
J .  Phys. Chem. 1993, 97, 8524-8530 

Numerical Simulation of the Nonequilibrium Diffuse Double Layer in Ion-Exchange Membranes 

J. A. Manzanares,+qg W. D. Murpby,t S. Mafd,+*S and H. Reiss'J 
Department of Chemistry, University of California, Los Angeles, California 90024, and Rockwell International, 
Science Center Division, Thousand Oaks, California 91 360 

Received: March 30, 1993; In Final Form: May 12, 1993 

We have analyzed theoretically the complex phenomena taking place when an electric current passes through 
the nonequilibrium diffuse double layer at  the ion-exchange membrane/solution interface. Interesting results 
arise due to the nonlinear character of the system of equations consisting of the Nernst-Planck and Poisson 
equations, and the inhomogeneous nature of the membrane system (membrane plus bathing solutions). Some 
of these results confirm the conclusions concerning the space-charge distribution obtained previously by other 
authors using different methods. Others provide new physical insights into problems such as the question of 
the validity of the Donnan equilibrium relations at  the membrane/solution interfaces, and the selectivity of 
ion-exchange membranes. 

Introduction 

Transport through ion-exchange membranes is of great 
scientific and technological importance. The full theory of this 
phenomenon presents some very difficult problems, so that even 
at this late date certain fundamental issues have not been 
satisfactorily resolved. The continuity equation governing the 
transport, involving a flux density prescribed by the well-known 
Nernst-Planck equation, is unfortunately nonlinear. Further- 
more, the boundary conditions that must be included in the full 
description of the problem present their own set of difficulties 
and uncertainties. For the most part, the problems associated 
with the boundaries have been swept under the carpet and it has 
more often than not been assumed that instantaneous local 
equilibrium is established across an interface between the 
membrane and a bathing electrolyte solution. Whether this is 
always true, and if not, under what conditions does the assumption 
fail, have never been thoroughly examined, although various 
authors havemadesomeattempts in thisdirection.' Thequestion 
can only be studied by examining the structure of the interfacial 
zone, including that of the diffuse space charge layer in the bathing 
electrolyte. 

The proper approach to this study involves more than the brute 
force numerical solution of the nonlinear initial and boundary 
value problem, including transport through the interfacial zone 
that emerges. In fact, it is necessary to introduce physically 
consistent boundary conditions, e.g., one must follow the evolution 
of boundary behavior through the transient period that precedes 
the establishment of steady-state transport. In this paper we 
examine these several questions and then introduce a numerical 
means for generating physically consistent solutions to the 
problem. 

Although we are not here concerned with electrode behavior, 
techniques that we have used previously to solve the time evolution 
of a redox system2 can be usefully applied to the membrane system. 
The main features of this method of numerical integration make 
it suitable for the study of any transport processes through spatial 
regions where large gradients in the physical variables (concen- 
trations and electric potential) occur. In this sense, the present 
study is useful for demonstrating the applicability of the numerical 
procedure for a situation physically and mathematically different 
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from that studied in ref 2. However, the chief focus of the present 
paper is not on numerical methods but rather on establishing a 
consistent physics of membrane transport at the same time that 
a very fundamental problem of membrane electrochemistry is 
studied. This problem involves the structure of the electrical 
double layer (EDL) in theoverlimitingcurrent regime, Le., under 
extremely nonequilibrium conditions. Moreover, the complex 
phenomena associated with the passage of an electric current 
through the diffuse double layer are of considerable basic 
interestlvw and markedly influence the efficiency of membrane 
processes like electrodialy~is.~J Therefore, we endeavor to relate 
our results to previous ones in the field, while emphasizing those 
cases where new physical insights arise. 

The steady-state nonequilibrium diffuse double layer at an 
electrode has been thoroughly studied (see ref 9 and, especially, 
ref 10 and references therein); however, such studies have not 
been performed for ion-exchange membrane~.'+~,s Our analysis 
goes beyond these previous studies in the following ways: (i) the 
whole membrane system (membrane, electrical diffuse double 
layers, and diffusion boundary layers) is considered over a wide 
rangeof finite membrane thickness rather than only the polarized 
membrane/solution interface, (ii) our numerical procedure 
permits the imposition of conditions on the electric current and 
the electric potential, (iii) nonideal permselective membranes 
can be studied, and (iv) both steady-state and transient responses 
are dealt with. Our results reveal considerable influence of space 
charge on ion transport and some of our conclusions confirm the 
ideas previously advanced by Bucklo for the case of electrodes, 
and Rubinstein3 for the case of membranes, both of whom used 
different approaches. Others provide new physical insights into 
the behavior of the limiting current, into the applicability, during 
transport, of the equilibrium Donnan relationship to the mem- 
brane/solution interface, and into the permselectivity of the 
membrane. 

