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Ion transport across weakly charged membranes with surface charge due to ion adsorption is analyzed 
and particular attention is paid to the caw of Langmuir-type adsorption. Coupling between electrodiffusion 
of ions and their adsorption to the membrane matrix results ina number of intereating nonlinear phenomena. 
The steady-state transport equations lead to a firat-order differential equation that can be integrated 
either analytically or numerically to give the ion fluxes, the membrane potential and the concentration 
profiles. Comparison is made to the approximate results obtained by using the Henderson profile assumption 
and it is shown that this assumption, while valid for homogeneous membranes, leads to wrong conclusions 
when applied to nonhomogeneous membranes. Results make clear also that Henderson's approximation 
is good for the limiting cases: adsorption constant times bulk concentration very small or very high. 

Introduction 
A number of recent studies on fundamentals of ion 

transport in charged membranes are devoted to the case 
of inhomogeneous fixed-charge distributions.l-"J The 
study of inhomogeneous membrane models has been 
motivated by the following facts: (i) the availability of 
powerful experimental techniques that have conclusively 
shown that the distribution of fixed-charge groups may 
be nonuniform on a macroscopic scale in many synthetic 
membranes;" (ii) the observation of some interesting 
phenomena closely related to asymmetries in the fixed- 
charge distrib~tion;~13J~-~5 (iii) the search for membranes 
with improved transport properties, i.e., with higher 
permselectivity or separation factors,'OJ6 etc. 

Our previous research effort in this field has led to the 
development of simple numerical procedures to solve the 
transport equations for membranes with any fixed-charge 
distribution.1°J5 However, those extensions of the classical 
theory for homogeneous membranes can only be applied 
to strongly charged membranes (e.g., polymer membranes 
with ion-exchange groups) because the charge distribution 
was assumed to be fixed and known a priori. In this paper 
we deal with a case of higher complexity: ion transport 
in weakly charged membranes with surface charge due to 
ion adsorption and, therefore, depending on the bathing 
solutions and the particular transport conditions. The 
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coupling between the electrodiffusion of ions and their 
adsorption to the membrane matrix results in a number 
of interesting nonlinear phenomena. 

The steady-state transport equations, together with a 
general adsorption isotherm equation, wil l  be transformed 
into a first-order differential equation with separated 
variables that can be integrated either analytically or 
numerically, depending on the particular adsorption 
isotherm considered. Solutions of this differential equa- 
tion allow us to obtain the ion fluxes, the membrane 
potential, and the concentration profiles. For the case of 
Langmuir-type ion adsorption, these exact analytical 
results will be compared to the approximate analytical 
ones obtained by using the Henderson profile assumption, 
since this hypothesis is being often wed to overcome the 
mathematical difficulties involved in the study of ion 
transport through inhomogeneous membraneaUJ7-l9 How- 
ever, the authors have already shown that the use of the 
Henderson assumption, though plausible when studying 
homogeneous membranes, is not good enough for the case 
of inhomogeneous membranes and may even lead to wrong 
conclusions.15 Also, the results of this study can be applied 
to membranes made of cellulosic compoUnds,l*22 collo- 
dion,17Je etc. in which specific ion adsorption has 
been observed for many years. 

Finally, it is worth noting that Donnan potentials also 
show more complex laws here than in the caaes of 
homogeneous and inhomogeneous fixed-charge mem- 
branes. Now, ion equilibrium at the membra-olution 
interface couples with ion adsorption and this phenomenon 
is described, in the general case, by a transcendent equation 
for the Donnan potential. On the other hand, it is well- 
known that experiments do not always confm the co-ion 
exclusion predicted by the homogeneous membrane model 
(Teorell-Meyer-Sievers theory) but show instead poorer 
exclusion at low concentrations. This fact has been related 
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I F( J1 - J2)  (5) 
and the local electroneutrality condition 

c , ( x )  = c,(x) + e ( x )  (6) 
Equations 3-6 are the basis of many simplified treatmenta 
for one-dimensional transport phenomena in charged 
membranes and their origin and limitations can be found 
el~ewhere.~S Here Ji, Dip and C i  denote the flux, diffusion 
coefficient, and local molar concentration of the ith species, 
respectively. Subscript 1 refers to cations and subscript 
2 to anions. The electric potential, in RTIF units, is 
represented by $. R, T ,  and F have their usual meaning. 

