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The classical equations for the equilibrium electric double layer (EDL) at the charged membrane/solution
interface have been solved and distributions of the electric potential and estimations of the charge stored
are presented for some typical situations. The theoretical treatment is based on the full, non-linearized
Poisson-Boltzmann equation, and includes partition coefficients and an adsorption isotherm for the con-
centration-dependent fixed charge in a membrane immersed in a ternary electrolyte system. The physical
trends observed for the Donnan and surface potentials and for the charge stored when the characteristics
parameters of the EDL are varied have been discussed. Finally, the results obtained with the depleted
layer model with concentration-dependent fixed charge are compared to those resulting from the diffuse
double layer model.

Introduction

The structure of the electric double layer (EDL) at the
biological membrane/solution interface has received much
attention in the past [1,2]. Biological membrane thicknesses
are usually of the order of a typical electrolyte Debye length
Lp, Ly ~ 1077—107% cm, and then a detailed analysis of
this interface becomes necessary. This situation does not
occur in synthetic membranes where both the membrane
and the unstirred films have thicknesses d, d ~ 1073—10~?
cm, much greater than Lp. Thus, transport models for syn-
thetic charged membranes [3] have usually assumed dis-
continuous changes in the concentrations and the electric
potential at the interfaces. However, it is well known that
the structure of the EDL is central to many membrane prob-
lems. Some of them are the study of the dielectric properties
of charged membranes [4, 57, the relation between the Don-
nan and surface potentials [6,7], the analysis of the mech-
anisms of fixed charge formation in ion-exchange mem-
branes [8,9], and the state of the ion-exchange membrane/
solution interface under the passage of an electric current
[10]. These questions have prompted us to solve the clas-
sical equations [11] for the equilibrium EDL, and present
distributions of electric potential and estimations of the
charge stored for some typical situations. A general treat-
ment based on the full, non-linearized Poisson-Boltzmann
equation, and including partition coefficient effects and an
adsorption isotherm for the concentration-dependent fixed
charge in a ternary electrolyte system will be given. Although
some of the final equations worked out are a bit involved,
it is expected that this treatment can clearly show the phys-
ical trends observed when the characteristic parameters of
the EDL are changed. To this end we have tried to isolate
the effects that the concentration-dependent fixed charge,
the partition coefficients, and the dielectric permittivities ex-
ert on the EDL properties.
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The theoretical treatments of the EDL for charged mem-
branes are based frequently on the existence of a depleted
layer within the membrane [12,13]. This assumption not
only leads to very simple final results but also permits a
direct comparison with the case of semiconductor physics
[12,14]. The depleted layer model for a membrane with
concentration-dependent fixed charge will also be studied
here and the results arising from this oversimplified treat-
ment compared to those obtained with the diffuse double
layer model.

Formulation of the Problem

The physical problem dealt with in this paper is sche-
matically represented in Fig. 1. Ions are treated as point
charges, and solvent dipolar effects as well as compact layer
effects are neglected. The electrolyte system considered is
NaCl—-HCI—-H,0. We introduce the notation w,, r, n; for
the local molar concentrations of hydrogen, chloride and
sodium ions, respectively, where i = 1 denote the solution
phase and i = 2 the membrane phase. The concentration
of charged groups is termed p,. According to this, the Pois-
son equation can be written as

a2y F

ol = 8—(w1+n1—r1), x <0, (1a)
1

a2y F

e - T —S“(Wz+n2+l72*7'2), x>0, {1b)
2

where V' is the local electric potential, x the position, F the
Faraday constant and ¢ the dielectric permittivities in the
solution and the membrane. One the other hand, we have
the following Boltzmann relations for the concentrations

(2a)
(Zb)