From the point of view of the mathematical computations, we 
could consider both negatively and positively charged ion-exchange 
membranes. However, the transport mechanisms in the over- 
limiting current regime seem to depend very much on the particular 
charged groups c~nsidered.~.~-~Jl In particular, water dissociation 
effects are more likely to occur in anion-exchange membranes 
than in cation-exchange membranes. We will consider here the 
changes in the structure of the electrical double layer at the 
membrane/solution interface as the mechanism responsible for 
the passage of overlimiting currents and, consequently, the study 
will be restricted to cation-exchange membranes.3 

0 1993 American Chemical Society 



Diffuse Double Layer in Ion-Exchange Membranes The Journal of Physical Chemistry, Vol. 97, No. 32, 1993 8525 

- 6  0 d d + 6  
Figure 1. Schematic view of the whole membrane system (not to scale) 
and the boundary conditions imposed for the problem of the nonequilibrium 
EDL. 

Formulation of the Problem 

The membrane system under study is constituted by an ion- 
exchange membrane that extends from x = 0 to x = d and two 
diffusion boundary layers (DBLs) that extend from x = -6 to x 
= 0 and from x = d to x = d + 6 .  The membrane is bathed by 
two bulk solutions with the same concentration co of a 1:l binary 
electrolyte. It will be assumed that the membrane contains fixed 
negatively charged groups at a uniform concentration X. 

The principal equations involved in this time-dependent 
transport problem are the Nernst-Planck equations 

the continuity equations 

aJi ac, 
ax at' i =  1,2 _ -  --- 

the equation for the total electric current density including the 
displacement current2J2 

3 
ax at I = F(Jl-JJ - (3) 

and the Poisson equation 

(4) 
Here J,(x,t), D, and c,(x,t) denote the flux, diffusion coefficient, 

and local molar concentration of the ith species, respectively. ( D  
is assumed to be the same for both ions because we are not 
interested in effects due to their different mobilities.) Subscript 
1 refers to cations (counterions) and subscript 2 to anions (co- 
ions). The electric potential is represented by 4(x,t) ,  the space- 
charge density by p(x,t), the electric current density by Z ( t ) ,  and 
the dielectric permittivity of the solution by e. The symbols F, 
R,  and T represent the Faraday constant, the gas constant, and 
the absolute temperature, respectively. Solvent flow and activity 
coefficients effects are neglected. 

These transport equations are solved only in terms of the two 
ionic concentrations and the electric potential. Thus, the ion 
fluxes are eliminated from eqs 1 and 2, giving rise to eq 5 and 

these are solved together with eq 4. Figure 1 is a schematic view 
of the system and includes the boundary conditions imposed on 
eqs 4 and 5 at x = -6 and x = d + 6 .  The system is considered 
to be electrically neutral at the outer boundaries of the DBLs, 
so that c1 and c2 have there the concentration co of the bulk 
electrolyte solution. The condition $(-6,t) = 0 defines the 
reference level for the electric potential. The boundary condition 
for 4 at x = d + 6 merits a detailed explanation. First, note that 
Figure 1 alsoshows theelectriccurrent density that will be imposed 

through the membrane system, namely 

I (?)  = 1,(1 - e-") (6 )  
This current does not reach its steady value ZO immediately, but 
after a characteristic time t = l/b. This time dependence is 
thought to represent a good approximation to many experimental 
situations. Since Z is not a function of x,  it can be specified at 
any point in the system and, in particular, at the right boundary. 
Then, eq 3 establishes a boundary condition for the time evolution 
of a#/ax at x = d + 6. This boundary condition can be written 
as 

and plays a central role in the solution of the problem. 
It is also necessary to specify the initial profiles of c1, c2, and 

4. Since our main concern is the study of the EDL under 
nonequilibrium conditions, it seems appropriate to regard the 
system as being at equilibrium (zero ionic fluxes and current) at 
time t = 0. The description of this equilibrium state it is not 
straightforward when space-charge effects are retained, Le., if 
we seek for an initial state incorporating the equilibrium EDLs 
at the two membrane/electrolyte interfaces." There appear to 
be two possibilities. The first involves the inclusion and solution 
of the Poisson-Boltzmann eq~ati0n.l~ However, this procedure 
involves either the use of an additional numerical method or, if 
an analytical approach is taken, the introduction of approximations 
(e.g., a perturbation approach that considers the electric potential 
as the sumof that at the center of the membrane and a term much 
smaller than unity). The second possibility is to generate the 
equilibrium state from eqs 4 and 5 and the appropriate boundary 
conditions (not those in Figure 1, which are specific for the study 
of the nonequilibrium EDL). We have followed the second 
alternative. This implies thesolution of another transport problem 
prior to the one of interest. As already mentioned above, the 
transport equations are the same, but it is still necessary to specify 
the boundary conditions and initial state for this first problem. 
These are 