Nemst-Planck equations can also be presented in the 
form 

I 

I I 
0 d X 

> 

Figure 1. Schematic diagram of the membrane system con- 
sidered. Concentration and charge profiles are qualitatively 
shown. 

to nonuniformities in the fixed-charge distributionM and 
it has been conclusively shown that such inhomogeneity 
leads to poorer exclusion under equilibrium conditions.7JO 
The study of adsorbed charge membranes brings now a 
new explanation for the disagreement between theory and 
experiment. If the concentration of co-ions is relatively 
small, the co-ion adsorption leads to co-ion exclusion, but 
the latter leads to lower co-ion adsorption and then to 
poorer exclusion. However, at high concentrations, ad- 
sorbed charge concentration always take its maximum 
value and no such coupling is observed. 

Formulation of the Problem 
1. Membrane System. Figure 1 shows a sketch of the 

membrane system under study. Transport is considered 
in the x direction through a membrane which extends from 
x = 0 to x = d. The membrane is bathed by two 1:l binary 
electrolyte solutions of concentrations CL at the left 
boundary and CR at the right one, and it will be assumed 
to have a negative surface charge due to anion adsorption. 
Thus, the local membrane charge concentration B(x)  will 
be e x p r d  as a function of the local molar concentrations 
of anions by c2(x) 

e(%) = f [c,(x)l (1) 

This general representation allows consideration of any 
adsorption isotherm (including the case of membranes 
with both fixed and adsorbed charge). However, a 
particular function f [cz(x)l must be introduced when 
seeking numerical results. Here, we wil l  develop the 
solution procedure without specifying the function f [CZ- 
( x ) ]  and report later some results corresponding to the 
Langmuir adsorption isotherm 

where 6~ is the maximum adsorbed charge concentration 
(related to the number of adsorption sites) and K is the 
adsorption constant. 

2. Nernrt-Planck Equations. The basic equations 
describing this problem are the Nernst-Planck equations 
for uni-univalent ions 

the continuity equations for the steady state 

dJi/dx = 0 (4) 

the equation for the electric current density 

(24) Mearea, P. In Ion Exchange Membranes; Flett, D. S., Ed.; Ellie 
Horwood: Chicheater, 1983; p 9. 

I Ji J ,  + (-l)i+l ti i 1 , 2  (7) 

where 

is the salf flux, and 
Dici 

t i  I i = l , 2  
D F l +  D2c2 

are the transport numbers. 
It is worth noting that J ,  and ti are local magnitudes. 

Thus, when eqs 7 are used to describe ion transport through 
the membrane, these magnitudes do depend on the spatial 
coordinate x ,  even though Ji and I are constant. This is 
not the case when eqs 7 are used for the bulk solutions, 
since 

and 

are constant. 

3 can be formally integrated to give 
On the other hand, the electric field obtained from eq 

dc, dc, 

(12) d D2 a - Dl a & - L J d  dx 
A$ = J o  D,c, + D2c2 F 0 D,c, + D2c2 

The first term in the right hand side of eq 12 represents 
the diffusion potential, and the second the ohmic drop in 
the membrane. 

3. Modified Donnan Equilibria. The boundary 
conditions for the concentrations result from the Donnan 
equilibria at the membrane solution interfaces.% In 
particular, the equation describing this equilibrium at x 
= 0 is 

c? = q(0) C,(O) (13) 
Applying the local electroneutrality condition and eq 1, 
we obtain 

c L ~  [c@) + 6(0)1 c2(0) (~2(0) + f [~2(0)1) ~2(0) (14) 
This equation can now be solved by standard methods.27 
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For the particular case of the Langmuir-type adsorption, 
we have found convenient to iterate eq 15 with CL as initial 
guess for cz(0) 

Aguilella et al. 

Note that eq 15 verifies the well-known limiting cases of 
neutral membrane ( K + 0) and homogeneous fixed-charged 
membrane ( K  - Q)). Also, eq 15 enables us to state that, 
for any value of the adsorption constant, a membrane with 
surface charge due to Langmuir-type ion adsorption shows 
lower permselectivity than a fixed-charge membrane with 
the same 8M 

c,(O) > lim c,(O) (16) 

Quantitatively, this effect is important at low concentra- 
tions 

&--- 

1 
c,(O) - lim c2(0) 

- when CL << 8, (17) 
x-.- - 

C,(O) 1 + KCz(0 )  

while it is negligible at high concentrations 

thus agreeing with experimental  observation^.^^ 
Finally, let us consider the Donnan potential. This 

potential difference (defined as the electric potential at 
the right phase minus that at the left phase) takes at x = 
0 the form 

As an alternative to eq 15, the boundary condition problem 
can be solved by determining first +D,L as the solution of 
eq 2028 

and, later, ~~(01. 
Evidently, all above comments also apply to the other 

membrane-solution interface, and each of the above 
equations has its analog at x = d with only changes of cdd)  
instead of ~ ( 0 )  and CR instead of CL. 

