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We present a theoretical study of the effects that a macroscopic fixed charge inhomogeneity exerts on ion 
transport when an electric current is passed through a charged membrane. The results show that the inhomo- 
geneity can modify the ratio of counterion to co-ion fluxes, but not the current efficiency (E,), in highly charged 
membranes. However, for weakly charged membranes both the ratio of the fluxes and the current efficiency can 
experience important changes because of this inhomogeneity. It is also found that the inhomogeneous mem- 
branes should exhibit a much more pronounced dependence of E, on the electric current than homogeneous 
membranes at high currents. A phenomenological theory relating the particular non-uniform fixed charge dis- 
tribution to the resulting membrane transport properties is proposed. This theory can predict which distributions 
will lead to higher E, values than those for a homogeneous membrane with the same average fixed charge 
concentration. The transport model employed is based on the Nernst-Planck equations, and the results obtained 
are of interest for both the study of the physical principles underlying transport in non-uniform charged mem- 
branes and the design and application of membranes. 

The theoretical principles describing ion transport in homo- 
geneous charged membranes are well known, and have been 
widely applied to synthetic' and biological2 membranes. 
However, all charged membranes deviate to some extent 
from homogeneity and thus the question of how inhomo- 
geneities affect the transport processes in non-uniform mem- 
branes naturally arises. According to Petropoulo~,~ studying 
the effects that membrane inhomogeneity exerts on transport 
properties is of interest because of both the possibility of 
exploiting such effects in membrane design and the need for a 
better understanding of the processes occurring in supposedly 
homogeneous membranes. In particular, a spatial non- 
uniformity of the fixed charge groups is of importance not 
only for synthetic but also for biological 
membranes, where these charged groups exist and can be 
inhomogeneously distributed.2,6-8 

As in the case of inhomogeneous crystals' a preliminary 
problem is that of giving a general classification of inhomo- 
geneities. P e t r o p o u l ~ s ~ , ' ~  has addressed this problem, by 
considering three classes of membranes according to the scale 
of inhomogeneity which is reflected by their sorption and 
transport properties. lo  For the particular case of charged 
membranes, the microstructural inhomogeneitie~,~~~," 
and the structural inhomogeneity on a macroscopic 
scale3.4.10.14-16 seem to be of particular relevance. The latter 
occurs when some membrane property (e.g. the fixed charge 
concentration) exhibits spatial variation on a macroscopic 
scale and will be the main subject of this paper. 

The occurrence of spatial non-uniformities in membrane 
systems can lead to an enhancement of transport, relative to 
the homogeneous case, when the transport equations are 
non-linear. Reiss and c o - w o r k e r ~ ' ~ , ' ~  have shown that an 
inhomogeneity in the fixed charge distribution can result in 
higher current eficiencies than those observed in an other- 
wise identical homogeneous membrane. Larter and co- 
workers have found theoretically' ' and experimentally20,2 ' 
that ion transport can be enhanced by a non-uniform electric 
field. In both studies, the crucial point seems to be the estab- 
lishment of a non-uniform electric field profile. This non- 
uniform electric field arises from the inhomogeneous 
membrane fixed charge distribution in the case of Reiss et al., 
while it is externally applied in the studies by Larter et al. It 
has been argued that the enhancement of transport caused by 

spatial non-uniformities can find practical application in 
many fields of science and technology.6.20 

In this paper we have analysed theoretically the effects that 
a fixed charge inhomogeneity on a macroscopic scale exerts 
on some membrane transport properties when the passage of 
an electric current is imposed. In this sense, our treatment 
might be regarded as an extension of a previous work14 
where only two particular inhomogeneous fixed charge dis- 
tributions were considered. However, we present now a more 
complete study which includes: (i) a set of fixed charge dis- 
tributions covering a wide interval of physical situations ; (ii) 
a theory relating the particular non-uniform fixed charge dis- 
tribution to the resulting membrane transport properties, and 
(iii) some conclusions that show why the theoretical results 
can be of interest for both the analysis of the physical prin- 
ciples underlying transport in non-uniform membranes and 
the membrane design and application. The structure of the 
paper is as follows. First, we introduce the macroscopic fixed 
charge inhomogeneities to be studied, discuss briefly the 
physical model employed (which is based on the Nernst- 
Planck equations as applied to membrane systems22), and 
give a numerical solution procedure for the problem. Then, 
we present the results obtained for the average co-ion con- 
centration within the membrane and the ratio of counterion 
to co-ion fluxes as a function of the imposed electric current 
through the membrane. Finally, we discuss the implications 
of our results, mainly in connection with electrically driven 
separation processes using charged membranes, noting that 
many membrane processes are based on the application of an 
electric current,' e.g. electrodialysis. A study of the effects of 
fixed charge inhomogeneities on pressure-driven transport 
processes, e.g. reverse osmosis, can be found elsewhere.23 

