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A Numerical Study of the Equilibrium and Nonequillbrlum Diffuse Double Layer in 
Electrochemical Cells 

W. D. Murphy? J. A. Manzanares,t** S. Maf6,t.s and H. Reiw*** 
Science Center Division, Rockwell International, Thousand Oaks, California 91 360, and Department of 
Chemistry. University of California, Los Angeles. California 90024 (Received: July 6, 1992; 
In Final Form: September 1. 1992) 

A numerical solution of the Nernst-Planck and Poisson equations is presented. The equations are discretized in a finite 
difference scheme using the method of l ies on variable spatial and temporal grids. A Gear’s stiffly stable p red ic tmec to r  
integration procedure which automatically adjusts the order of the predictor and corrector equations (and the step size) to 
ensure the accuracy of the results is incorporated. Some advantages of our approach over more classical ones are discussed. 
The numerical solution is applied to the study of the equilibrium and nonequilibrium diffuse electrical double layer (EDL) 
at the metal electrode/electrolyte solution interface. The prescription of this layer is similar to that used in the classical 
Gouy-Chapman theory. Electrode kinetics are described by the Butler-Volmer equation. Concentration, faradaic and 
displacement electric current densities, and electric potential profdea as functions of time a- the cell thickness, and partiahly 
in the EDL regions at the metal electrode/solution interfaces, are obtained. Two physical problems are studied: (i) the 
formation of the equilibrium EDL, and (ii) the transient response of the system to an electrical perturbation. Thew examplea 
illustrate the potential applications of the numerical method. 

Numerical techniques for the solution of transport problems 
in electrochemistry have contributed significantly to the analysis 
of many complex processes which are difficult to deal with using 
more conventional approaches. Though other techniques like the 
boundary element method are experiencing an increasing popu- 
larity,’ fmite differences2J has been one of the most widely used 
in electrochemistry since the pioneering work by Feldberg!.s The 
need for numerical solutions appears in a multitude of problems 
of practical interest, e.g., transport phenomena described by 
diffusional type or second-order parabolic PDEs (partial differ- 
ential equations) subjected to temporal boundary conditions,*J 
diffusion-migration situations involving the coupled, nonlinear 
Nemst-Planck and Poisson equations,b10 convective diffusion 
problems in electrochemical ce l l~ ,~J  etc. 
Modern numerical solutions to the Nemst-Planck and Poisson 

equations in electrochemical cells including electrical double layer 
(EDL) effects seem to be lacking.’ We present, here, a numerical 
solution of these equations for a system consisting of three ions 
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Rockwell International. 

‘Permanent add=: Department of Thermodynamics, University of Va- 
lencia, 46100 Burjasot, Spain. 

8 University of California. 

having different charges and undergoing transport in an elec- 
trochemical cell. Transport is assumed to occur in one dimension. 
Special attention is paid to the evolution of the diffuse EDL. This 
layer is considered to consist of point ions in a continuous dielectric 
solvent with local potential of mean force taken to be the electrical 
potential, i.e., the system is prescribed in a manner similar to that 
employed in the classical Gouy-Chapman theory.’* Electrode 
kinetia are described by a Butler-Volmer-type equation that takes 
into account the structure of the nonequilibrium EDL.12 The 
numerical solution gives concentration, faradaic and displacement 
electric currents, the electric potential profiles as functions of time 
across the cell thickness, and, particularly in the EDL regions, 
at the metal electrode/solution interfaces. 

The numerical technique used is of the finite difference type, 
and incorporates the Gear’s stiffly stable predictorcorrector 
method. The equations are discretized using the method of lines 
on a variable spatial grid because large gradients are present in 
the EDL region. The time grid is automatically generated by the 
procedure in order to satisfy a prescribed error tolerance. These 
characteristia result in a stable and accurate numerical integration 
of the Nernst-Planck and Poisson equations. 

We have considered two problems of well-known complexity: 
(1) the formation of the equilibrium EDL at the electrode/solution 
interface, and (2) the electrical relaxation that occurs when an 
exponentially-shaped external potential perturbation is applied 

0022-3654/92/2096-9983$03.00/0 Q 1992 American Chemical Society 
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to the system. These examples illustrate two possible applications 
of the numerical solution, namely the study of steady state and 
equilibrium problems, and the analysis of the tramient responre 
to an electrical perturbation. To further test the procedure, we 
have derived solutions for the steady-state equations in some 
simplified cases and compared them to the exact numerical so- 
lutions. 

The system of Nernst-Planck and Poisson equations is mul- 
tidisciplinary, in the sense that it appears in many fields of science 
and technology where charge transport occurs. Thus, some of 
the ideas and results discussed here find application in semicon- 
d u c t o r ~ , ~ ~  synthetic and biological charged membranes,14 and 
colloids. 