Solution Procedure 
1. Exact Solution. In spite of ita apparent complexity, 

the system formed by eqs 1 and 3-6 can be readily 
integrated to give the ion fluxes, the membrane potential, 
and the concentration profiles. Indeed, eq 8 can be 
rewritten in the form 

where ji p J1/Di. Now, we introduce eq 6 and introduce 
a new function y ( x )  = c & c ) / B ( x ) ,  thus obtaining 
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Finally, introduction of eq 1 in the form 

yields the following differential equation for y 

where 

The introduction of the adsorption isotherm g(Y) and the 
subsequent (numerical or analytical) integration of eq 24 
between x = 0 and x = d leads to the calculation of the 
ion fluxes. The concentration profiles can also be readily 
obtained if the integration is performed between x = 0 
and x .  

When the Langmuir isotherm 

is considered, eq 24 simplifies to 

which can be integrated to give 

where 

is the salt diffusion coefficient. 
On the other hand, the membrane potential can be 

obtained as the sum of the Donnan potentials and the 
potential drop in the membrane 

This last integral can be computed from eq 3 for i = 2 

where eq 27 has also been used. 

reduces to 
In the case of the Langmuir-type adsorption, eq 31 

(32) ln- 
Y(0) + q 

The following points should be emphasized. (i) y(0) and 
y(d )  in eqs 28 and 32 are known once eq 16 and its analog 

(1 - 2q)KflMq - 1 y(d )  + q 
dMq + 1 
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at x = d are solved; (ii) eqs 28 and 32 make possible the 
computation of the ion fluxes and the membrane potential 
without knowing the concentration profi1es;'O (iii) when 
the electric current density is zero, I = 0, eq 28 is a general, 
explicit, analytical expression for J,bdk. 

Let us note finally that both eq 28 and eq 32 can be used 
to obtain the corresponding equations for a homogeneous 
fiied-charge membrane by taking the limit K - 0).  The 
well-known% results are 

, 1-00 

Langmuir, Vol. 9, No. 2, 1993 553 

. . . * -  -:.e - - - - - - - - . .. - - - - - - - - - - _ _ _ _  

and 

c2(d) + tlb' 
lim A$ = (t,bdk - t ,bdk) ln 

2. Henderson Approximate Solution. Henderson's 
approximation to the diffusion potential has proved to be 
quite useful in studying the potential drop A# inside 
homogeneous fixed-charge membranes under certain ex- 
perimental conditions.20 However, in the case of mem- 
branes with absorbed charge, the potential At) contains a 
new contribution arising from the inhomogeneity in the 
charge distribution and it is not clear whether Henderson's 
approximation is still valid or not. Moreover, it has been 
reported that the use of this approximation leads to wrong 
conclusions in the study of the asymmetry potential.'5 
Since this approximation has been used in the study of 
inhomogeneous membranes with charge due to ion ad- 
sorption, it is worth to studying its validity, under zero 
electric current density condition, in terms of both A$ 
and J8. 

Henderson's approximation, as used nowadays, consists 
in assuming the same functional dependence on position 
for all ionic concentrations and, therefore, also for the 
membrane charge concentration 

i = 1,2 (35) 
The use of this assumption is particularly compromising 
in our study because it is not always compatible with eq 
2, as already stated in ref 18. 

Substitution of eq 35 and the condition I = 0 into eq 3 
for i = 1 and eq 12 yields, after integration3 

C i ( X )  = C i ( 0 )  11 - &x)I + q ( d )  6 ( x )  

and 

Results and Discussion 
The Langmuir adsorption isotherm and the open circuit 

condition, I = 0, wil l  be considered throughout this section. 
The diffusion coefficients of sodium chloride corresponding 
to infinite dilution (D1 = 1.33 X cm2/s and D2 = 1.99 
X cm2/s) were used in the calculations. The results 
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Figure 3. Dimensionless salt flux vs KCR for different values of 
eM/cR: (-) 0.1; (- - -) 1; (- - -) 10; (. * .) 100. 

for the membrane potential, the potential drop inside the 
membrane A$, and the salt flux in dimensionless form 

are presented in terms of CIJCR, KQ, and Bdm. Only values 
for C ~ C R  greater than 1 are analyzed due to symmetry 
considerations. Obviously, the case C ~ C R  = 1 corresponds 
to zero flux and membrane potential, no matter what the 
values of KCR and O d C R  are. The second parameter, KCR, 
is a measurement of the degree of adsorption. Thus, low 
values (KCR << 1) mean that the membrane charge is 
negligible compared to eM while high values (KCR >> 1) 
mean that the membrane charge is homogeneously die- 
tributed, and being OM its uniform concentration. Finally, 
d d C R  refers to the strength of the membrane charge. The 
case of strongly charged membranes ( 6 d c R  >> cdcd will 
not be considered here. These three parameters wil l  be 
varied within physically meaningful ranges. 