3 ( d + 6 , t )  = ac2 -(d+6,t) = 0, &(d+a,t) = 0 (8) ax ax ax 

and 

/2 + [(X/2)2 + c:]~'~, 0 I x I d 
C, (X ,O)  = k, -6 I x < 0 and d < x I d + 6 

C,(X,O) = to, -6 I x < 0 and d < x I d + 6 
X/2 + [(X/2)'+ c:I1/', 0 I x I d 

(-X/2c0 + [(X/2c0)' + 1]'/2), 0 I x I d 
, -6 I x< 0 and d < x l  d + 6 

(9) 

Equations 9 correspond to the well-known Donnan equilibrium 
relations, which assume that the ionic concentrations and the 
electric potential are uniform up to, but discontinuous at, the 
membrane/solution interfaces. 

This first problem is solved out to very large times ( t  - -) and 
the stationary profiles obtained are taken to be the initial profiles 
at t = 0 for the nonequilibrium, transport problem of interest 
(Le., eqs 4 and 5 subject to the boundary conditions in Figure 1). 
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Figure 2. Concentration profiles corresponding to the passage of an electric 
current r(t) = (1 - &/Q) (2FDco/S) for times t = 0, i d ,  and m. Thevalues 
6 = 2d = 100 X, and co = 0.5X have been used. 

By proceeding in this way, the initial profiles for the second 
problem exhibit the expected space-charge effects at the mem- 
brane/solution interfaces, while the total charge stored in the 
membrane system is still zero. 

Note that at x = -6, both the Dirichlet condition (4(-6,t) = 
0) and a Neumann condition ((a+/ax)(b,t) = 0) are prescribed 
when only one is necessary (see eqs 8). The Neumann condition 
alone sometimes leads to instabilities that do not occur when the 
Dirichlet condition is applied. We make use of both conditions 
by employing the Neumann condition in the discretization of eqs 
5 and imposing the Dirichlet condition in the integration 
procedure. The integration procedure is described briefly in the 
Appendix. 

Rt?Sults 
Before presenting the results, it is important to call attention 

to two details. First, the numerical method and the computer 
capability force the consideration of somewhat unrealistic systems 
(very thin membranes, but still much larger in thickness than the 
Debye length). However, the results can be considered as 
representative of the behavior of real synthetic membranes. 
Second, instead of specifying the values of all the membrane 
system parameters ( E ,  D, CO, X, d,  6 ,  etc.), we specify here only 
the values of dimensionless groups of parameters. Consistently, 
the results are presented in the form of dimensionless groups. For 
instance, the electric current density is given in units of (FDcolS). 
This procedure gives results of greater generality and, at the 
same time, properly scales the numbers introduced in the computer 
code. 

Figure 2 exhibits the concentration profiles in the system at 
t = 0, t = 1 / b  = Td,  and t - a. Here Td,  0 S2/D is the diffusional 
relaxation time. The polarization effects are apparent in the 
bulk of the DBLs. The electroneutral concentration profiles 
decrease linearly with position from x = -6 to x - 4X due to the 
positive applied electric current, where X [tRT/PXl1/2 is the 
Debye length in the membrane solution. At x - 4X, EDL effects 
predominate and large deviations from local electroneutrality 
occur before the bulkof the membrane phase is reached, typically 
after several Debye lengths. Similar results are seen for the 
interface at x = d with the only difference that the ion 
concentrations are higher at x = d than at x = d + 6 .  In fact, 
the use of the assumption of local electroneutrality in the bulk 
of the DBLs readily leads to the equations 

(x + 6), -6 I x < 0 c1 = c2 = co-- J l  + J2 
2 0  

( d + 6 - ~ ) ,  d < x I d + 6  (10) J l  + J2 c1 = c2 = co + - 2 0  

The charge density corresponding to the concentration profiles 
in Figure 2 is exhibited in Figure 3. The profiles for p in Figure 
3 correspond to the times involved in Figure 2. Note that this 
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Figure 3. Detail of the space-charge conantration profiles at the two 
membrane/solution interfacial regions corresponding to the profiles in 
Figure 2. The space-charge concentration profile docs not change 
appreciably with the passage of electric current. 
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Figure 4. Electric potential profiles corresponding to the situation in 
Figure 2. 