Formulation of the Problem 
As indicated earlier we will focus on a particular problem 

involving the Nemst-Planck and Poisson equations. In this 
problem we deal with the following three one-dimensional 
Nernst-Planck equations 

and the three continuity equations 
aJi aci 

i =  1 , 2 , 3  - =--  
ax at' 

as well as the Poisson equation 

(3) 

where Ji, Di, ci, zi denote flux, diffusion coefficient, concentration, 
and charge number (zl = 2, z2 = -1, z3 = 3) of the ith species, 
respectively, while x and t stand for the position coordinate and 
the time, and e for the dielectric permittivity. $ is the electric 
potential, R the gas constant, T the absolute temperature, and 
F the Faraday constant. Equation 1 is a simplified form of the 
flux equation applicable to dilute solutions and derivable by use 
of the principle of detailed balance. It may also be derived in a 
somewhat more systematic manner by means of the thermody- 
namics of irreversible processes. Its origin and limitations can 
be found elsewhere.I6 For the purposes of the numerical solution 
it is convenient to express the above equations in dimensionless 
form. This can be accomplished with the following transformations 

[ = x/X (4) 

r tD/X2 ( 5 )  

u = c,/c, v = c2/c, w = c3/c (6) 
4 = $F/RT (7) 

where all of the Di have been assumed to be q u a l  and repre- 
sentable by D and c and X are suitable scaling factors having the 
dimensions of 0o"tratiOn and length, respectively. In particular, 
X = (cRT/Pc)'/~ is the Debye length characteristic of the elec- 
trolyte solution.16 We also introduce a faradaic electric current 
density H (in dimensionless form) by the definition 

n = (W, - 52 + 353)X/DC (8) 

Substitution of eqs 4-8 into eqs 1-3 gives 

$4 - = -2u + v - 3w = - p  
at2 

(9 )  

electrode solution electrode 
+ 3  

- 
e 

+ 2  

- d  0 d 
Figure 1. Schematic representation of the electrochemical cell. When 
an electric current is passed through the cell, cathodic and anodic reac- 
tions coupled with transport of the reacting species occur. 

where 7 > 0, and -L < C L with L = d/X (2d is the total cell 
thickness; see Figure 1). In eq 12 p stands for the charge density. 
As indicated earlier we have taken the diffusion coefficients to 
be equal for the sake of simplicity. 

The electrode reaction that we consider is 
w+3 + e- +w u+2 

This might represent, for example, the reduction of ferric ion Fe+3 
to ferrous ion Fe+2 at the electrode. The electrode kinetics are 
accounted for by the Butler-Volmer equation,12 which can be 
written in dimensionless form as 

H(fL,7) = fk[w(fL,~)&/~ - u(fL,~)e-h/~]  (13) 

where & is the standard electrode potential and k is the dimen- 
sionless kinetic rate constant (in FD/X units). There are some 
subtle features concerning eq 13 that, to our knowledge, have not 
been discussed previously in the literature. Although these are 
more physical than mathematical, and the present paper em- 
phasizes computation, these features impact on our choice of 
boundary conditions. As a result it is appropriate to enter into 
a brief diversion to 4i9cuss this point. The equation usually applied 
in electrochemical simulation2 is not that in eq 13, but instead 

H(fL,7) = fk[w(fL,.r)e-a(4**) - u(fL,~)e('-~)(~**)] (14) 

where 4e is the electric potential at the electrode and a the W c r  
coefficient.'* It is implicitly assumed in this equation that the 
whole potential difference between the electrode and the bulk 
solution, de, affects the charge transfer. In eq 14 f = f L  refer 
to the fictitious boundaries between the bulk solution and the 
electrodes (if mass transport effects are neglected'*). Then, eq 
14 does not take account of the structure of the EDL and cannot 
be used in our study. Instead, a more complete equation intro- 
ducing the EDL effects must be used. The general Butler-Volmcr 
equation including EDL and ion size effects12.17 can be written 
in our case as 
H(fL,7) = 

where 4 5 f L  now stand for the planes of closest approach of ions 
to the electrode surfaces. The electric potential drop in the EDL, 
&L,T) has been subtracted from in q 15 bearuse the potsntial 
difference affecting the charge transfer reaction is - ~(&L,T)  
rather than 4e in eq 14.12 In this work, ions are assumed to be 
point charges, which is the basic assumption in the Gouy- 
Chapman model for the diffuse EDL. Therefore, the plane of 
closest approach of ions is just the electrode surface, and then 
~ ( & L , T )  5 #e. Then eq 13 mults directly from eq 15 by impoainS 
this condition (and a = 1/2). Note that, when thermodynamic 
equilibrium prevails over the whole EDL, the surface concen- 
trations are related to those in the bulk solution, u m  and m, 
through the Boltzmann relationships 

fk[w(fL,r)e-U("-Q(f"~)~h) - ~(fL,~)e(l-a)("l"(fL")dO)] (1 5) 



Diffuse Double Layer in Electrochemical Cells 

u(*L) = ubulke-24(*L) (16a) 

w(*L) = WbU,ke-34(*L) ( 16b) 
Introduction of q s  16 into eq 13 for H = 0, leads to the 

(17) 

well-known expression of the Nernst electrode potential 
Wbulk 

ubulk 
= 4(fL) = 4o + In - 

It should be mentioned that eqs 13 and 17 do not account for the 
equilibrium EDL structure in a corrected rate con~tant",'~ but 
rather consider the nonequilibrium characteristics through u, v,  
and 4. 

