
therefore we have that 

(A.2) Po(r + dr) = Po(r)[l - 2 ~ r p , G ( r )  dr] 

Upon expansion of the left-hand side of eq A.2 and subsequent 
integration between r = 0 and r = 1, using P(0) = 1, we obtain 

Po(r) = e x p ( - i r  2rrp,G(r) drl (A.3) 

Po(r) may be given another interpretation. If we denote by So(r) 
the shaded area in Figure 1, then Po(r) is the fraction So(r) /S  
and represents the probability that a point chosen randomly in 
the surface S will be located in the shaded region. 

Let LD be the radius of the hard disks. Then the centers of 
the two particles can never be closer than 2LD. It can be shownI0 
that function C(r)  takes the form 

, r < L ,  
(A.4) 

G(r) = {: 1 -Iv*p, 

B o + r ,  r > L D  

where the first equation in eq A.4 is exact and the second is known 
to be an excellent approximation.I0 Furthermore the following 
exactlo conditions must be satisfied: 

~ ( L D - )  = G(LD+) G(-) = 1 + ~ * L D ~ ~ , C ( ~ L D )  (AS) 

By applying conditions A S  to eq A.4, it may be easily shown that 
1 f- 

where f has already been defined in eq 5.  Equations A.6 are now 
substituted into eq A.4 and the resulting function C(r)  into the 
integral in eq A.3, with the result 

which is the relation appearing in eq 5 .  

Appendix B. Dependence of Flux on Boundary Concentrations 
It should be noted that in the case under consideration the 

surface is not homogeneous, so that the diffusive flux of calcium 
ions diverges from certain surface areas where acid attack takes 
place. The boundary concentration just out of the reactive domain 
may be taken equal to c,, while the concentration in the bulk 
solution is cb. However, with a divergent flux, will the total flux 
still be proportional to c, - cb? 

To examine this question, we look at the general case proposed 
in Figure 6. The steady-state continuity equation reduces to 
Laplace's equation 

v2c = 0 over V (B.1) 

c = c, over Q, (B.2) 
c = cb Over a b  (B.3) 

c-bc = o over Q, (B.4) 

subject to the boundary conditions 

where ii, represents the outer unit normal vector of the surface 
Q, (at every point). 
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The transformation 

changes the above equations to 

V2C = O over V (B.6) 

C = 1 over Q, (B.7) 

C = 0 over fib (B.8) 

%.?c = o over Q, (B.9) 
Then, Stokes' theorem requires 

(B.10) 

Note that the last integral in the right-hand side of eq B.10 is equal 
to zero because of boundary condition B.9. Finally, the total flux 
can be easily written in the form 

If the surface fib is of relatively infinite extent compared to Q, 
(a configuration that is approximately the case), the Q, can be 
chosen to coincide with some of the outermost flow lines of the 
diffusion pattern, and eq B.9 will be precisely correct. Further- 
more, the bulk of the total flux will have been encompassed since 
very little will exist beyond these outermost flow lines. Thus it 
can be seen that eq B.11 is asymptotically exact. 

Equation B. 11 then implies that in the case of diverging dif- 
fusion, the total flux is always proportional to the concentration 
difference (c, - cb), with a proportionality constant dependent on 
the particular geometry of the system. 

Appendix C. Effects Due to the Redistribution of Calcium 
Ions on the Surface 

In Appendix B a divergent flux from a single source was studied. 
However, the HAP surface contains multiple sources distributed 
according to the equilibrium configuration of hard disks. Such 
multiple sources must give rise to a 'coupled" flux, and it is 
necessary to inquire into whether the conclusions of Appendix B 
can be retained under such coupling. To investigate this question, 
we examine a two-dimensional situation since the associated flux 
distribution is easier to diagram in two dimensions. However, the 
reader will quickly see that no essential change in the results would 
be occasioned by the treatment of the actual three-dimensional 
case. 

Although the multiple sources are statistically (even if not 
randomly) distributed, we will compromise the reality of our model 
by assuming that they are positioned on the sites of a regular 
lattice. For example, in a two-dimensional case, the picture will 
resemble Figure 7. Here the heavy lines at the bottom of the 
figure indicate exposed (reactive) source lengths (areas in the 
three-dimensional case) while the upper dashed line indicates the 
limit of the Nernst layer of thickness d .  The lattice parameter 
governing the source locations is A. The sources themselves are 
of length so that the spaces between them are of length A - 4. 
Symmetry allows us to focus on a unit cell of the system like the 
one shaded in Figure I. 