we=wye ? n=mne? r =re?,

wy = Kowpe™®, m o= Kme % r = Kre?,
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where subscript 0 refers to the bulk solution value
(x— — o) of concentrations. Note that ry = wy + 1y = ¢
because of the electroneutrality condition in the bulk of the
solution. Also, K, K, and K, are the partition coefficients
for hydrogen, sodium and chloride ions, respectively. These
specific partition coefficients are included to account for the
possible differences in the standard chemical potential of the
ions in the solution and the membrane phases [4]. Finally,
¢ = FV/RT is the dimensionless potential, where R is the
gas constant and 7 the absolute temperature. We have cho-
sen ¢ (x — — o) = 0 in Eq. (2a). Then, if the ions were
distributed between the two phases only according to their
charge and bulk solution concentration, all K's (j = n,w,r)
would be unity and the concentrations in the bulk of the
membrane and in the bulk solution would differ by a factor
e~ %o, where ¢p is the Donnan potential. The introduction
of the K/s allow us for including preferential solubility ef-
fects. Thus, it is possible to consider both the case in which
all the ions are equally preferred/excluded in the membrane
phase and the case in which there is some asymmetry in
partition coefficients of the counterions in such a way that
one of them is preferred in the membrane while the other is
excluded. In this case, we should talk of chemical exclusion,
in opposition to the case K; = 1 (j = n, w, r) of electrostatic
exclusion.

Let us focus now on the concentration of charged groups
in the membrane phase. We consider that the fixed groups
are hydrogen ions bound to membrane matrix according to
a Langmuir adsorption isotherm [15]

D2
wy (N — py) ®

K =
Here, N stands for the concentration of adsorption sites in
the swollen membrane and K is the equilibrium constant for
the adsorption reaction. We will employ the dimensionless
constant K, = KN throughout the paper. Substitution of
Egs. (2)—(3) into Eq. (1) yields the Poisson-Boltzmann
equation describing the behaviour of the system under study

d? F’
dxqz =~ %7 e=® —e?), x <0, (4a)

1
d2 Fl
dx(é) = - &RT (Kw W0+Kn nO)

2.

NK K, —?
6P _ K.ce? 420 © x>0, (4b)

N+ K, Kywoe |’

Eq. (4) is subjected to the following boundary conditions

¢ =0, d¢ =0, X — — 00, (5a)
dx

¢ = éo, a9 =0, x— 0, (5b)
dx

¢p being the equilibrium Donnan potential (i.e. the total
potential drop through the EDL at the membrane/solution
interface). Also, we state the continuity of the electric dis-
placement vector through the interface at x = 0,

() ()

and write ¢s = ¢(0) for the (Stern) surface electric potential
at x = 0.

Egs. (4)—(6) completely determine our problem. The
Donnan potential ¢, can now be obtained by setting to
zero the r.hs of Eq. (4b). (Note that in the case of synthetic
membranes the electroneutrality assumption should be valid
for the bulk of the membrane). The resulting transcendental
equation for ¢p is

N
= Ina + arcsinh I:——] R
oo 2B8(1 +yev)
Kywy+ Kyng T2 /
o [—%—OJ B = [Kawot K Kecl'?, ()
_ N
’= Kp Kv Wo .

Eq. (7) can be simplified to give

p = arcsinh [_—N]Ve%—} (8
2¢ <1 + >

p Wo

when all partition coefficients are equal to unity (¢ = 1,
B = ¢), and

$p = lne + arcsinh (—5—%—) )

when the charged groups are bond infinitely strongly to the
resin (K, — oo, y = 0). If both simplifying assumptions are
met, then

¢p = arcsinh <2—A£> =In { % + [1 + <%>2T/2} (10)

which is the simpleset expression for the Donnan potential.

On the other hand, by integrating Eq. (4a) from x — — o
to x = 0, and Eq. (4b) from x = 0 to x — o0, and making
use of Eq. (6b), we obtain the following transcendental equa-
tion for ¢g
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sinh (¢p — Ino)

¢ sinh? (%)

&y
T Fsinh (o — %) <? - 1)
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+3tanh<——2——— — yePr.

(1

Then, once Eq. (7) has been solved for ¢, the transcendental
Eq.(11) can be immediately solved for ¢s. Under the sim-
plifying assumptions K, = K, = K, = 1, Eq. (11) gives

s = ¢p — In {(1 + ye?p) exp[

1+ yef

(e ) ()]
(1)

For the case of infinitely strongly bound charged groups,
v = 0, Eq. (11) can be written as

¢s = ¢p — tanh (@,—2_11‘91>

. ’T;T‘”) [fﬁ sinh’ (ﬁ*g) ~ sink? (9;—9_1,_>
+ —;—sinh2(¢5/2) (i:_ _ 1)} "

and, finally, when both conditions are satisfied, we have
(ﬂ - 1>.
&

The case g = &, has not been discussed in the above ex-
pressions, but their form make easy this simplification.