On the other hand, it is worth calling attention to the fact that 
other treatments6*'s9 have replaced eq 3 by the equation for the 
ouerall electric current density I, which takes the following di- 
mensionless form 

It can be shown that eq 18 is included implicitly in the system 
formed by the transport equations and the Poisson eq~at ion. '~  
Indeed, multiplying eqs 9-1 1 by their corresponding charge 
number zi and summing them, the continuity equation for charge 
transport results 

a aH -(2u - v + 3w) + - = 0 
a7 at 

and can be rewritten by using eq 12 as 

Now, if we identify the quantity within parentheses as the overall 
current density I(T), eq 18 immediately follows. The first term 
in eq 18 is the conduction current while the second corresponds 
to the displacement current. On the other hand, integration of 
the Poisson equation from the midpoint of the cell 5 = 0 to the 
position of the right electrode, t: = L, yields 

where u(L,T) is the surface charge density on the electrode at ,$ 
= L. Note that this charge has the same absolute value as that 
stored in the EDL close to that electrode. From eq 21, we then 
have that 

where eqs 18 and 20 have been employed. Equation 22 gives the 
variation of the charge on the electrode with time in terms of the 
difference between either the conduction or the displacement 
currents at points [ = L and [ = 0. Equations 18 and 22 play 
a central role in the analysis of the two physical problems discussed 
below. 

The next step is to specify the initial and boundary conditions 
for eqs 9-12. We will consider the two cases discussed in the 
Introduction separately. 

1. Formation of the EDL at the Electrode/Solution Interface. 
This situation corresponds to the evolution of the system, under 
open circuit conditions, I = 0, from an everywhere electroneutral, 
nonequilibrium initial state to the final equilibrium state, Le., to 
the development of the equilibrium diffuse EDL. The initial 
conditions are given by 

U(€,O) = 7/2, V(€,O) = 1, 
W(&O) = (1 - y)/3, 0 I f I L (23) 

&,O) = 0, 0 I I L (24) 
and correspond to an initially homogeneous electroneutral solution, 
such that the constant y is twice the ratio of the initial value of 
u to that of v.  The boundary conditions can be written as 

The value of H(L,T) in eqs 27,29, and 30 is that given in eq 13. 
Equations 23-30 specify all the physical conditions to be imposed 
on the solution of eqs 9-12. In particular, eqs 25 follow from the 
even symmetry of the problem. Note that this symmetry makes 
it unnecessary to solve the transport equations in the spatial region 
-L I [ < 0. Equation 26 merely defines the origin of the electric 
potential. The two expressions in eq 26 are completely equivalent 
because of eq 24. However, the differential condition is preferred, 
since it is more easily introduced into the integration procedure. 
On the other hand, eqs 27-29 indicate that the ions of charges 
z1 = 2 and 23 = 3 are those which react at the electrode. Finally, 
eq 30 is the boundary condition for Poisson's equation at ( = L, 
and can be obtained from eqs 21-22 and the boundary condition 
for 4 in eq 25. Note that u(L,O) = 0, since the electrode is 
supposed to have no charge at the initial state. It should be 
emphasized that eq 30 provides a time-dependent, integral 
boundary condition for 4, This condition describes how the in- 
itially neutral electrode is being charged due to the electrode 
reactions. This charging process stops when the resulting charge 
separation gives rise to the final Nemst potential difference be- 
tween the electrode and the solution. 

In the Appendix at the end of this paper we present a formal 
method of integration for the steady-state equations describing 
the equilibrium EDL. Later in the Results section we compare 
the final equilibrium values of our numerical solution to those 
obtained by this method. 

2. Exponentially-Shaped Potential Perturbation. This case 
involves the modification of the equilibrium EDL obtained in the 
above section by means of an externally applied electric potential 
perturbation. Electrical relaxation techniques find application 
in many fields of electrochemistry.20 The initial state is an 
equilibrium one while the final steady state is not since in that 
state an electric current passes through the cell. This current I 
is not known a priori. 

The initial conditions for concentrations and electric potential 
are just the final equilibrium profiles obtained in case 1. The 
profiles in the region -L I [ I 0 can be readily reproduced by 
symmetry. On the other hand, the boundary conditions at [ = 
i L  are still given by eqs 27-29 and 13. For the potential, the 
new boundary conditions are 

(31) 
where 4(*L,O) is the equilibrium (Nernst) electrode potential 
obtained in case 1. Here v is the amplitude of the electric potential 
perturbation and l /b  is the dimensionless characteristic time for 
the establishment of this perturbation. The value of v does not 
present a limitation in this numerical approach other than those 
that arise from the accuracy of the Gouy-Chapman description 
of the physical situation. Note, also, that the passage of an electric 
current breaks the symmetry of the problem with respect to the 
point C = 0, so that eqs 25 are no longer valid. Furthermore, eq 
26 is not imposed. 

~ ( * L , T )  = 4(iL,O) r r ) ( I  - e+) 
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Integration Procedure 
Equations 9-13 and 23-30 are discretized using the method 

of lines2'-24 on a variable ti grid in order to monitor the EDL that 
develops at the right boundary .$ = L. Let the interval [O,L] be 
divided into a sequence of NPT points such that 

0 = €1 < 5 2  < e.. < [ N n  = L 

and define hi = - ti. Using centered differences, we write 

where i(i = u(&,T), u i q 2  ( U i i l  + ui)/2, and L 1 / 2  = (ti*l + 
ti)/2. Similar difference expressions can be written for the other 
spatial derivatives in eqs 9-12. The boundary conditions 25 and 
26 or 13 and 27-30 are discretized using one sided differencing. 
For example, at & p ~ ,  eq 9 becomes (see also eq 27) 