We introduce an (x,y) coordinate system 0, in the vertical 
direction). The center of the source lies at (0,O) and the boundaries 
of the unit cell are at ( f X / 2 , 0 ) .  The limit of the Nernst layer 
lies at y = d.  The boundary conditions 
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are obvious. The fust of eqs C.l derives from the fact that outside 
the source and the sink (limit of the Nernst layer) there can be 
no normal flux. The boundary conditions on the sides of the cell 

ac/ax = o x = ~ ~ 1 2  o < y < d (C.2) 
stem from considerations of symmetry (a result of the lattice 
model). Using eqs C.l and C.2, it requires very little thought to 
construct an approximate but essentially correct map of the 
diffusional flux lines. We exhibit this map in Figure 8. 
Because of the boundary conditions, an equivalent of the surface 

in Figure 6 can be found consisting of the horizontal boundaries 
represented by the dotted lines at the bottom of the cell together 
with the vertical boundaries of the cell. Thus, the result of Ap- 
pendix B applies to this cell and the total flux must be proportional 

This would complete our argument if it were not for he fact 
that the reactive areas were determined by the locations of the 
calcium ions (the disks) that are constantly changing their positions 
(although maintaining the equilibrium configuration) as the 
surface dissolves. If this change of configuration is rapid enough 
the boundary at y = 0 would be a “smeared out” uniform entity 
where the concentration might be something like 

to c, - cb. 

Maf6 et al. 

Then, in order to avoid having to use eq C.4, it is necessary 
only for a diffusing particle to traverse the distance h = X in a 
time less than the relaxation time of the source configuration. 
Thus, if T is this relaxation time, we require 

X2/D < T (C.5) 
On the real two-dimensional surface there will be N, exposed 

reactive areas of average area (s) such that So = A’&). Molecular 
dynamics studies for disks of diameter 2LD have been performed 
(last entry of ref 10) to yield both N, and (s) as a function of 
the packing fraction$ The unit cell in Figure 7 should be assigned 
(in the three-dimensional case), the area S / N c  and the charac- 
teristic length X is of the order of (S /N, ) ’ /* .  At a value off = 
0.5, the molecular dynamics result gives 

X 50LD (C.6) 

D = cm2/s (C.7) 

while D can be estimated as 

Substitution of these numbers into eq C.5 gives T > 7 X 10” s. 
Thus, this is the shortest relaxation time that can be tolerated. 
The longest possible relaxation time T should be of the order of 
the rate of dissolution of a single crystalline plane in H A P  it 
corresponds to a velocity of dissolution of 

u = a / .  (C.8) 
where a is the lattice parameter normal to the direction of dis- 
solution. If we use the estimate a = lo-’ cm, then eq (2.7 gives 
u = cm/s. Clearly, the crystal does not dissolve at this 
enormous velocity, so that T >> s. As a result, eq C.4 would 
be inapplicable. 

On the other hand, T might be shorter than the time required 
for the dissolution of a lattice plane. However, the agreement 
between theory and experiment, in the sense that the rate is 
proportional to cs - Cb, suggest that T is comparable to the time 
of dissolution of a lattice plane. A simple mechanism for this 
would involve having the calcium ions so strongly bound to the 
surface as to be relatively immobile. 
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Furthermore the flux lines in Figure 8 would be parallel and 
vertical throughout the length d so that the flux would be 

(where D is the diffusion coefficient) and no longer proportional 
to c, - cb. We therefore need to estimate the smallest relaxation 
time of the source distribution that can be tolerated if eq C.4 is 
not to be in force. This is rather easy to do. Note that in Figure 
8 the flux does become uniform, even with an absolutely immobile 
distribution of sources, above y = h. Thus, the flux at y 1 h is 
essentially ignorant of any reconfiguration of the sources. Also 
simple scaling ideas indicate that h must have a length of the order 
of the cell parameter A. Thus we can set h = X without damaging 
the validity of our order of magnitude considerations. 