Let us first show some general results for $M and j,. 
Figure 2 shows the membrane potential as a function of 
KCR and O d C R  for C ~ C R  = 100. $M increases with KCR and 
a potential reversal can be predicted when the fixed charge 
concentration reaches a certain value. However, if the 
strength of the membrane charge is not significant (e.g., 
case dM/CR = O.l), that reversal doee not take place. The 
asymptotic behavior for KCR >> 1 indicates that saturation 
of the adsorption sites has been reached. 

Figure 3 shows the salt fluxes corresponding to Figure 
2. As can be seen, for low values of KCR flux increases with 



554 Langmuir, Vol. 9, No. 2, 1993 Aguilella et al. 

-0.6 

-0.8 

-1 .o 
1 

I \  
\ i 

Figure 4. Potential drop across the membrane in dimensionless 
form vs KCR for B M / C R  = 10 and C ~ C R  = 100: solid line (-1, 
according to the analytical expression for a Langmuir-type 
adsorption eq 32; dashed line (- - -), according to Henderson’s 
approximation eq 37. 
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Figure 5. Salt flux in dimensionless form vs KCR for BM/cR = 10 
and C ~ C R  = 100: solid line (-), according to the analytical 
expression for a Langmuir-type adsorption eq 28; dashed line 
(- - -), according to Henderson’s approximation eq 36. 

the strength of the membrane charge (dM/CR) while for 
high values of KCR it happens just the opposite. This fact 
is in agreement with the above mentioned potential 
reversal. Actually, it can be seen that the maximum values 
of fluxes are reached for the same values of KCR at which 
potential reversal occurs. On the other hand, the effect 
of the adsorbed charge on the flux is lees significant than 
the effect on the membrane potential (e.g., for the largest 
value of dM/CR, only a reduction about 30% in j .  is 
predicted). 

Let us consider now the comparison of the exact 
analytical results with those obtained by using Henderson’s 
assumption for the case dM/C/cR = 10 and C ~ C R  = 100. In 
our case, Figures 4 and 5 show that the use of this 
approximation is completely meaningless. Figure 4 gives 
the potential drop h i d e  the membrane computed from 
eqs 32 and 37. Even though the plot seem to show that 
Henderson’s approximation ia good when KCR << 1 and KCR 
>> 1, we must emphasize that the relative differences 
between the two calculations are similar over most of the 
values in the range. Moreover, Figure 6 shows that the 
use of Henderson’s approximation for the flux produces 
j .  values different from the exact ones not only in the 
central region of the range considered but also for the 
limiting caw of KCR << 1. Figure 6 reveale to what extent 
Henderson’s approximation ia not adequate for inhomo- 
geneous membranes. As mentioned earlier, it consists of 
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Figure 6. Plot of Henderson’s functional dependence of ionic 
concentrations and fiied charge concentration &(x) for cations, 
& ( x )  for anions, and 6dr) for membrane charge) on position that 
would be obtained from the exact analytical results. Typical 
values were used for the parameters (BM/cR = 100, KCR = 1, and 
CL/CR = 100). 
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Figure 7. Membrane potential in RTIF units vs C ~ C R  for B M I C R  
= 100 and different values of KCR: (-) (- - -) 10-l; (- - -) 
1; ( 0  ’ *) 104. 
assuming the same functional dependence 6(x )  on position 
for all ionic and charge concentrations (eq 35). Despite 
this, if we calculate the ionic concentration profile and the 
charge concentration profile across the membrane, we get 
three different functions 61(x) ,  62(x) ,  and 6&) as can be 
seen in this figure. 

Figure 7 shows the difference between Henderson’s 
prediction (dots) and our calculated results (lies) for the 
membrane potential as a function of the bulk concentra- 
tions ratio CL/CR for different values of KCR. The trends 
already mentioned appear ale0 here, but in addition the 
plot of KCR = 104 (in practice, an homogeneous fixed-charge 
membrane) shows agreement between Henderson’s results 
and the exact ones, irrespective of the concentration ratio 
values. 

In conclusion, the equations presented allow us to solve 
the problem of electrodiffusion coupled with ion adsorp- 
tion. In general, the differential equation obtained has to 
be solved numerically, though it has been shown that an 
analytical solution is possible in some particular cases. 
Moreover, the brief survey of numerical resulta provided 
gives some insight on the limitations of Henderson’s 
assumption when applied to weakly charged membranes 
in which charge is due to ion adsorption. 
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