Note that at = 0, both a Dirichlet condition (+(O,T) = 0, eq 26) 
and a Neumann condition ((&/ag)(O,r) = 0, eq 25) are prescribed 
in case 1 when only one is necessary. The Neumann condition 
alone sometimes leads to instabilities that do not occur when the 
Dirichlet condition is applied. We make use of both conditions 
by employing the Neumann condition in the discretization of eqs 
9-1 1 and adding the dummy equation d&l/d7 = 0 (eq 26). In 
order to include eq 30, we add one last ODE (ordinary differential 
equation) to our system in the form 

with the initial condition 

a4 --(LO) = 0 a€ (35) 

obtained by differentiating eq 24. 
Define the solution vector y as 

YT = (ulr U l r  WI, 41, u2, u2, w29 42, * * v  UNIT, UNPTI W"I 4NPT, 

(&/at)NPT) (36) 

where T denotes the transpose operator and (a+/dt)NPT = 
(a4/8[)(L,T). The number of components of vector y (or number 
of equations to be solved) is NEQ = 4NPT + 1. 

Using expressions similar to eqs 32-36 to discretize eqs 9-13 
and 23-30 in the spatial variable 5 (applying the method of lines), 
we obtain the differential-algebraic system 

dY 
d7 A- =f(Y,7)  (37) 

where A is the singular diagonal matrix 
A = diag (1, 1, 1, 1, 1, 1, 1, 0, .... 1, 1, 1, 0, 1) (38) 

The zeros in eq 38 occur because the Poisson equation 12 has 
no time derivative and, consequently, yields an algebraic rather 
than a differential system in eq 37. The fourth 1 in eq 38 comes 
from the dummy eq 26 and the last 1 from eq 34. The initial 
condition for eqs 37 and 38 comes from eqs 23, 24, and 35. 

The system 37, 38 is stiff:5 but standard stiff integrators are 
not applicable because A is singular. Instead, we make use of 
the software package MODIx which contains Gear's stiffly stable 
difference operators25 of order 1-5 and can solve the above system 
even when A is singular. LSODI is a variable order and variable 

step size integrator which monitors the error growth by comparing 
the differences between predictor and corrector equations with 
the truncation errors for various orders. This integrator uses the 
numerically generated Jacobian @flay) to form a pseudo-New- 
ton's method to converge the corrector equation. Newton-like 
iterative methods rather than simple ones are required because 
of the stiffness of the system. The algorithm makes use of the 
fact that this Jacobian matrix is banded with a half-bandwidth 
equal to 7. In general, when other multiionic system are studied, 
the bandwidth is equd to 2NPDE - 1, where NPDE is the number 
of PDEs. The actual pseudo-Newton's method uses the mn- 
singular matrix A - Ar&(af/ay), where AT is the step size and 
& (1 I k I 5 )  is a constant related to the kth order of the 
corrector equation.2s 

The values for (dy/dr)(O) (required by LSODI) are obtained 
from m(O),O) for all non-4 components, and the following 
equations 

a4 
-(€,O) = 0 (39) a7 

I( dT am)(L,O) at = H(L,O) 

Equation 39 is obtained by integrating eq 18 with respect to and 
noting that H([,O) = 0 for 0 I t I L. Equation 40 results from 
the fact that eq 34 is valid when L is replaced by 5. See eq 18 
and note that Z(0) = 0 for both cases 1 and 2. 

The main advantage of this approach over a more classical 
procedure is that the step size AT and the order of the numerical 
method (first to fifth) are automatically adjusted to guarantee 
that a relative and/or absolute error tolerance is satisfied. This 
is especially important in regions of large gradients (EDLs) or 
when large values of AT are required to reach the steady state. 

The integral boundary condition 30 is handled in a natural way 
with this software package as the differential equation 34, and 
the latter is integrated using the same order of difference scheme 
as the other equations in eq 37. This approach yields a much more 
stable algorithm than the one that would result if eq 30 were 
integrated using the trapezoidal rule or some other fixed qua- 
drature formula. 

Another important factor is the fact that the system of PDEs 
9-13 and 23-30 is stiff because of the presence of a boundary 
layer at = L. Therefore, any numerical algorithm must deal 
with this fact and will require a relatively fine grid at the right 
boundary. Employing a stiff integrator such as the one in LSODI 
naturally handles the stiffness in the PDEs as well as in the ODES 
that result when the method of lines is used. 

Although LSODI can make use of an analytically computed 
Jacobian, the numerically generated code is less likely to have 
human calculus errors and only requires about 20% more CPU 
time. The Jacobian is only reevaluated when the previous J w b m  
fails to iterate the corrector equation to convergence. 