Modelling and Solution Procedure 
Inhomogeneous Fixed Charge Distributions 

The fixed charge concentration within the membrane, X, is a 
key parameter in the explanation of the selectivity of charged 
membranes.' Here we have considered that the membrane 
inhomogeneity is a non-uniform fixed charge distribution, 
X(x) ,  on the macroscopic scale of the membrane (i.e. a typical 
distance for the changes in X is of the order of the membrane 
thickness). Other membrane inhomogeneities may also be 
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c o n ~ i d e r e d , ~ ~  but we prefer to study only one in order to 
facilitate the final interpretation of the results. Once this has 
been accomplished, more complicated models including dif- 
ferent inhomogeneities may be attempted. Also, the concen- 
tration of the fixed charge groups in the membrane is taken 
to be much greater than the bulk electrolyte concentration, 
co,  a condition usually found in typical ion-exchange mem- 
branes.’*2 

The main characteristics of the different fixed charge dis- 
tributions studied here can be found in Fig. 1-3 and Table 1. 
The 18 distributions X ( x )  can be written in compact form as 

(1) 
and for the perturbation, 6X(x) ,  three general models have 
been considered : 

X ( x )  = ( X ) [ l  + 6X(x) ]  

Model I 

6X(x )  = [A(1 - 2x/d)” - A, - (-  1)”A2]/2n 

with 

1 
0 

0 0.5 
Xld 

I 

1 
O L  

0 0.5 
Xld 

Fig. 1 X(x)/(X) vs. x/d for the fixed charge distributions of model 1 
(see Table 1): (a) (-) /, ( * a * )  r and (b) (-) n , ( . . a )  J ,  (---) L . 
Membranes denoted by \ , 5 ,  v, 7 and r are not plotted in the 
figure since they can be easily drawn from the ones above by rotation 
through 180” about the line X(x)/(X) = 1 

I 
0 0.5 1 

Xld 
Fig. 2 X(x)/(X) us. x/d for the fixed charge distributions of model 2 
(see Table 1): (-) s, (. . a )  ss. Membranes denoted by s- and ss- are not 
plotted 

A 

$1 

n l  
“ 0  0.5 I 

x/d 
Fig. 3 X(x)/(X) us. x/d for the fixed charge distributions of model 1 
(see Table 1): (-) c, (. . .) cc. Membranes denoted by c- and cc- are 
not plotted 