Once expressions for ¢, and ¢ have been written down,
the local electric potential can be obtained from the follow-
ing equations.

2 2
¢ = 4arctanh [tanh (—d)i> e x} , K= ﬂ, x<0
4 E'IRT

$p

¢s = ¢p — tanh <7> _ 2sinh’(¢s/2)

sinh ¢p (14)

(152)

and

@ a6
2= ¢—Ino ¢p—Ino\ N e™? ’
X —ino . —Ino ! v+ 12
m[mnhz( 5 >—~smh2< D 3 >+Eln<;:€-¢n>]
2
K%:zF ’B, x>0 (15b)
EZRT

where #, and «, are the reciprocal Debye lengths in the
solution and the membrane phase, respectively. The electric
potential profile shown in Fig. 1 corresponds to Egs. (15)

for the case K; = 1 (j = w, n, 1), K, — o0, & = & and
N/¢ = 10. The position is given in 1/x units in the figure
(note that x; = x, in this case).

In relation to definition (15b) it is worth noting that, when
the fixed charge groups are infinitely strongly bound
(y = 0) and no partition effects are observed (K; = 1 for
j = wnr), parameter  reduces to ¢ and thus both the
reciprocal Debye length in the solution, x;, and in the mem-
brane phase, x,, are defined in terms of ¢. However, when
the fixed charge concentration N is much greater then ¢, the
electric potential in the membrane phase changes from ¢s
to ¢, over a distance of the order of (e;RT/2F”N)"? rather
than of the order of 1/x, = (e;RT/2F%c)"? Thus, some au-
thors prefer to define «, in terms of the fixed charge con-
centration N instead of the mobile ion concentrations c (the
appearance of § instead of ¢ in Eq. (15b) is due to adsorption
and partition effects) [16]. This procedure offers one ad-
vantage over the treatment presented here: introduction of
N instead of ¢ (or f) in the expression of x, leads to a clear
understanding of the characteristic parameters of the EDL
in a highly charged membrane/solution interface. However,
this supposes a poorer understanding of the weakly charged
membrane/solution interface case, and calls for the intro-
duction of x, in a somehow artificial way, while definition
(15b) naturally follows from the integration procedure.

The charge Q stored in the EDL can now be computed
as

0

odx = — | gdx = (8¢RTc)"sinh (¢s/2)

— L

4Fc/w;)sinh (¢s/2)

Q=

S

(16)

—~

where we have employed Eq. (4a). Egs. (7), (11), (15), and
(16) are the final results of our study. Given the ionic par-
tition coefficients, the dielectric permittivities, the concen-
tration of adsorption sites and the bulk electrolyte concen-
trations, the solution procedure is as follows. First, we solve
Eq. (7) for ¢p. Then, substitution of this value into Eq. (11)
permits solving for ¢s. Finally, Eq. (15) give the variation of
¢ with x in the two phases, and Eq. (16) yields the charge
stored in the EDL.

Results

As stated in the Introduction, we aim here to present the results
in such a way that only one isolated effect is studied at once. Thus,
we consider first a set of values for y (keeping o = 1 and f = ¢}
and discuss the effect of the adsorption constant X, Then, we
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change S (with « = 1 and y = 0) in order to study the case of a
membrane with low solubility for all the ions. Finally, we introduce
different values for « (with f = ¢ and y = 0) and analyse the effect
of the asymmetry in the ion partition coefficients.
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Fig. 1

Schematic representation of the EDL. The electric potential profile
shown corresponds to Eq. (15) for K, -, K, = K, = K, = 1,
g = & and N/c = 10
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Potential drops in the solution phase (¢s) and the membrane phase
(¢p — ¢s) vs. adsorption constant K, for a highly charged membrane
with N = 100 ¢ = 1 M. All partition coefficients are equal to unity.
The numbers on the curves denote &/¢, values

Figs. 1 —8 show a set of typical results obtained for the EDL
properties. Consider first Fig. 1. It is clear that for the case in Fig. 1,
the major part of the potential drop across the EDL occurs in the
electrolyte solution, and not in the membrane. Note that even
though the electrolyte Debye lengths as defined in Eq. (15) are equal
in the two phases, the spatial extent of the diffuse layer is greater
in the solution than in the membrane. On the other hand, Figs. 2
and 3 present the potential drops in the solution phase (¢s) and
the membrane phase (¢p — ¢s) as a function of the adsorption con-
stant K, for a highly charge membrane (V¥ = 1 M) and a weakly
charged membrane (N = 0.01 M), respectively. Unity values for
the partition coefficients have been employed. The curves are par-
ametric in & /¢, The dielectric permittivity of water is used for ¢;.