For the nonsymmetric problem (case 2), we introduce the 
following two dummy equations 

d#,/ds = bq exp(-br), 41(0) = @(-L,-) (41) 

dONm/dT = -h eXP(-h), h n ( 0 )  = @&-) (42) 
The discretization for the nonsymmetric problem on the interval 
[-L,L] is similar to the symmetric case. However, the initial 
condition for the nonsymmetric case is the final steady-state 
solution, @&a), of the symmetric case on [O,L] extended using 
symmetry to reproduce the final profiles on the interval [-L,L], 
Le., @(-&a) = a(€,-), for 0 I I L. In a similar way, define 
U(&-), V([,-), and W([,-). Then the initial conditions for case 
2 are 

u(f,O) = U(F,m) (43) 
U ( E , O )  = V(C,-) (44) 
w(h0) = W(€,m) (45) 
d(t.0) = @(€,-) (46) 
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TABLE I: Symmetric Case 1 with NPT = 126 (CPU Time 11.65 s) 
T NSTEP N F  NJ NQ AT 

1 29 269 14 2 0.181 

104 73 531 21 1 0.260 X lo5 
1 06 71 567 29 1 0.260 X IO' 

102 57 433 22 2 0.121 x 102 

TABLE Ik Nmymmetric Case 2 with NPT = 251 (CPU "e 
15.72 s) 

T NSTEP N F  NJ NQ AT 

10 5 55 3 1 0.670 X 10' 
1 02 10 95 5 1 0.397 X lo2 
103 25 179 9 2 0.135 X 10' 
l@ 48 273 13 4 0.101 X IO4 

for -L 5 E I L. The values of (dy/dT)(O) (required by LSODI) 
for case 2 are numerically generated from the time evolution of 
U, V, W, and a. 

The spatial grid used in the code is completely arbitrary, but 
the following was used for the symmetric problem on the interval 
[ O J I  : 

( i ) i f L r  100: 

(L - 1O)(i - 1)/20 
L - 10 + i -21 
L - 5 + ( i  - 26)DO 

if i = 1,  2, ..., 21 
if i = 22,23, ..., 26 si = 

if i = 27,28, ..., 126 I 
(ii) if L e 100: 

4L(i-1)/125 i f i = 1 , 2 ,  ..., 26 
s i  = [ Ll0.8 + ( i -  26)/500] if i = 27,28, ..., 126 

For case 2, the grid is the same as above and is symmetrical about 
= 0. Thus,for thiscase,NFT = 251 and NEQ = 4NPT = 1004 

(note that eq 34 is not used). 
In order to illustrate the effectiveness of the integrator, we list 

some computational results for the symmetric (Table I) and the 
nonsymme%ric problem (Table 11) for the case L = 10, k = 1, and 
7 = 0.2. In addition, for the nonsymmetric case b = 0.001 and 
q = 1. The relative and/or absolute error tolerance was set to 
lo-'. Here, NSTEP denotes the total number of time steps and 
A7 is the present step size. NF is the total number of function 
evaluations, Le., calls to evaluatefi.7) in eq 37. NJ is the total 
number of Jacobian evaluations, and NQ is the present order of 
the finite difference scheme (1 5 NQ I 5 ) .  Every numerical 
Jacobian requires 15 calls to the function routinefi,r) because 
the Jacobian matrix (af/ay) has 15 nonzero diagonals. If we had 
provided an analytic Jacobian instead of a numerical one, the 
number of function evaluations would be only NF - 15NJ. Thus, 
273 in Table I1 would be 78 = 273 - 1 5 1 3  and 567 in Table I 
would be 132 = 567 - 15.29. CPU in Tables I and I1 denotes 
the CPU time in seconds to perform the computations in the tables 
on the VAX 6410 in double precision. The reason that the 
nonsymmetric case requires so many fewer time steps than the 
symmetric one is because the former was started with a much 
smoother solution. With nonsmooth initial conditions, the inte- 
grator must take small step sizes until the profiles have "diffused 
out". Notice how large the step size is as the solutions approach 
the steady state. 

ReSUltS 
As stated previously, two physical problems are considered in 

this paper: (1) the formation of the equilibrium EDL on the 
electrode surface, and (2) the transient response of the EDL to 
an electrical perturbation. These problems were chosen because 
they illustrate clearly some of the possible applications of the 
numerical solution. 

1. Formah of tbe EDL at the Electrode/Solution Interface. 
Equations 23 and 24 give the initial, flat band conditions of the 
system. They correspond to an initially homogeneous electro- 
neutral solution. The initial electrode charge is zero. Figure 2 
shows the evolution of the electric potential profile from the initial 
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0.0 
YY95.0 9997.5 10000.0 
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Figure 2. Electric potential profiles for times T = lO", n = 0 , 2 , 6 .  The 
plot wrresponds to case 1 for y = 0.2, = 0, and k = 1. Note that only 
a small part of a cell of thickness 2L = 2 X lo4 is represented. 
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Figure 3. Electric potential profiles for times T = IO", n = -1, 0, 1, 3. 
The plot corresponds to case 1 for y = 0.2, I#+, = 0, and k = 1. Note that 
only part of a cell of thickness 2L = 20 is represented. 

value given in eq 24 to the final equilibrium profile (the Nemst 
potential'*). The corresponding cell thickness, 2L = 2 X lo4, is 
much greater than the thickness of the EDL, which is typically 
only a few X's, Le., a few dimensionless units. Note that only the 
small part of the cell where the EDL effects are not negligible 
is represented. The final value for +(L), b(L) = 0.98, is reached 
in about lo6 time units and agrees with that computed from the 
approximate solution given in the Appendix. The total compu- 
tation took a CPU time of some 15 s on a VAX 6410 computer 
using double precision arithmetic. 
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Figure 4. Volume charge density profiles for times 7 = lo", n = -1, 0, 
1, 3 and the same conditions given in Figure 3. 

0.1 0 

0.08 

0.06 

0.04 

0.02 

0.00 
5.0 7.5 10.0 

4 
Figure 5. Conduction current density profiles for times T = lo", n = -1, 
0, 1, 2 and the same conditions given in Figure 3. 