Table 1. Fixed charge distributions of eqn. (2)-(4) and their charac- 
teristic parameters n, A ,  and A,. The spatial symmetry of the mem- 
branes with respect to x = d/2 is also included 

~~~~~ ~ ~~ ~ 

membrane model n A ,  A2 symmetry 

/ 
\ 
r 
5 
n 

r 
V 

L 
J 

7 
S 

S- 

ss 
ss- 
C 

C- 
cc 
cc- 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

1 -112 
1 112 
5 -112 
5 112 
5 -112 
5 112 
5 -112 
5 112 
5 -1122 
5 1/22 
1 112 
1 -112 
1 0 
1 0 
1 112 
1 -112 
1 0 
1 0 

- 112 
1 /2 

- lj2 
112 
112 

- 112 
- 1/22 

1/22 
- 112 

112 

112 
- 112 

0 
0 
112 

- 112 

0 
0 

odd 
odd 
odd 
odd 
even 
even 
none 
none 
none 
none 
odd 
odd 
odd 
odd 
even 
even 
even 
even 
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Model 2 
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the equation for the electric current, i, 

i/F = J ,  - J 2  (9) 

Model 3 

6X(x) = [ A ,  + (1/2)A2]cos(2nnx/d) 

- ( 1/2)A, cos(4nnx/d) (4) 

In eqn. (1)-(4), x, d and ( X )  stand for the position within the 
membrane, the membrane thickness, and the average fixed 
charge concentration 

respectively. Parameter n in model 1 is related to the spatial 
extent of the inhomogeneity. High values of n imply homo- 
geneous membrane cores and inhomogeneous membrane 
surface regions, while low values of n imply inhomogeneities 
extending over the entire membrane thickness. Models 2 and 
3 consist of periodic functions and parameter n is now the 
number of periods that fit in a membrane thickness. On the 
other hand, parameters A ,  and A ,  are usually related to the 
extreme values of 6X(x), e.g. 6X(O) = A ,  and 6X(d) = 
(- 1)"A,, for model 1. 

The highest absolute value attained by the perturbation 
6 X  in most of our calculations is ISX,,,I = 0.5. This means 
that the maximum value of X(x) is X,,, = 1.5 (X) and/or 
that the minimum value of X(x) is Xmin = 0.5 ( X ) ;  see eqn. 
(1). Note also that 6 X  has been chosen in such a way that 
eqn. (6) 

is satisfied for all membrane models. This condition permits 
comparison of the performance of different membranes with 
the same value of (X), so that any particular effect on the 
transport will be caused just by the redistribution of a con- 
stant quantity of fixed charge groups. It is expected that the 
fixed charge distributions of eqn. (2)-(4) will cover a wide 
interval of orderly type macroscopic inhomogeneities. The 
important case of random inhomogeneities will not be con- 
sidered here; it is an open question whether random inhomo- 
geneities may lead to transport enhancement.6 

Fig. 1-3 have been plotted according to the values of 
parameters n, A ,  and A ,  listed in Table 1. We have included 
a series of mnemonic symbols for an easier identification of 
the membranes. The spatial symmetry (if any) of the mem- 
branes is also provided. 

Transport Equations 

The basic transport equations describing our problem are 
assumed to be the steady-state Nernst-Planck equations for 
singly charged ions 

the local electroneutrality assumption 

c , - c , - x = o  (8) 

and the condition of steady-state fluxes 

Eqn. (7)-(9) are the basis of many simplified treatments for 
transport phenomena in charged membranes2, Here J , ,  D, 
and c, are the flux, the diffusion coefficient and the local 
molar concentration of the species k, respectively ( k  = 1 
denotes the positive ion and k = 2 the negative ion). On the 
other hand, $ stands for the local electric potential in RT/F 
units, where R is the gas constant, T the absolute tem- 
perature and F the Faraday constant. Without loss of gener- 
ality, only membranes with negative fixed charge groups [see 
eqn. (S)] and electric currents in the positive x direction 
(i > 0) will be considered. 

Although spatial non-uniformities in membranes have been 
sometimes studied on the basis of the absolute rate 
t h e ~ r y , ~ ' , ~  the Nernst-Planck equation seems more appro- 
priate here, since we are concerned with a macroscopic inho- 
m ~ g e n e i t y . ' ~ . ~ ~  However, in writing eqn. (7) a number of 
simplifications have been introduced. Let us summarize them 
briefly. First, we consider a unidimensional model, though a 
capillary tube model may be more appropriate in some 
cases.25 Furthermore, we assume constancy of the diffusion 
coefficients D, within the membrane, take D, = D, = D, and 
neglect solvent flow and activity coefficients effects.22 Con- 
centration polarization phenomena at the membrane solution 
interface caused by the passage of an electric currentt6 are 
also ignored. On the other hand, the local electroneutrality 
assumption, eqn. (8), can be regarded as a first approximation 
to the more general Poisson's equation. Nevertheless, taking 
into account that a typical distance over which changes in X 
occur is of the order of the membrane thickness, d,  and that 
the latter is much greater than the typical Debye length, L,, 
eqn. (8) can be a reasonable approximation to this, certainly 
involved, ~ r o b l e m . ~ ~ , ~ ~  Note that the migration terms in the 
Nernst-Planck equations make the system non-linear, since 
the c k s  are coupled through the electric field because of the 