Consider first Fig. 2. It can be seen that for any given ¢, /e, ratio
both potential drops ¢s and ¢p — ¢s increase with K|, reaching a
plateau for K, ~ 10° (this plateau corresponds to the saturation of
the fixed charged concentration according to Eq. (3)). The potential
drops in the solution are well above those in the membrane phase,
except for the membrane with the smallest dielectric permittivity.
Note that ¢ decreases with ¢;/¢,, while ¢p — ¢ increases with the
value of this ratio. The sum of both terms is the total potential
drop across the EDL, ¢p, and does not depend on ¢,/¢, according
to Eq. (7). (Nevertheless, ¢p can depend on &/e, in the case of
biological membranes [17].)
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Fig. 3
Potential drops in the solution phase (¢s) and the membrane phase
{(¢pp — ¢s) vs. adsorption constant K, for a weakly charged mem-
brane with N = ¢ = 0.01 M. All partition coefficients are equal to
unity
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Potential drops in the solution phase (¢g) and the menbrane phase
(¢pp — ¢s) vs. partition coefficient K; = K, = K, = K, for a highly
charged membrane with N = 100 ¢ = 1 M. The adsorption con-
stant is infinitely large
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———— q) -0 merical or graphical methods. Thus, it results that ¢p, — ¢ cannot
40 D S »2% become greater than unity in the case g = &, or greater than 2.10

Fig. 5

Potential drops in the solution phase (¢s) and the membrane phase
(¢p — ¢s) vs. partition coefficient K; = K, = K, = K, for a weakly
charged membrane with NV = ¢ = 0.01 M. The adsorption constant
is infinitely large
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Potential drops in the solution phase (¢bs) and the membrane phase
(¢p — ¢s) vs. the asymmetry coefficient « = K, = 1/K, for a weakly
charged membrane with N = w; = ¢ = 0.01 M. The adsorption
constant is infinitely large

Eq. (11)—(14) can also be used to study how the total potential
drop is distributed between the two phases in the limiting cases of
high and low Donnan potential. Let us consider Eq. (14) for the
sake of simplicity. When the Donnan potential becomes much
greater than unity we have that

bp — s =1 + e o= <i - 1> )

&

in the case ¢ = 10 &, no matter how large ¢ and ¢s are. For
small Donnan potentials, Eq. (14) simplifies to
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Fig. 7
Charge stored in the EDL vs. K, for a highly charged membrane.
All partition coefficients are equal to unity
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Charge stored in the EDL vs. K; = K, = K, = K, for a highly
charged membrane. The adsorption constant is infinitely large

Now it can be seen that the same potential drop results in both
phases for the case & = &, while it is higher in the membrane phase
when g; > &. The two limiting cases discussed above can be readily
compared with the results in Figs. 2 and 3 for large values of ¢p,
respectively.

On the other hand, we see in Fig. 3 that the changes in ¢s and
¢p — ¢s with K, observed for weakly charged membranes are sim-
ilar to those for highly charged membranes presented in Fig. 2,
except for the fact that the potential drops are now much smaller
and the plateau values occur at lower values of K, (K, ~ 107).
Notice that the saturation in the membrane fixed charge is reached
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when K,w,/N » 1, so that the lower the value of N the lower the
K, corresponding to saturation. Also, we see that the previous result
¢s > ¢p — ¢s presented in Fig. 2, has now been reversed in Fig. 3
for the case &;/e, > 1. The major part of the total potential drop
occurs in the membrane rather than in the solution for weakly
charged membranes. This is indeed the result stated in Eq. (18).
(Eq. (18) 1s now valid since we see that ¢p < 0.6 in Fig. 3.)