Figures 3-5 give the time evolution of electric potential, volume 
charge density, and conduction (faradaic) current for a cell of 
thickness 2L = 20 under the conditions established in the figure 
captions. Because of the smaller thickness of the cell, the steady 
state. (the equilibrium one in this case) is now reached at T = 102. 
The final value for &L) cannot be compared to the approximate 
analytical expressions derived in the Appendix since they do not 
apply to this case. Note that the EDL effects extend over an 
important part of the cell. In fact, the concentrations in the bulk 
of the cell (the neighborhood of = 0) can differ significantly 
from those in the initial state of the system due to the electrode 
charging process described by eqs 21 and 22. For smaller values 
of L, the charge density p can even take nonzero values at t: = 
0. These questions are usually referred to as 'overlapping" effects 
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Figure 6. Steady-state ion concentration profiles for the same conditions 
given in Figure 3. 

between the EDLs. Note that because of the symmetry of the 
problem an EDL identical to that considered in Figures 3-5 exists 
at the interface 4 = 4. This is not exhibited in the figures. The 
charge density evolution in Figure 4 largely resembles that of the 
electric potential. In fact, it is the process of charge separation 
between solution and electrode which gives rise to the electric 
potential drop. The charge has a negative sign (that of the 
nonreacting ion), and its magnitude is exactly the same as the 
positive charge on the electrode. Therefore, the whole EDL is 
electrically neutral. On the other hand, Figure 5 shows the 
decrease with time of the conduction current across the cell to 
reach the final null value for 7 = le. Although the uuerall current 
I is zero under open circuit conditions, conduction and dis- 
placement currents assume nonzero values during the charging 
process; see eq 18. Finally, Figure 6 shows the equilibrium profiles 
achieved for the ion concentrations across the cell. Important 
deviations from electroneutrality can be observed in the spatial 
zone adjacent to the electrode, as is e~pected.2~ They arise from 
negative ion accumulation and positive ion depletions in the EDL. 
For 0 < 4 < 8 approximately, the solution is locally electroneutral. 

It is also interesting to note that Figures 2-6 have been obtained 
for k = 1 (see eq 13). This is indeed a high value for the kinetic 
rate constant. For much smaller values of k, the electrode can 
offer mistance to the charging process, and thus the times required 
for the EDL to attain its equilibrium state can differ significantly 
from those above. This is the regime of interfacial rather than 
d@'iusional control and has been commented upon in previous 
electrochemical  simulation^.^ 

Brumleve and Buck' considered the time evolution of the ion 
concentration profiles at a charged interface and found typical 
times much smaller than those obtained here. However, they 
studied an instantaneous charge step and ignored the time for 
electrode charging. Therefore, in their case, the time constant 
of the process is simply that due to the redistribution of ions over 
the EDL (an electrical relaxation time of 7 = l)," and their mults 
cannot be compared with those in Figures 2-6. 

2. Expopnntwly-Shaped Potential Perturbation. The initial 
conditions for concentrations and electric potential are now the 
equilibrium profiles obtained above. The potential perturbation 
is that of eq 3 1. Figure 7 shows the evolution of the electric 
potential with time across a cell of thickness 2L = 20. The 
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F'igwe 7. Electric potential profiles for times 7 = 10: n = 0 ,2 ,3 ,4 .  The 
plot corresponds to case 2 for 7 = 0.2, I$,, = 0, k = 1, b = and r) 

= 1.  A cell thickness 2L = 20 is considered. The maximum value of I$ 
for 7 = lO'is &(-L) = 1.31. 

characteristic perturbation potential is 7 = 1.0, while the initial 
equilibrium electrode potential is tj(L,O) = 0.3. However, the 
effects of the perturbation are not important up to a time I = l /b 
= lo3, 1/6 being the characteristic perturbation time. The steady 
state is reached at I -N lo4 >> l/b. This state is characterized 
by a constant electric current, I 0.003, through the cell. Note 
that because of the small cell thickness, a very low ohmic drop 
in the bulk of the cell can sustain this current. The formation 
of the EDL and further perturbation of the system until the 
attainment of the final steady state required a total CPU time 
of some 28 s. Figures 8 and 9 give the charge density and 
steady-state concentration profiles, respectively, for the situation 
in Figure 7. Note that the imposed electrode potentials cause the 
EDL charge to have different signs at the interfaces = fl;. As 
expected, time evolution of the charge density closely resembles 
that of the electric potential. The space charge region extends 
over a thicker zone in the left interface than in the right. This 
is readily explained. The space charge near the left electrode is 
negative and arises from the accumulation of the ion of charge 
-1. Conversely, the positive space charge near the right electrode 
originates from the accumulation of the ions of charges 2 and 3. 
Since the thicknesses of the space charge regions decrease with 
the charges of the accumulated ions,I6 thicker nonelectroneutral 
regions would be expected near the left electrode than near the 
right. Finally, Figure 9 shows the steady-state concentration 
profiles across the cell thickness. These give substance to the 
observed values for p in Figure 8. The concentration values for 
u have increased while those of w have decreased with respect to 
their initial values (see eq 23). Both concentrations attain similar 
values in the steady state due to the electrode reactions. It is also 
seen that the concentration gradients of u and w have different 
signs. This can be anticipated since the fluxes of the two positive 
ions have opposite signs, while the total potential gradient has a 
definite sign across the cell thickness. 