figure reflects, in detail, the two EDLs at the membrane/solution 
interfaces. This charge density is typical for a negatively charged 
membrane and seems to be rather insensitive to an increase in 
the electric current. This is usually the case when the imposed 
electric current generates electric fields that are much smaller 
than those in the interfacial regions. However, the small changes 
of p with I ( t )  in Figure 3 do result in dramatic changes in the 
electric potential, as is shown in Figure 4. Since we have assumed 
no difference in the ionic diffusion coefficients, Figure 4 shows 
the ohmic drops in the three bulk regions as well as the interface 
potentials. The potential varies almost linearly with position in 
these three bulk regions, as would be expected from the small 
relative changes in the ionic concentrations (see Figure 2). 
However, the behavior in the interfacial regions reveals a very 
important fact. If we extrapolate the two linear behaviors of the 
electric potential on each side of any interface, and compare the 
extrapolated potential difference, FlA4(t)l/RT, with the equi- 
librium Donnan potential, F~A+DI/RT = 0.88, we notice that (i) 
it departs from the equilibrium value as the electric current 
increases, and (ii) it is higher than the equilibrium difference at 
the left and smaller at the right interface. In particular, the 
extrapolated potential difference takes the values FA4(O)/RT = 
~ ) . 8 8 , F A 4 ( ~ d ) / R T = - 0 . 9 5 ,  andF64(m)/RT= -1.01 attheleft 
interface, and FA+(O)/RT = 0.88, F A ~ ( T ~ ) / R T  = 0.81, and 
FA4(m)/RT = 0.76 at the right interface. These results can be 
rationalized easily. One would expect to have larger deviations 
from equilibrium at the left interface, because it is the polarization 
of this interface which leads to a limiting current. The differences 
quoted above are quite important since they provide a quantitative 
idea of the deviations from the equilibrium, deviations of the 
order of 10% for the electric currents considered in Figure 4. 

It is customary to consider the actual values of the electric 
currents in Figure 4 (Le., not in units of FDco/S). These currents 
range from 1 to 10 A/cm2, which are much larger than those 
used in practical situations with synthetic membrane processes. 
Nevertheless, we have considered very thin, highly permeable 
membranes, so that these values are not really out of line. The 
important parameter is not the current itself but the degree of 
polarization of the interface. We have computed the potential 



Diffuse Double Layer in Ion-Exchange Membranes 

10% 

The Journal of Physical Chemistry, Vol. 97, No. 32, 1993 8527 

permselectivity of the membrane system. Note that the classical 
theory of concentration polarization makes use of the assumption 
of ideal permselectivity of the membrane system (qs --., -) in 
order to write 

0 1 0 0 2 0 0 3 0 0 4 0 0  
- FVIRT 

Figure 5. Steady-state current-voltage curve for a moderately charged 
and relatively thick membrane: d = 6 = lo%, co = 0.1X. Here Vdenotes 
4(d+6,=) - 4(4,=). 
differences at the interfaces of thick membranes and have also 
obtained 10% deviations from equilibrium when the same degree 
of polarization of the interface is considered, although in these 
cases the currents were of the order of some mA/cm2. It is worth 
indicating that this definition of the “nonequilibrium Donnan 
potential” is not convenient when high degrees of polarization are 
involved. For instance, when the electric current is half the 
limiting current, deviations from the equilibrium Donnan potential 
can be as large as 50% (left) and 20% (right), but the computed 
potential differences may contain a 10% error. This can be 
understood if we recall that the electric potential profile is far 
from linear near the left interface, where the ionic concentrations 
are greatly diminished. 

Note that we could also define a “nonequilibrium Donnan 
potential” as the jump in electric potential that arises from the 
extrapolation of the ion concentration profiles using the Boltzmann 
law. This would lead to two new definitions, depending on the 
use of either the counterion or the co-ion profile. The results 
obtained using these definitions quantitatively validate the 
deviations mentioned above (Figure 2 can be used to check this 
assertion), and they also show new interesting phenomena. The 
deviations from the equilibrium Donnan potential seem to be 
higher for the counterion than for the co-ion, a behavior that can 
be easily explained by the fact that the deviations from the 
equilibrium Donnan potential are due to the fluxes, and the 
counterion flux is greater than the co-ion flux. However, our 
present calculations do not allow quantitative estimation of this 
effect. More refined calculations, aimed specifically at showing 
this effect are required. 