Figs. 4 and 5 display the effect of partition coefficients on the
potential drop values. Now, the case of infinitely strongly bound
fixed charged groups has been studied. Again, consider first the
membrane with a high fixed charge concentration. We see that the
smaller the partition coefficient values the greater the potential
drops. When the partition coefficients X; take small values, the
“effective” bulk concentration of ions, 5, decreases, while the fixed
charge concentration does not change (remember that we have
taken K, — co in this case). Thus, the Donnan and surface poten-
tials must increase respect to the case K; = 1 (see Eq. (9)). This
trend is also observed for the weakly charged membrane in Fig. 5.
We see in this figure that for the smaller values of K; the Donnan
potential is of the same order of magnitude as the corresponding
one for highly charged membranes. Note that when K; < 1, f is so
small that N/2f > 1 for both the highly and the weakly charged
membrane and then the logarithmic dependence on N/2f given in
Egs. (9) and (10) yiclds values for ¢p of the same order of magnitude
in the two cases.

On the other hand, Fig. 5 shows again (see Fig. 3) that the major
part of the total potential drop occurs in the membrane rather than
in the solution for all values of the ratio & /s,.

Other calculations for cases where the coion and counterion par-
tition coefficients were not equal have also been done. These cal-
culations show the effect of the asymmetry in ion partition coeffi-
cients [4]. As we intend to isolate the effect for «, only the case
B = wy = cand y = 0 will be considered. However, a possible
limitation of the treatment must be pointed out here. If the effective
concentration of ions, f3, is to be constant and equal to ¢, one kind
of ions must be prefered inside the membrane while other must be
excluded. This situation may differ from that commonly found in
aqueous electrolyte solution/charged membrane systems, where
ions have usually a higher solubility in the solution rather than in
the membrane phase.

Fig. 6 shows the distribution of the potential drop between the
two phases for the case of a membrane with N = ¢ = 0.01 M when
2 = K, = 1/K, is varied from 0.1 to 10. The effect of « on the value
of the Donnan potential (which is the sum of the two individual
potential drops) is just a shift of value lna (see Eq. 7)). Thus, the
three potential drops ¢p, ¢s and ¢p — ¢ increase with «. Note that
since the membrane considered is weakly charged, this shift may
even reverse the sign of the Donnan potential (and the sign of the
charge in the two phases) when « is sufficiently low. The effect of «
on the potential drops can be physically described as follows. When
o takes large values the counterion (chloride ion) is chemically ex-
cluded (due to its small partition coefficient) in the membrane phase
while the coion (hydrogen ion) is prefered, so that the Donnan
potential has a large positive value. Conversely, for small values of
 the chloride ions rather the hydrogen ions are prefered in the
membrane. Since the fixed charge concentration is small the chem-
ical uptake of chloride ions can eventually become high enough to
produce a reversal of both the sign of the charged stored in the
membrane and the Donnan potential. Note that it is the chemical
preference for or the exclusion of chloride ions which mainly de-
termine all these changes (see how different are the values corre-
sponding to o = 10and « = 0.1 in Fig. 6). Indeed, if the counterion
is chemically excluded, the situations of chemically prefered and
chemically excluded coion are not much different. Only a small
increase in the Donnan potential is expected in the former case in
order to compensate the preferential solubility of coions (compare
the value the Donnan potential in Fig. 6 for logz = 1 to that in
Fig. 5 for —logK; = 1 and & = &). This small increase in ¢p is
absolutely negligible in the case of highly charged membranes (for
which results are not presented here).

Figs. 7 and 8 show respectively the charge stored in the EDL as
a function of K, (with X; = 1) and of K; (j = w, n, r) (with
K, — o) for the case of a highly charged membrane. It is clear
that O must increase with K|, and finally reach a saturation value,
since the fixed charge concentration increases with this constant.
On the other hand, Q decreases with K according to the trend
previously observed for the Donnan potential in Fig. 4. The order
of magnitude for Q in both figures is typically 110 pC/em? It
should be emphasized that values for Q as large as 10 pC/cm? can
only be obtained in the case of very small partition coefficients.

The decrease of Q with ¢;/e; can be qualitatively explained by
assuming that the EDL behaves as two plane capacitors arranged
in series, so that the total capacitance Cp of the EDL can be esti-
mated as

C, G, K{E1K282 81Ky
Cy & = .
1+ 31K1/82K2

= ~ (19)
Ci+C K181 + K28y

Now, if we make use of the fact that x;oc g '?

following result

, we obtain the

i2
6

a+b(efe)”’ 20

CT%

where a and b are two constants. Therefore, it is clear that Cy
decreases as &,/¢, increases. Since the Donnan potential ¢p does
not depend on this quotient, then the EDL charge O ~ Cr¢p also
decreases with ¢,/¢,, which agrees with the result in Figs. 7 and 8.