Discussion 
We have presented a numerical solution for a boundary value 

problem involving the Nemst-Planck and Poisson equations. 
These appear not only in electrodiffusion problems of electro- 
chemistry but also in many other fields of science and technology. 
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Figure 8. Volume charge density profiles for times 7 = 1 0 :  n = 0, 2, 3, 
4 and the conditions in Figure 7. Only the regions -10 < 5 < -5 and 5 
< C < 10 are represented. The extreme values of p for 7 = 10' are p(L) 
= 1.85 and p(-L) = -4.64. 
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Figure 9. Steady-state ion concentration profiles for the same conditions 
given in Figure 7. The v plot attains a maximum value of v(-L) = 4.66. 

On the other hand, it is clear that the simple physical model that 
we considered does not include all the effects involved in the 
descriptions of many real systems. In particular, the diffuse EDL 
model neglects both ion size and adsorption effectsi2 and represents 
an oversimplified picture. Ignoring ion size overestimates the ionic 
concentrations near the electrode surfaces, and, therefore, this 
model cannot be employed in cases where the differences of po- 
tential between the electrode and the bulk solution are high. 
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TABLE IIk Exact Nimwk.d Solution and Approximate Solution 
(Case 2 in Awendix) Vduea for Y = 0.38, b,, = 0. rad L = 10 

numerical solution approximate solution 
40) 0.1962 
40) 0.9984 
W ( 0 )  0.2020 
u 0.05557 
&(L) 0.02951 

0.1962 
0.9985 
0.2020 
0.05603 
0.02910 

Moreover, the Results section is intended mainly to emphasize 
the characteristics of the numerical procedure rather than to 
simulate any particular experimental cell. (A detailed study of 
the steady-state space charge effects in symmetric cells can be 
found in the seminal work by In fact, the orders of 
magnitude of some of the parameters that we have used, e.g., L 
= 10 and lo4, are not typical of standard electrochemical cells. 
However, L = 10 corresponds to ooerlapping EDLs, a case of 
interest not only for practical purposes (e.g., for the stability of 
colloid particles2* or for the crossed filaments technique to test 
the Gouy-Chapman theory by measuring the force between two 
electrodes when their EDLs overlapz9) but is also of interest from 
the point of view of theory, since the complex effects that arise 
because of overlapping make the numerical solution necessary. 
On the other hand, L = 104 corresponds to the usual case in which 
the cell thickness is already much greater than that of the double 
layer so that no special changes are expected when for instance 
L = lo6. Furthermore, the numerical solution can also be of 
interest in other practical situations where the EDL plays a central 
role. It is worth noting that high concentrations of supporting 
electrolyte are usually employed in electrode kinetics experiments 
in order to minimize EDL effects. This helps to reduce the 
potential drop across the EDL. However, when the charge on 
the reactants is greater than unity (as it happens to be in our case), 
the EDL corrections are important even with high supporting 
electrolyte concentrations.l8 

As already stated in the Introduction, modern numerical so- 
lutions to the Nernst-Planck and Poisson equations in electro- 
chemical cells including EDL effects are not common. As far 
as we know, the most similar algorithm (regarding the purposes 
for which it was developed) is that presented by Brumleve and 
Buck.7 Indeed, the two procedures have some similar charac- 
teristics. Both can be applied to multiionic systems and contain 
refinements in time and distance scaling. (Note that although 
we have studied a system of three ions with equal diffusion 
coefficients, our procedure has no intrinsic limitation neither in 
the number of species present nor in the values of their diffusion 
coefficients.) However, some differences can be established be- 
tween the two methods. First, the integration procedure in ref 
7 is of the Newton-Raphson type while that presented here in- 
cludes Gear’s stiffly stable difference operators with a pseudo- 
Newton-Raphson iterative algorithm used to converge the implicit 
corrector equation. Second, the equation system is somewhat 
different, especially in regard to the boundary conditions. Potential 
cannot be controlled in ref 7 because the electric field is used as 
the independent variable. Here, the use of the electric potential 
as an independent variable makes it possible to control both the 
electric current and the drop of electric potential. However, in 
our procedure the former case requires the use of the integral 
boundary conditions while it is easily implemented in ref 7. 
Finally, we have used the suggestion in ref 7 concerning the use 
of a time step procedure which determines its own step size. The 
numerical solution of ref 7 has, however, many outstanding 
characteristics. In particular, it can accommodate not only 
steady-state and transient responses but also impedancefrequency 
responses and has found application in a large number of different 
physical si tuati~ns.’~~J~ 

In closing, we call attention to the fact that the main features 
of the proposed numerical integration method make it especially 
suitable for the study of transport procases through spatial regions 
where large gradients in the physical variables occur. For instance, 
this is the case with ion transport through inhomogeneous materials 
like bipolar3’ and asymmetric membranes.32 
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Appendix 
We present here the equations which describe the equilibrium 

EDL and solve them in two limiting cases. The results obtained 
are compared to those of our numerical solution. Most of the 
theoretical treatments of the equilibrium EDL consider only the 
case of a binary electrolyte in a cell of thickness much greater 
than that of the EDL. Studies on overlapping EDLs are not very 
us~a1,2’*~* and some of them cannot be applied here, because in 
our case the effects of overlap cause modification of the total ion 
concentrations in the cell (due to the formation of the EDL). The 
work in this Appendix not only allows us to check our numerical 
solution but also provides some approximate solutions which can 
be of theoretical interest. (In a classical paper in the electro- 
chemical literature, obtained approximate solutions for 
the cases of both the linearized and nonlinearized Gouy-Chapman 
conditions.) 