Figure 5 shows the steady-state current-voltage characteristic 
for a relatively thick membrane having d = 6 = 10% and a fixed 
charge concentration 10 times that of the bulk electrolyte, X = 
loco. This curve can be compared with those appearing in ref 
3, but it should be noted that Figure 5 refers to the whole 
membrane system, while those in ref 3 refer only to the left DBL. 
It can also be compared with experimental characteristics4 if 
correction is made for the ohmic drop in the bulk solutions 
normally included in the experimental curves. The limiting 
current can be estimated theoretically as the current that leads 
to zero concentration at the left membrane/solution interface 
when the electroneutrality condition is employed to describe 
transport in the DBL. Thus, eq 10 yields 

Jl + J26 0 = co-- 2 0  
which can be combined with the equation for the steady-state 
electric current 

I = F(J1-Jz) (12) 
to obtain the result 

Jl - J 2  ~ F D c ,  
Jl + J 2  6 q s -  1 6 

7, + 1 2FDco 
(13) IL = - - = - - 

where qs = -J,/Jz is a parameter closely related to the 

for the limiting current. Other treatments assume that the 
permselectivity of the membrane system is known and use 1 ~ -  in 
eq 13 as the theoretical value for the limiting current. However, 
it should be noticed that the permselectivity of the membrane 
system is not the permselectivity of the membrane and that the 
actual permselectivity of the membrane or the membrane system 
cannot be predicted theoretically in the presence of an electric 
current.15 This can be explained as follows. If we eliminate the 
electric potential gradients from the Nernst-Planck equations 
we obtain 

Integration of eq 15 from x = 4 to x = d + 6 yields the interesting 
result 

1 8  = (cl)s/(c2)s (16) 
where ( )s denotes the concentration averaged over the entire 
membrane system. (The validity of this equation was checked 
in all of our computations.) The boundary conditions imposed 
on the transport problem allow for ion fluxes through the outer 
boundaries of the system. Therefore, during the transient regime, 
when the fluxes entering the system can differ from those leaving 
it, the average ion concentrations can vary. The result is that q 
(Le,, the permselectivity of the membrane system) may depend 
on the magnitude of the current. However, in the underlimiting 
current regime, the actual changes in these average magnitudes 
are very small. In this case, eqs 10 can be used to estimate the 
average ion concentrations in the DBLs and, then, eq 16 can be 
transformed into 

2c06 
( C l ) m  + 7 

v s  = 3, P + -  

where ( ),,, denotes the concentration averaged only over the 
membrane. Equation 17 indicates that the permselectivity of the 
membrane system is that of the membrane (ql = qm)  when 
transport is totally controlled by the membrane, and that of the 
solution (qs = 1, i.e., no permselectivity) when the transport is 
totally controlled by the DBLs.7 However, in most practical cases 
the situation is not so simple. The counterion concentration in 
the membrane system is usually determined by the membrane, 
but the co-ion concentration is determined by the DBLs. In other 
words, transport in the DBL is the rate-determining step for 
counterions while transport in the membrane is rate-determining 
for the co-ions. It is this important effect of the DBLs on the 
determination of ( ~ 2 ) ~  that makes it inaccurate to approximate 
the permselectivity of the membrane system as that of the 
membrane. Thus, for the conditions given in Figure 6 and 10 = 
0, qs = 5.8 while q m  = 101. At IO = 1 . 5 I ~ ~ ,  qs = 5.5 and = 
4. For the case under discussion we can estimate the actual 
limiting current of the membrane system by making use of eq 13 
and the value qs = 5.5 as IL = 1.451~- (see Figure 5). 

Finally, Figure 6 shows the profile of the steady-state space- 
charge concentration in the left DBL (a) and the two membrane/ 
solution interfaces (b), for different values of 10/1~-: 0,0.5, 1.5, 
2.5, and 5. This figure confirms results obtained previously by 
Rubinstein’ and Gurevich et a1.16 in membrane systems, and by 
Buck10 in electrode systems, on the Occurrence of a maximum in 
the space-charge distribution. However, since we have considered 
the nonequilibrium diffuse double layers in the whole membrane 
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Figure 6. (a, top) Steady-state space-charge concentration profiles for 
the conditions of Figure 5 and the following values of the electric current: 
Io /IL.  = 0,0.5, 1.5,2.5, and 5 .  (b, bottom) Detail of the space-charge 
concentration profiles at the two membrane/solution interfacial regions 
componding to the profiles in Figure6a. The arrows indicateincreasing 
values of Io f IL-. 