electroneutrality condition, eqn. (8). Indeed, it can be shown 
easily from eqn. (7)-(9) that, under the above conditions, 

d$ dX/dx + i / F D  
dx 

_ - -  - 
c1 + c2 

We further assume that the boundary conditions for the 
concentrations ck can be obtained from the following simpli- 
fied forms of the Donnan equilibrium relation'.2 at the mem- 
brane solution interfaces, 

c,(O) = X(0)/2 + [(X(0)/2), + c;p2 

c,(O) = c,(O) - X(0) = C t / C , ( O )  

c , ( d )  = X(d)/2 + [(X(d)/2)2 + c;]"~ 

c,(d) = c , (d )  - X(d) = c;/cl(d) 

(12) 

(13) 

(14) 

(15) 

where co is the bulk solution concentration (the same for the 
two solutions flanking the membrane). It must be mentioned 
that other  mechanism^,^.^^ in addition to the electric poten- 
tial difference established between the membrane and the 
external solutions, can influence the partition equilibria of 
ionic species. Finally, let us note that the Donnan equilibrium 
relationships, though widely employed in the charged mem- 
brane literature,'V2 may be called into question at high elec- 
tric  current^.^*-^' We thus see that eqn. (12)-(15) are only a 
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first, crude approximation to the boundary conditions 
problem. 

The membrane properties studied for each one of the dis- 
tributions in Table 1 are the average co-ion concentration 
within the membrane 

l d  
(16) d 

just as it stands or in the form of the relative co-ion uptake, 

(c2)(9 = - J: c 2 ( 0  d5 

u r c  9 

urc ( i )  = ((c2)(i) - C2h)/C2h (17) 

and the ratio of counterion to co-ion fluxes, 

?(i)  = I J J J 2  I (18) 
The magnitude of U,, represents the increase in the co-ion 
uptake, ( c , ) ,  but an inhomogeneous membrane relative to 
the homogeneous one (denoted hereinafter by subscript h) 
with the same ( X ) .  On the other hand, the ratio 7 is related 
to the current efficiency E c ,  a parameter of practical interest 
in many membrane processes, e.g., electrodialysis, which is 
defined' 7-' as 

Ec = I J ,  I/( I J l  I + I J 2  I )  = + 1) (19) 

so that an increase in current efficiency results from an 
increase in q. As can be expected, these parameters and their 
variation with the electric current are closely related to the 
particular fixed charge distribution considered. 

Solution Procedure 

By adding eqn. (7) for k = 1 and k = 2 and making use of 
eqn. (8), the following expression for the electric field can be 
easily obtained 

which can now be introduced in eqn. (7) for k = 2 to give 

An analytical solution to eqn. (21) under the boundary condi- 
tions given in eqn. (13) and (15) can only be obtained when X 

1 

0.8 

is constant, i.e. for the homogeneous membrane. In order to 
solve eqn. (2 1)  numerically for the different membranes 
shown in Table 1, we have taken a total number of 2500 
points within the membrane. Starting from the point x = 0, 
we calculate the full concentration profile inside the mem- 
brane by using a fourth-order Runge-Kutta a lg~r i thm.~ '  The 
first calculation is made with the ratio of ionic fluxes, q, equal 
to that of a homogeneous membrane 

[Note that eqn. (9) must also be used to determine the two 
ionic fluxes.] The comparison of the calculated value for c2  at 
x = d and the one imposed in eqn. (15) yields an improved 
new guess for q. This procedure is repeated until a previously 
established convergence is attained. Then, we can solve for 
the electric potential, $(x), and the other magnitudes of inter- 
est. The numerical procedure just outlined is very simple and 
quick (it lasts less than 1 min when implemented on an 
HP9000/330 computer). 

Results 
Before giving the variations of (c2) and q with i, it is con- 
venient to show that there exists a very simple relationship 
between them. Indeed, by eliminating dtj/dx from eqn. (7), we 
obtain 

(23) c ~ J J D ~  + ~2 J , / D 1  = -d(c,cJ/dx 

Integration of eqn. (23) between x = 0 and x = d under 
boundary conditions ( 1  3) and (1  5), in their last form, gives the 
final result 

= - J , / J  2 - - ~l(Cl)/D2(C2) 

= (Dl/D2X1 + (X>/ (C2>)  (24) 

which is valid for any fixed charge distribution and electric 
current. Eqn. (24) can be regarded as an extension of the well 
known relationship found in the homogeneous membrane 
case, eqn. (22), and incorporates the average values (cl) and 
(c2) rather than the constant values characteristic of a mem- 
brane with uniform fixed charge concentration. Fig. 4 shows 
that eqn. (24) is obeyed for all membranes under consider- 
ation. 

(c,>/lO' mol c m - j  

Fig. 4 q us. (cz) for all membranes in Table 2: (0) numerical results at i = 50 mA cm-', (-) eqn. (24) 
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1.1 

L 

0.9 

0.7 
0 50 100 

i / m A  c w 2  

1.04 
(b ) 

0.92 z 
0 50 100 

i fmA cm -' 
Fig. 5 q/qh us. i for membranes: (a)  (-, increasing values) /, (-, 
decreasing values) \, (..., i.v.) C ,  (..., d.v.) and (b) (-, i.v.) u, (-, 
d.v.) n, (..., i.v.) J ,  (..., d.v.) 7, (---, i.v.) r , (---, d.v.) L .  The 
horizontal bold line corresponds to the homogeneous membrane. See 
Table 1 for details of the distributions 

0.7 I 1 
0 50 100 

i / m A  cm-' 