In equilibrium, the ion concentrations are related to the local 
electric potential + ( F )  through the Boltzmann relationships 

u(F,=) = u(E,=) = u(O)e+, w({,=) = w(O)b3@ 
(All  

where we have assumed that 4(0) = 0. The resulting Poisson- 
Boltzmann equation is 

d26/dF2 = - 2 ~ ( O ) e - ~ @  + u(0)d - 3 ~ ( O ) e - ~ @  (A2) 
which must be solved in the region 0 < f < L, using the boundary 
conditions 

d4 
-(O) = 0 (A31 d l  

Equation A3 results from the symmetry of the cell while eq A4 
corresponds to the equilibrium Nernst electrode potential. 

In solving eq A2, a problem arises in connection with the values 
of the ion concentrations at 6 = 0. If the cell thickness were large 
compared to that of the EDL, we could assume that the values 
in the bulk are not significantly different from those in the initial 
state of the system. However, the following conditions must be 
used for the general case: 

(445) 
L 

u,,oL + u = s, u(O)e$ df 

where u , ~ ,  uTs0 (and w , , ~  = ( - 2 ~ , , ~  + uTmO)/3) refer to the initial 
concentrations given in eqs 23. Here, eq AS accounts for the 
change in the total amount of the reacting species due to the 
electrode reaction, Le., to the formation of the EDL, and eqs A6 
and A7 are the conservation laws for the nonreacting species and 
the charge, respectively. Two limiting cases will now be considered 
in order to facilitate the solution of the system formed by eqs 

1. CenThiclrnessMucbCrerrterTbpntheThidmess dtheEDL 
As we have already mentioned, in this case the concentrations u(O), 
u(O),  and w(0) can be approximated by u,,o, uTE0, and w,=o. The 
local electric potential can now be obtained easily by integrating 
the Poisson-Boltrmann eq A2. The fmt integral of eq A2 obtained 
by multiplying both sides of this equation by d 4 / 4  and integrating 
from 0 to 4 is 

A2-A7. 
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. I  

(‘48) 

The second integral can be evaluated by taking square roots on 
both sides of eq A8 and integrating from 4 to L 

sgn (W)) 
2112 L - t =  

d4  
J(:r[u(o)(e-2+ - 1 )  + u(o)(& - 1) + W(o)(e-3+ - 1)11/2 

(A9) 

Quation A9 can now be used to calculate the full potential profile 
by means of standard numerical quadrature techniques. Note, 
however, that when t = 0 the integral becomes improper. We 
have found that the resulting I$([) values obtained from the ap- 
proximate solution in eq A4 coincide with those of the numerical 
solution in Figure 2 for 7 = lo6 (steady state) and y = 0.2 (i.e., 
for L = lo4, the assumption d >> X seems to be justified). 

2. S d  Valua of the Ekctric Potential, 141 << 1. When the 
Nernst potential is so small that the Poisson-Boltzmann equation 
can be linearized, it is possible to solve the system A2-A7, even 
for the case of a cell thickness of the order of that of the EDL. 
Now the concentrations u(O), ~(0). and 4 0 )  are not equal to their 
respective initial values and the effects of overlap are no longer 
negligible. The linearized Poisson-Boltzmann equation can be 
integrated easily to give 

where 

ko2 = -240) + ~(0) - 3 ~ ( 0 )  

k I 2  = 4u(O) + u(0) + 9w(O) 

(Al l )  

(A121 

Introduction of eq A10 into the linearized forms of eqs A5-A7 
yields 

urro + ko2 sinh (k lL)  
u(0) = (A13) k lL  - 2(ko/kl)2[sinh (k lL)  - klL] 

U,=Okl L 
u(0) = (A141 

~ ( 0 )  = ~ ( 0 ) ( 1  + (ko/kl)2[coSh ( k , L )  - 11) (A15) 

(A161 

where eq A15 comes from the boundary condition in eq A4. The 
system formed by eqs A1 1-A16 can now be solved for u(O), u(O), 
w(O), and u. First, some guesses are made for the initial values 
of u(O), u(O), and w(0) (they may be close to the u,=~, urr0, and 
w,,~,  respectively). These guessed values can then be used to 
evaluate kl  through eq A12. However, the system is so sensitive 

k l L  + (ko/kl)2[sinh (k lL)  - klL] 

u = ( k 2 / k l )  sinh (k lL)  
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to the value of ko that the use of eq A1 1 to evaluate ko is not 
recommended. The choice of ko as the iteration parameter is much 
more convenient. Thus, after a first guess for k,,, m e  new values 
for u(O), u(O), and w(0) are obtained. These are used to evaluate 
kl  as well as to suggest the new value for ko in order to satisfy 
eq A l l .  Finally, eq A10 yields #([). Table I11 shows the results 
of this approximate solution as well as those from the exact nu- 
merical solution for the case y = 0.38, Qo = 0, and L = 10. As 
expected, good agreement is found for this particular case because 
the highest value involved in the arguments of the exponentials 
is 34(L) = 0.087. 
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