Discussion

We have solved the classical equations describing the
equilibrium EDL at the charged membrane/solution inter-
face. Although certain critical assumptions have been intro-
duced (e.g., ignoring ion size and compact layer effects at
the interface) in order to keep the complexity of the problem
within a reasonable level, some interesting phenomena like
partition coefficients effects and a concentration-dependent
fixed charge have been incorporated in the Poisson-
Boltzmann equation ruling the problem. The theoretical
treatment is worked out for the ternary system
HCl—NaCl— H,0, but it applies to any ternary system with
charge numbers 1:1: —1. We have shown that the physical
trends obtained for ¢p, ¢s and Q can be interpreted in terms
of the values of parameters «, f and y introduced in Eq. (7).
Although the equations derived may seem involved, we
would like to emphasize that all the results here presented
can be obtained with a programmable calculator.

Let us compare finally the results presented in the above
section with those obtained from the depleted layer model.
The equations describing the EDL structure in this model
will now be presented but only differences with those worked
out in the Formulation of the problem section will be given.
In the depleted layer model, a region of thickness A with
completely uncompensated fixed charge p, is assumed to
exist so that Eq. (1b) is to be changed to

v F ,

PR eh 0<x< 4, (1c)
e 1

v

P =0, X > 4. (1d)
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Thus, the Poisson-Boltzmann equation in the depleted layer
takes the form

d?¢ F*  NK,K,wye ?
= — 0<x </ 4
dx? &RT N+ K, Ky e ® ' s ()
and its boundary conditions are now
d
b=t 32 0 x=. (5¢)
dx

Note that only the case K, — oo is usually considered in
the literature, so that the r.h.s. of Eq. (4¢) is constant, and
then the electric field profile in the depleted layer is linear.

An important shortcoming of the depleted layer model
must be emphasized at this point. The Donnan potential
can no longer be obtained from the electroneutrality con-
dition in the bulk of the membrane and some additional
expression must be adopted for it. Here, Eq. (7) has been
introduced for ¢p.

After direct (but a bit cumbersome) algebra, an equation
equivalent to Eq. (11) can be obtained.

¢s = ¢p — In3 (1+7e®)
—1
) —;*sinh2 <%> — sinh? <—¢S 5 e >
eXP + et sinh (¢p — Ina)
¢ sinh? <?§>
B sinh (¢p — Ine) \&,
. o1 21
- Po T MEAN e
+ P G tanh< 5 > ve
where
. o[ ¢s — Ina
sinh (——~—2 >
G = 22
sinh? <——¢D — 1noc> =
2

Analogously, Eq. (14) takes in this model the form

o) _ 2t (42 (2=1).

— ¢p — G tanh
¢s = oo an < 2 sinh ¢ &

(23)

Then it is apparent that G < 1 since ¢s < ¢p, and thus

¢s (depleted layer model) > ¢s (diffuse layer model) . (24)

Table 1

Electric potential drops and charge stored in the EDL for the depleted and
diffuse layer models vs. N/c, Here &, = ¢, the adsorption constant is infinitely
large and all partition coefficients are equal to unity

Nie diffuse layer model depleted layer ntodel
o &s dp—¢s QuC/em’) P dp—¢s QuC/em?)

{ 0.2466 0.2346 0.1477 0.3543 0.1269 0.2123

10 1.4926 0.8198 0.9745 1.8566 0.4558 1.2724

100 3.6251 0.9802 3.5538 4.0507 0.5546 44383

Introducing this latter result in Eq. (16), we obtain

O (depleted layer model) > Q (diffuse layer model) .  (25)

This fact, together with the shortcoming related to the in-
troduction of ¢p, is not usually stated in the literature. The
overestimation for Q written down in Eq. (25) can be im-
portant in certain cases, as shown in Table 1. But the main
consequence of the depleted layer assumption is the under-
estimation of the potential drop in the depleted layer (i.e.,
in the membrane phase). The data in Table 1 have been
obtained with g, = ¢, K, — w0, and K; = 1. The differences
between the two models are greater for weakly charged
membranes than for highly charged ones, and can lead to
changes up to 45% for Q and 85% for ¢p — ¢s.
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