Fig. 6 q/qh us. i for membranes: (-, i.v.) s-, (-, d.v.) s, (. . ., i.v.) ss-, 
(. . ., d.v.) ss. The horizontal bold line corresponds to the homoge- 
neous membrane. See Table 1 for details of the distributions 

0.83 I 
0 50 100 

i fmA cm-' 

Fig. 7 q/qh us. i membranes: (-, i.v.) c, (-, d.v.) c-, (..., i.v.) cc, (..., 
d.v.) cc-. See Table 1 for details of the distributions 

Fig. 5-7 show the change in q/qh with electric current. 
Introduction of parameter qh permits studying the per- 
formance of the different inhomogeneous membranes relative 
to a homogeneous membrane. (It is clear that qh does not 
depend on i.) Inspection of Figs. 5-7 reveals that all mem- 
branes exhibit lower values of q than the homogeneous mem- 
brane at low electric currents. However, we see that q 
decreases with current for certain membranes while it 
increases for others. In the latter case, there exists a 
distribution-dependent critical current above which q > qh.  

This critical current is ca. 35 mA cm-, for membrane r in 
Fig. 5(a). However, if we consider other membranes with the 
same functional dependence [model 1, increasing, odd mem- 
branes; see eqn. (2)], and change either the value of the 
maximum perturbation, I ax,,, I = I A ,  I = I A ,  I, keeping 
n = 5 (Fig. 8), or the value of n, keeping I6X,,, I = I A ,  I = 
I A ,  I = 0.5 (Fig. 9), then the critical current increases with the 
value of 16Xma, I in the first case, and decreases with n in the 
second. These results are not surprising since the membranes 
considered reduce their inhomogeneity for : (i) small values of 
ISX,,,I (when n is fixed) and (ii) high values of n (when 
IhX,,,I is fixed). Note finally that q can exceed qh by some 
5% in Fig. 8 and 9. 

Now, we have to interpret physically the results obtained 
and predict what type of membrane would lead to greater q 
values on the basis of this analysis. Bearing in mind the 
results in Fig. 5-7, we have introduced the following dimen- 
sionless quantities in order to describe how the fixed charge 
distribution and the electric current influence the value of q. 
These are, respectively, 

and 

rdi) = [q(i)  - q(i = O)]/q(i = 0) 
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1 .I 

r 

--$ 1.0 

0.9 
0 50 100 

i /mA cm - 

Fig. 8 q/qh us. i for model 1 membranes with n = 5 and A ,  = A, = 
(. . .) - 0.25, (- - -) - 0.50 and (- -) - 0.75. The horizontal bold 
line corresponds to the homogeneous membrane 

It is clear that rx gives the relative shift of q respect to qh 

when i = 0. This shift is always negative (all membranes 
exhibit values of q/qh less than 1 at low electric currents as 
shown in Fig. 5-7), and its value is characteristic of the fixed 
charge distribution within the membrane. On the other hand, 
ri describes the relative change of q with electric current i. 
The sum of these two quantities 

is a good parameter to characterize a given membrane, since 
it indicates if the inhomogeneous membrane has a greater or 
smaller value of q than the homogeneous one at a given 
current. Table 2 contains the values of ri and rT for all our 
inhomogeneous membranes at i = 50 mA cm-2. rr can be 
obtained as their difference or, approximately [see eqn. (25)], 
as - U,, (i = 0). 

1.1 1 1 

0.9 I I 
0 50 100 

i /mA cm-2 

Fig. 9 q/qh us. i for model 1 membranes with A ,  = A, = -0.5 and 
n = (-) 1, (--) 3, (---) 5 and (...) 15. The horizontal bold line 
corresponds to the homogeneous membrane 

Table 2 Values of U,, (i = 0), U,, (i = 50 mA cm-’), ri(i = 50 mA 
cm-’) and rT ( i  = 50 mA cm-’) for the fixed charge distributions in 
Table 1. D, = D, = l op5  cm2 s-’ ,  d = lo-’ cm, co = lo-’ mol 
dm-3 and (X) = 1 mol dm-3 

u r c  ‘i ‘T 

u r c  

membrane (i = 0) (i = 50 mA cm-’) 

I 
\ 
/ 
\ 

n 
V 
r 
c 
J 

7 

S 

S -  
ss 
ss- 
C 

C- 
cc 
cc- 

0.0985 
0.0985 
0.0263 
0.0263 
0.0325 
0.01 88 
0.01 72 
0.0090 
0.0090 
0.01 72 
0.1546 
0.1546 
0.1140 
0.1140 
0.1546 
0.1546 
0.0890 
0.0577 

0.0004 
0.2128 

0.0684 
0.0359 
0.0160 

- 0.0053 
0.0267 

- 0.0106 
0.043 5 
0.2726 
0.049 1 
0.1762 
0.0534 
0.1431 
0.1641 
0.0844 
0.0600 

- 0.0125 

0.098 1 

0.0393 
- 0.0942 

- 0.0394 
- 0.0032 

0.0027 
0.0226 

0.0198 
-0.0173 

-0.0253 
- 0.0927 

0.1005 
- 0.0529 

0.0575 
0.0 loo 

- 0.0082 
0.0042 

- 0.0022 

-0.0004 
-0.1923 

0.0130 
- 0.0657 
- 0.0357 
- 0.0161 

0.0055 

0.0108 
- 0.0263 

- 0.0424 
-0.2473 
- 0.0541 
- 0.1669 
- 0.0565 
-0.1446 
- 0.1628 
- 0.0848 
-0.0599 

Table 2 also includes the relative co-ion uptake introduced 
in eqn. (17) under equilibrium, i = 0, and transport, i = 50 
mA cm-2, conditions. In the first case, i = 0, it is clear that 
the membrane inhomogeneity causes the average co-ion con- 
centration to take values greater than those corresponding to 
a homogeneous membrane of the same ( X ) ,  C2h, so that U,, 
(i = 0) 2 0. Petropoulos3 has elegantly proved that this is 
indeed the case under conditions of high dilution and equi- 
librium. Introduction of this result in eqn. (25) readily 
explains why r x  is negative. The case i = 50 mA cm-2 is 
much more interesting. Most membranes show positive 
values of U,, (i = 50 mA cm-2) but some of them exhibit 