system, a more detailed explanation of the phenomena can now 
be given. (This kind of study is not usual in the literature: diffuse 
double layer studies generally assume that the system is in 
equilibrium,l4 transport studies assume that local equilibrium is 
established across the interface and therefore, by necessity, 
throughout the interfacial regi0ns.l.1~ Furthermore, when both 
diffuse double layer and transport effects are considered, only 
part of the membrane system is studied.3+’J8 

When 10 = O S Z L ~ ,  the nonequilibrium double layers at the two 
interfaces are very similar to those at equilibrium. However, 
when ZO = 1 . 5 Z ~ -  - ZL the diffuse layer in the solution phase of 
the left membrane/solution interfacial region begins to split into 
two parts (see the corresponding curve in Figure 6a). As the 
current is increased beyond the limiting value, part of the charge 
in this diffuse layer remains very close to the interface but the 
rest spreads over the DBL (see the curves for ZO/ZL- = 2.5 and 
5 in Figure 6a). We will refer to the latter as the macroscopic 
space-charge region (SCR). Region -8X I x I 0 in Figure 6b 
shows that the charge that remains near the interface decreases 
when the electric current is increased because this charge is needed 
in the SCR during its expansion over the DBL. The idea of 
splitting the diffuse double layer in two parts was first suggested 
by Nikonenko et a1.I8 However, these authors assumed that the 
part of this layer remaining close to the interface could be 
considered as an equilibrium diffuse double layer. Figure 6b 
shows that this layer also changes with current. In defense of 
these authors, it must be borne in mind that ref 18 was one of 
the first attempts to provide an analytical solution to the problem 
and, at the time, some unfounded assumptions had to be used. 

It is important to note that the existence of the macroscopic 
SCR makes feasible the passage of. currents higher than the 
limiting current in two ways. On the one hand, it reduccs the 
effective thickness of the electrically neutral DBL and leads to 
an enhancement of the ion fluxes in this region.’* On the other 
hand, it creates a high electric field in the SCR itself that forces 
the ion concentrations there to differ from zero and the ion fluxes 
to be the same as the rest of the membrane system. In other 
words, the passage of currents higher than the limiting current 
necessarily implies the existence of a region where the ion 

concentrations are much smaller than in the rest of the system. 
The only way to have the same ion fluxes while reducing the 
concentrations is to increase the electric field, which in turn can 
be done by a volume space charge. Then, it results that the ion 
concentrations are decreased in this region but not at the same 
rate so that this region becomes a SCR. Indeed, if we do not 
make use of the local electroneutrality assumption in order to 
derive the ion concentration profiles in the DBLs (see eq 10) we 
0btain3.~*9 

( x  + 6 )  + 1 Jl + Jz -(q + c2) = c, - - 2 2 0  
Q - [E*(x ) -E’ (b ) ] ,  - ~ S X < O  (18) 4RT 

where E 4qj/t3x is the electric field. The classical theory of 
concentration polarization neglects the effect of the electric field 
and leads to a zero value for the ion concentration at the limiting 
current. However, the appearance of space charge makes the 
electric field so large that the left hand side of eq 18 assumes a 
value much smaller than co in the SCR but never vanishes, in 
agreement with experimental  observation^.^^ For instance, for 
the conditions given in Figure 5 and with IO = SI,,, we find (J1 
+ J2) = 2.971L-/F and E(4)  = S(RT/FS) (negligible). And at 
x = 4 1 2 ,  cl + c2 = 2.2 X 1 0 - 2 ~ ~  and E = 0.445 X 103(RT/FG). 
In conclusion, we can clearly identify two regions in the DBL. 
In the left portion of this layer transport is basically electroneutral 
and can be described by eq 18, while the right portion evolves into 
a macroscopic SCR where the electric field is so high that the 
transport is due to ion migra t i~n .~  The relative extensions of 
these two regions vary with the electric current as is shown in 
Figure 6a. 

Region 0 I x I 8 X  in Figure 6b shows that the splitting of the 
diffuse layer in the solution phase is also accompanied by greater 
charge separation at the interface. That is, the macroscopic SCR 
takes charge from the diffuse layer and this layer, in turn, takes 
charge from the membrane phase, thus increasing the charge 
separation at this interface. Finally, region 992X I x I 1008X 
in Figure6bshows that thechargeseparation at theright boundary 
decreases when the current is increased. 

Discuspion 

We have studied the physical state of the nonequilibrium diffuse 
double layer at the ion-exchange membrane/solution interface 
during the passage of electric current. The entire membrane 
system rather than only the polarized DBL has been studied. 
Interesting results arise due to the nonlinear character of the 
system of equations consisting of the Nernst-Planck and Poisson 
equations, and theinhomogeneous nature of the membrane system 
(membrane plus bathing solutions). Someoftheseresultsconfirm 
previous results obtained using different methods.3JO Others 
provide new physical insights into problems such as the question 
of the validity of the equilibrium Donnan relations, and the 
permselectivity of charged membranes. 