negative values of this parameter. Note also in Table 2 that 
rT < 0 when U,, (i = 50 mA crnp2) > 0 while rT > 0 when U,, 
(i = 50 mA cm-2) < 0. This fact derives directly from eqn. 
(24) since q > q h  when (c2) < C 2 h .  

Given the influence of the co-ion uptake (c2) on rT,  it 
seems in order now to go deeper into this question. Unfor- 
tunately, analytical solutions to the problem are available 
only for two limiting cases. The first one is that of equi- 
librium, i = 0. The use of the Cauchy-Schwarz-Buniakowsky 
inequality leads then to 

On the other hand, the local electroneutrality condition, 
eqn. (8), when applied to homogeneous and inhomogeneous 
membranes with the same ( X ) ,  gives 

whence it is clear from eqn. (28) that 

Eqn. (30) shows that under equilibrium conditions, mem- 
branes with an inhomogeneous fixed charge concentration 
exhibit values of the co-ion uptake greater than membranes 
with a homogeneous fixed charge concentration, as can be 
seen in Table 2. Let us analyse now the second limiting case, 
which is that of high electric currents. Now, the diffusion 
terms can be dropped off in the Nernst-Planck equations, 
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1 1 

- 1  
- 1.5 0 1.5 

Fig. 10 ri (5 mA cm-2) us. E ( E  = 50 d) for all membranes in Table 
1 : (+) numerical results, (-) linear least-squares fitting: ri = (1  f 6) 
x + (0.761 0.008) x lo4 E ;  r = 99.91% 

eqn. (7), so that the quotient 

C l I C 2  x - 4 2  JllDlJ2 = (CI) / (C2)  (3 1) 

takes a constant value throughout the membrane, whenever 
possible [we have made use of eqn. (24) in eqn. (31)]. If mem- 
branes u, c or cc (see Table 1) are considered, then c2(x = 
0) < C2h and 

where the equilibrium condition at the membrane solution 
interface, x = 0, eqn. (13), has been employed. On the other 
hand, application of the local electroneutrality condition, eqn. 
(8), and eqn. (32) to eqn. (31) gives 

or, equivalently, 

(ck)(i ) < ckh; k = 1, 2 (34) 

The demonstration in eqn. (31)-(34) is only valid for 
certain membranes, but it reinforces the idea that eqn. (30) is 
a result valid only for equilibrium and not for high electric 
currents. For intermediate currents (and also for other inho- 
mogeneous membranes at high electric currents), the trans- 
port equations must be solved numerically in order to know 
the sign of U,, this is just what has been done in Table 2. In 
any case, it can be seen readily that eqn. (30) is not necessar- 
ily valid when i # 0. Indeed, integration of eqn. (23) yields 

We see from eqn. (35) that neither the equilibrium condition 
clc2 = c: over 0 < x < d ,  nor eqn. (28) and (30) which make 
use of it, are valid when transport occurs. (See Appendix 1 for 
more details.) We have thus obtained an important conclu- 
sion: eqn. (30) is a general result for any inhomogeneous 
membrane but it cannot be extrapolated to the case i # 0. In 
fact, the inequality in eqn. (30) can be reversed at high 
enough electric currents for certain membranes, and then 
rT > 0 for these membranes. 

It has now been justified that rT is a good parameter to 
describe the behaviour of inhomogeneous membranes. The 

dependence of rx on the membrane studied is clear, the absol- 
ute value of rx increasing with increasing membrane inhoino- 
geneity. On the other hand, Fig. 5-7 reveal that ri depends 
linearly on i for most membranes (though other relationships 
are observed for membranes with even symmetry). Unfor- 
tunately, we have not been able to obtain an analytical expre- 
sion for ri ( i )  as a function of the fixed charge distribution 
because of the highly non-linear character of the transport 
equations. However, a correlation of ri with the membrane 
inhomogeneity seems necessary in order to understand the 
effects of the inhomogeneities under study. Looking at the 
shape of the distributions considered in Fig. 5-7, it becomes 
apparent that ri increases with i when X ( x  2 d) is higher than 
( X )  and/or X (x < 0) is lower than (X). On the basis of 
these facts, a dimensionless parameter which might describe 
such behaviour could be 

A positive value of p would indicate that ri increases with 
increasing i ,  while a negative value would lead to a decrease 
of ri with i. However, parameter p is identically zero for even 
fixed charge distributions, and thus it cannot be used for 
them. To overcome this problem, we define an alternative 
dimensionless parameter 

where E is a distance to be specified later. It is difficult to 
justify a priori the choice of parameter E .  However, it is clear 
that: (i) E is not zero for even distributions, and (ii) E is posi- 
tive for membranes with increasing values of ri with i and 
negative for those with decreasing r i .  Moreover, the corre- 
lation of ri with E seems to be very good (see Fig. 10). 
Returning to eqn. (37), we could say that E is the dimension- 
less electric field that would be observed at a distance E from 
the interface x = d if the fixed charge groups were not locally 
compensated, so that an uncompensated electric charge 
density X(x) - ( X )  did exist inside the membrane. (Of 
course, we are not saying at all that this situation can be the 