The problem we have addressed here is so difficult in its own 
right that consideration of additional effects would certainly 
obscure the conclusions obtained. We have carried out a simplified 
study and then some limitations should be kept in mind. Compact 
double layer effects are not accounted for. This is very usual in 
the membrane literature, but a careful study establishing its role 
in transport processes is still lacking. Also, we stated in the 
Introduction that only cation-exchange membranes would be dealt 
with becausewe wished toignorewater dissociationeffects. Water 
dissociation in bipolar ion-exchange membrane90 seems to 
demand fields of at least 1 O8-lOgV/m and appears predominantly 
in the anion-exchange layers. The fields which typically appear 
in this study are of the order of 107-108 V/m. However, greater 
fields could be found for high enough electric currents. The 
question is whether they are realistic: very high values of E must 
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certainly promote convective movements of the fluid that will act 
to decrease the huge electrical energy stored in the system (see 
refs 21 and 22). Yet, these movements are not allowed in our 
model. 

Let us consider now these convective effects in more detail. 
We have estimated the Joule heating of the SCR, for ZO = ~ Z L -  
together with the conditions of Figure 5 ,  to approximate 10 
W/cm2, which would lead to a temperature gradient of some 0.2 
OC/pm in that region, if the heat were to be dissipated only by 
conduction. This gradient is important and could give rise to 
thermal convection. Some comments must be added concerning 
the magnitude of this temperature gradient. Even though these 
numbers and Figure 5 refer to a relatively thick membrane, the 
thickness is still unrealistic. This leads to a limiting current at 
least 1 order of magnitude larger than in the case of real synthetic 
membranes and, then, to a difference of at least 2 orders of 
magnitude in the estimation of the Joule heating. Previous 
estimates of the importance of the thermal convection due to 
Joule heating have found this effect ~nimportant.2~J~ In any 
event, it seems quite possible that the considerable charge 
separation obtained in the polarized DBL, at high currents, should 
trigger other p r o c e s ~ e s ~ J ~ . ~ ~  that will couple with those of 
electrodiffusion treated here. By proceeding in this way, the 
system could minimize the huge electrical energy accumulated 
throughout macroscopic regions. It was first suggested in ref 23, 
and carefully studied in refs 24, that conductive inhomogeneities 
at the membrane surface may provide a basis for an electro- 
convective process. Still, the present study is one of the few that 
have been performed in which nonequilibrium space-charge effects 
are considered within the context of the whole membrane system. 
Indeed, the classical literature of transport phenomena through 
charged membranes7J7 has not dealt with the detailed role of the 
interfaces because the main resistance to transport was assumed 
to be due to the membrane bulk. In 1968 MacGillivray already 
showed25 that this was a safe assumption as long as the membrane 
thickness was much greater than those of the interfacial regions 
(typically several Debye lengths). Only r e ~ e n t l y ~ J J l . ~ ~  has it 
been appreciated that a complete understanding of transport 
phenomena in charged membranes must consider the interfacial 
regions in more detail than previously. 

Finally, as an addendum, we should note that the assumption 
of local (Donnan) equilibrium at an interface, during charge 
transport, is equivalent to the assumption of constant quasi-Fermi 
level for the majority carrier in a semicond~ctor~~ where the 
relevant differential equations areoften identical with those treated 
in this paper. Thus, our nonequilibrium methods and results 
should be of interest to semiconductor device technology. 
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Appendix 
The numerical procedure employed is the method of lines that 

was thoroughly discussed in ref 2. Since this procedure permits 
the introduction of initial discontinuities in the variables, it can 
be (and is) used to solve the two problems discussed above. We 
provide a brief outline of the method below. 