actual one; we are just giving a meaning to E.)  

Fig. 10 shows that a simple linear relationship with a 
current-dependent coefficient exists between ri and E ,  as sug- 
gested by Fig. 5-7. Note that ri, but not E ,  depends on i. On 
the basis of Fig. 5-7 we can assume as a first approximation 
that ri is proportional to i ,  so that 

ri NN aiE (38) 

The product ai appearing in eqn. (38) is the slope of the 
straight line in Fig. 10. In this figure only values of ri at 5 mA 
cm-2 have been employed. The use of ri values at another 
electric current may result in a different value for a but differ- 
ences would not be very important and a good correlation 
coeffcent would also be obtained. 

Discussion 
Bounding the Inhomogeneity Effects 

The estimation of ri via parameter E serves not only to evalu- 
ate rT (i.e. to find whether inhomogeneity increases or 
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decreases q)  but also to obtain an upper bound for q at a 
given current. This latter can be accomplished by looking for 
the particular X ( x )  that makes rT a maximum. To this end, 
we write r x  as 

Now, if we introduce eqn. (38) and (39) into eqn. (27), it 
readily follows that 

In order to obtain the X ( x )  which gives the maximum value 
of rT at a given current, i, we have to take into account that 
there is a constraint on X ( x ) ,  eqn. (5). Thus, we employ the 
Lagrange undetermined multipliers m e t h ~ d , ~  ' and impose 

where ;1 is the unknown Lagrange multiplier to be evaluated 
later from eqn. (5). Eqn. (41) leads to the distribution 

x(x) = ."'! (42) 

[ E  - (x - d)]' 

Fig. 11 shows this distribution for the electric currents i = 5, 
50 and 100 mA cm-'. Fig. 12 gives the q/qh values of a set of 
inhomogeneous membranes obtained with the distribution in 

0 '  I 
0 0.5 1 

xld 
Fig. 11 
by maximizing IT for i: (-) 5, (---) 50 and ( * .  -) 100 mA cm-2 

X ( x ) / ( X )  us. x /d  for the fixed charge distribution obtained 

1.1 1 1 

0.95 
0 50 100 

i /mA ~ r n - ~  

Fig. 12 Upper bound for curves q/qh us. i obtained by maximizing 
IT. Each point of this curve corresponds to a membrane as presented 
in Fig. 11 

eqn. (42) for different values of i. It is apparent from Fig. 5-7 
that no distribution can give a value of rT higher than those 
corresponding to the other distributions in the whole range 
of i. When the electric current is low, nearly homogeneous 
membranes, with small negative r x  s are desirable. Con- 
versely, highly inhomogeneous membranes are convenient for 
high currents, since in this case ri is so high that it will closely 
define the rT value regardless of how negative r x  is. (Of 
course, we are referring here to membranes with positive ri.) 
The q / q h  values in Fig. 12 can thus be regarded as an upper 
bound for q/qh at each electric current i. Note finally that Fig. 
11 and 12 are only a first approximation to the optimization 
problem, since they have been computed from the non-exact 
approach described in eqn. (37)-(42). It is expected that this 
approach, however simple, will give reasonable results. 

Current Efficiency Enhancement 

So far only membranes having an average fixed charge con- 
centration much greater than the bulk electrolyte solution 
concentration have been considered, and we have found that 
the values of q can exceed by some 5% the values of q,, for 
certain inhomogeneities. However, these noticeable changes 
in q may be conceptually important, but have little impact on 
the current efficiency, since q z lo4 when ( X )  = 1 mol 
dm-3 $- c0 = lo-' mol dm-3 (a situation relatively common 
in many practical applications where ion-exchange mem- 
branes are used). It has been s h o ~ n ~ * ' ~ * ' ~  that the inhomoge- 
neity effects on E ,  can be very important when ( X )  x c o .  
Table 3 shows that this is indeed the case. The numerical 

Table 3 
been obtained at i = 50 mA cm -' for the membrane: model 1, n = 1 and A ,  = A, = -0.25 

Values of q h ,  9, (9 - qh)/qh, EEh, 15, and ( E c  - Ec,h) /Ec .h  for different quotients ( X ) / c ,  keeping co = mol dm-3; all data have 

)7h 9 - 9h (%) 
qh 

~~ ~ 

0.999902 0.0002 100 10002 10226 2 0.999900 
10 101.99 132.84 30 0.9903 0.9925 0.2 

1 2.618 3.140 20 0.7234 0.7585 5 
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solution gives increases in E ,  up to 5% (relative to the homo- 
geneous case) for the membrane (model 1, n = 1, A ,  = A ,  = 
-0.25), at i = 50 mA cm-’ when (X) = co = lo-’ mol 
dm- ’. These increases gradually disappear as the quotient 
(X)/co takes greater values. Therefore, it becomes clear that 
the macroscopic fixed charge inhomogeneity can modify the 
ratio of counterion to co-ion fluxes, but not the current effi- 
ciency, in highly charged membranes. However, for weakly 
charged membranes both the ratio of the fluxes and the 
current efficiency can evidence important changes because of 
the macroscopic inhomogeneity. 

Conclusions 
We have presented a complete theoretical study of the effects 
that a macroscopic fixed charge inhomogeneity exerts on ion 
transport when an electric current is passed through a 
charged membrane. The theory can predict which distribu- 
tion will lead to higher q (and then, E,)  values than those of a 
homogeneous membrane. Given the technological impor- 
tance of electrically driven separation processes, our results 
may have some relevance for membrane design and applica- 
t i ~ n . ~ ’ ? ~ ~  Passage of electric current through inhomogeneous 
charge distributions also occurs in biological systems,6 
though other mechanisms in addition to those considered 
here can influence transport in biological membranes. (Note 
that if a biological membrane could modify its fixed charge 
distribution under the passage of a current, it would deter- 
mine the ratio J J J ,  simply by recordering a constant quan- 
tity of fixed charge groups.) 

It should be borne in mind that a number of critical 
assumptions have been introduced. Concerning the mem- 
brane model, we must mention that only fixed charge inho- 
mogeneities are studied despite the fact that other important 
membrane properties can exhibit inhomogeneity  effect^.^.'^ 
The equations employed are also relatively simple, and 
contain critical assumptions like those of interfacial equi- 
librium and local electroneutrality (see Appendix 2). In addi- 
tion, some side effects like the concentration polarization 
phenomena and the electro-osmotic flow have been ignored. 
We have also assumed that D, = D,, however other results 
obtained for the case D, # D, did not show any qualitative 
difference from those presented here. 

Let us note finally that, as it occurs in analyses of hypo- 
thetical models, only a discussion of the observed physical 
trends is possible. Indeed, it is rather difficult to compare our 
results to experiment since we have introduced the theoreti- 
cal, artificial device’ of an ‘inhomogeneous membrane iden- 
tical to a homogeneous membrane except for the fixed charge 
inhomogeneity’. However, we see from Fig. 5-7 that there is 
a theoretical prediction that could be readily compared with 
experiment : the inhomogeneous membranes should exhibit a 
much more pronounced dependence of q on i than the homo- 
geneous one at high electric currents. 

Financial support from the DICYT, Ministry of Education 
and Science of Spain, is gratefully acknowledged. 

Appendix 1 
We present here two examples intended to clarify the signifi- 
cance of eqn. (28)-(35). Division of eqn. (7) for k = 1 by eqn. 
(7) for k = 2, yields 

J J D ,  + dc,/dx c1 

J , / D ,  + dc2/dx c2  
- -- - (Al.l) 

The cation and anion concentration gradients are connected 
through eqn. (8). Making use of it, eqn. (Al . l )  can be written 

as 

-- dc, - - J l P l  + (J,/DzKc1/cz) + dX/dx 
dx 

(A1.2) 

. At x = 0, c1/c2 x 
( ( X ) / ~ C , ) ~  and dX/dx = 5(X)/d, while at x = d, c1/c2 x 
(3(x)/2CO)’ and dX/dx = 5(X)/d. Then, 

1 + Cl/CZ 

Now, let us consider membrane 

and 

The second term in eqn. (A1.3) is negative while that in eqn. 
(A.4) is positive [see eqn. (24)]. This implies that the 
occurrence of transport reduces the co-ion concentration 
inside the membrane (and thus ri is positive) for this particu- 
lar distribution. 

The case of membranes with even symmetry is much more 
subtle. Consider, for instance, membrane u. At x = 0 we 
have cl/cz x (3(X)/2cO)’ and dX/dx = -6(X)/d, while at 
x = d, c1/c2 % (3(x)/2CO)’ and dX/dx = 6(X)/d, so that 

and 

Now, the second terms in (A1.5) and (A1.6) seem to be posi- 
tive and thus no definitive conclusion can be obtained for 
( c , ) .  Transport makes the co-ion concentration be reduced 
near x = d but increased near x = 0 (see Fig. 4 in ref. 14 for 
details). 

Appendix 2 
We make use here of a ‘consistency argument’ to justify the 
introduction of the local electroneutrality assumption, eqn. 
(8). The analysis can be regarded as an extension of the pro- 
cedure first employed by Planck when he introduced this 
assumption in his classical paper on electrolyte liquid 
junctions3’ (see also ref. 36). The deviations from eqn. (8) can 
be evaluated via eqn. (1 1) by using the Poisson equation: 

= [!!!! (0) - dlCl dx (d)] Fd dx 

d l n X  
% $ [F (d) - - dx (011 (A2.1) 
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where we have employed that typically dX/dx % i / F D  at 
points x = 0 and x = d. Now, if we consider for instance 
membrane n, 

= - 12(+)irC0 (A2.2) 

Typical values in eqn. (A2.2) are L D  M cm, d M cm 
and co x mol ~ m - ~ .  
This result is to be compared to the smaller concentration of 
the problem, which is (c2) x lo-' mol ~ m - ~ .  We conclude 
then that the average residual charge density is negligible 
when compared to the average co-ion concentration inside 
the membrane. However, it should be noted that our treat- 
ment relies on the assumption d % L D  . If typical distances for 
the changes of X were of the order of L,, then eqn. (8) would 
be no longer valid [in this case ( L D / d )  M 1 in eqn. (A2.1)- 
(A2.2)], and the Poisson equation should be used instead. In 
other words, local electroneutrality is a reasonable first 
approximation for macroscopic fixed charge inhomogeneities, 
but it will fail for microscopic ones.' 

mol ~ m - ~ .  Then, ( p ) / F  x - 
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