Let the interval [4, d + 61 be divided into a sequence of points, 
NPT in number, such that 

-6 = X I  < ~2 < ... < x N R  = d +  6 (Al l  
Using centered differences, the spatial derivatives in eqs 4 and 
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5 are discretized (see ref 2 for the actual difference formulas). 
The Dirichlet condition 4(4,t) = 0 is incorporated into the 
algorithm by adding the dummy equation d#l/dt = 0, where 
s #(xl,r). The spatial discretization of eq 7 uses one-sided 
differences, e.g., 

etc. 
Define the solution vector y as 

YT (c11, c21, 41, c12, c229 62, CINPT, CZNPT, 4”) (A3) 
for the first problem (formation of the equilibrium EDL) and 

YT = (cI1, c21, $1, c12, c229 $ 2 9  CINPT, C2NPT, 4 N n 1  
(e+/ax)N,) (A4) 

for the nonequilibrium EDL problem. Here T denotes the 
transpose operator and (d# /dx)~n (&$/ax)(d+s,t). Using 
the above discretization techniques in the spatial variable x 
(applying the method of lines) we obtain the differential-algebraic 
system 

where A is the singular diagonal matrix 

A = diag(1, 1, 1, 1, 1,0, 1, l,O, ..., 1, 1,O) (A6) 
for the generation of the initial profiles (equilibrium EDL 
problem), and 

A = d i a g ( l , 1 , 1 , 1 , 1 , 0 , 1 , 1 , O  ,..., l , l , O , l )  (A7) 
for the perturbation of the equilibrium profile due to the electric 
current (nonequilibrium EDL problem). The zeros in eqs A6 
and A7 wcur because the Poisson equation (4) has no time 
derivative and, consequently, yields an algebraic rather than a 
differential system in eq A5. The third 1 in eq A6 comes from 
the dummy equation d#l/dr = 0 and the first three 1s in eq A7 
comefromdcll/dt = 0, dczl/dt = 0, and d#,/dt = 0, respectively. 
The last 1 in eq A7 comes from the discretization of eq 7. 

The system of eqs A5-A7 is stiff, but standard stiff integrators 
are not applicable because A is singular. Instead, we make use 
of the software package LSODI, which contains Gear’s stiffly 
stable difference operators of order 1-5 and can solve the above 
system even when A is singular. LSODI is a variable order and 
variable step size integrator that monitors the error growth by 
comparing the differences between predictor and corrector 
equations with the truncation errors for various orders. This 
integrator uses the numerically generated Jacobian (af/ay) to 
form a pseudo-Newton’s method to converge the corrector 
equation. Newton-like iterative methods rather than simple ones 
are required becauseof the stiffness of thesystem. The algorithm 
makes use of the fact that this Jacobian matrix is banded with 
a half-bandwith equal to 5 .  In general, when other ionic systems 
are studied, the bandwidth is equal to 2NDPE - 1, where NPDE 
is the number of PDEs. The actual pseudo-Newton’s method 
uses the non-singular matrix A - Ar&(af/ay), where At is the 
step size and f ik  (1 I k I 5) is a constant related to the kth order 
of the corrector equation. 

The values for (dy/dt)(O) (required by LSODI) are obtained 
from m(O),O) for all non-4 components, and the following 
equations 

%(x,O) = 0 
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The main advantage of this approach over a more classical 
procedure is that the step size At and the order of the numerical 
method (first to fifth) are automatically adjusted to guarantee 
that a relative and/or absolute error tolerance is satisfied. This 
is especially important in regions of large gradients or when large 
values of At are required to reach the steady state. 

The integral boundary condition shown in Figure 1 is handled 
in a natural way with this software package as the differential 
equation, eq 3. The latter is integrated using the same order of 
difference scheme as the other equations in eq AS. This 
approach yields a much more stable algorithm than the one that 
would result if the integral boundary condition were integrated 
using the trapezoidal rule of some other fixed quadrature 
formula. 

The code imposesnorequirementson thespatial grid. However, 
any particular choice should consider the presence of the two 
membrane/solution interfaces (where large gradients in the 
physical variables are expected) and should be useful for the 
study of both thick and thin membranes, in the sublimiting and 
overlimiting current regimes. Also, a continuous variation of the 
step size with small steps at the two outer boundaries (where the 
boundary conditions are imposed) is preferred. Our choice is 
symmetrical about x = d/2 and includes two parameters: the 
number of grid points in each one of the bathing solutions (NL) 
and in the membrane (NW). The grid is defined in the region 
-6 I x I d/2 as 

r F 

xi = 
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This grid has a step size Ax = (16/NW) X at the two outer 
boundaries x = 4 and x = d + 6. Here X is the Debye length 
in themembranesolution. Thisisalso thecase for themembrane/ 
solution interfacial regions. The grid takes into account that 
these regions have a size of about 8X (four Debye lengths in each 
phase). Note that this is not a physical requirement imposed on 
the system, but a procedure to incorporate in the grid the fact 
that the electric double layer usually extends over a few Debye 
lengths. The grid is stretched linearly in the other regions, thus 
satisfying the condition of "continuity" for the step size. The 
values NL = 250 and NW = 200 have proved to be suitable for 
all the situations that we considered. The total number of points 
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