NOTES AND DISCUSSIONS

Comment on “The electron g factor and factorization of the Pauli
equation” by R. J. Adler and R. A. Martin [Am. J. Phys. 60, 837-839 (1992)]
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(Received 27 April 1993; accepted 14 June 1993)

In their paper,' Adler and Martin have solved the Pauli-
Schrodinger equation after factoring it into linear opera-
tors. However, the factorization step

(m0)2=2m(E~V)=[m 0+ 2m(E—V)]
X[mw-0o— \/2m(E— ml )

into a product of linear factors, where == — iV —eA is the
kinematic (or mechamcal) momentum, as in Eq. (10) of
Adler and Martin,! is not generally valid. Indeed, it is

wrong whenever VV740. As a familiar counterexample,
take A=0 and V=kr*/2 which describes a three-
dimensional harmonic oscillator and whose familiar solu-
tions do not obey the factored equation. This error does
not affect the example presented by Adler and Martin s1nce
there V'=0.
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There are two common methods of describing fluid mo-
tion.! In the Lagrangian method the individual fluid par-
ticles are followed during their motion, and the curve of
most fundamental importance is the path of the particle. In
the Eulerian method, the basic concept is the state of ve-
locity throughout the whole fluid at some instant, and the
streamline is the curve of major significance.

The streamlines are very useful to describe fluid motion
because they usually are smooth wavy lines. However, the
experimental observation of a flow is often performed by
dye-injection techniques, i.e., by allowing a fluid of distinc-
tive color to exude slowly into the moving fluid from a
small fixed orifice. At any time the exuded fluid lies on a
curve that is called filament line or streak line. It is defined
as the locus at a given instant of all the fluid particles
which have passed or will pass through a fixed point within
the fluid." When the motion is steady, the streamlines and
the streak lines are identical with the paths of the particles.
However, this does not happen in unsteady flow. The dif-
ferences among these three concepts in unsteady flow are
very important, and make difficult the description of time
dependent flow ﬁelds from the data of experimental visu-
alization techniques.? In fact, visualization techniques like
the dye injection described above were initially employed
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to have a rough idea about what was happenmg in flow
fields.> Fortunately, powerful image processing techniques
now available make it possible for the complete description
of flow fields from the visualized streak lines.*

The fluid mechanics sections of modern introductory
physics textbooks do not consider the above concepts in
deta11 Some of these books pay little or no attention to
them.’ Others® introduce only the concept of streamline
using a definition whose validity is restricted to the case of
steady flow. These facts can be easily understood, since the
space devoted to the fluid mechanics section in introduc-
tory physics courses is limited, and the conceptual diffi-
culty associated to ideas like “streamline,” “streak line,” or
“path of a fluid particle” is considerable at this introduc-
tory level.

We present here a simple problem involving unsteady
fluid motion that introduces the concepts of streak line and
path of a particle in a very intuitive way. The problem is
very familiar and, after introducing some simplifying as-
sumptions, it involves only elementary concepts from ki-
nematics. Therefore, it could be employed in the introduc-
tory physics course where only the concept of streamline
for steady flow is usually considered.

Let us consider a cylindrical tank of cross section $=10
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Fig. 1. Schematic diagram of the problem.

cm? initially filled with water up to a height H,=0.5 m
(see Fig. 1). The tank is placed at a height 2=1 m above
the ground level. Suppose we have water flowing out of a
hole of section o=1 cm? located at the bottom part of the
side wall of the tank (see Fig. 1). The pressure at the top
of the tank and the sides of the jet is assumed to be the
atmospheric one. At a given instant z, the streak line (that
is, the water jet we see) is formed by water particles that
left the tank through the small hole in consecutive instants.
If we neglect surface tension effects as well as the frictional
force between the water particles and the air, these parti-
cles follow the well-known parabolic path. However, each
particle flows out of the hole with a different horizontal
speed, since this speed depends on the height H of the
water level in the tank, and H is decreasing with time.
We will now obtain both the equation of the streak line
at a given instant £, and the equation of the path of the fluid
particle that left the tank at a time ¢, . In particular, we
will consider the paths of the water particles corresponding
to the initial, intermediate, and final points of the streak
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Fig. 2. Streak line (continuous line) and path followed by three fluid
particles (dotted lines) of this streak line.
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Fig. 3. Streak lines corresponding to different times.

line at time ¢ In order to arrive at these results we will
employ Bernoulli’s theorem (specifically, Torricelli’s law)
which is strictly valid only for steady flow. However, we
are within the range of the well-known quasi-steady state
approximation’ and the steady flow equations can be ap-
plied with reasonable accuracy. Note that this question is
very important, since the introduction of the concepts here
involved usually requires the study of unsteady flow situ-
ations, and this often leads to mathematical difficulties that
make the study inappropriate for introductory physics
courses. However, the sort of problems dealt with here
(continuous emptying of reservoirs and tanks) permits in-
troducing the relevant concepts while taking the mathe-
matical complexity at a minimum.

Let us take the origin of coordinates at the position of
the hole. The horizontal coordinate x is considered to be
positive in the direction of the water jet, and the vertical
coordinate y is assumed positive upwards, so that the
ground is located at y= —h. The origin of time, t=0, will
correspond to the instant when water begins to flow out of
the hole. According to Torricelli’s law, the first water par-
ticle leaves the tank with a horizontal speed

vo= y2gHy/[1—(0/5)?], (1)

where g stands for the gravity acceleration. This particle
will follow the path given by equations

x=vot; y=—(1/2)gf, )
or simply
20
=y —2, (3)
4 g
It takes a time
T=(2h/g)"? (4)

for the particle to reach the ground, and then the streak
line is completely formed. However, the particle that con-
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stitutes the initial point of this line (that is, the particle
which is leaving the tank at the instant =7") has a hori-
zontal speed

w(T)=2gH(T)/[1—(0/5)?] (5)
and will describe the path given by '
24T
xt=—y :, ) (6)

At any later instant, the streak line is formed by fluid
particles that flowed out of the hole in times ranging from

to=t—T to 1, =t The path followed by a particle whose

exit time was 7, would be

x=v(tout)(t'—tout); y="‘(l/2)g(t"tout)2 (7
which can also be written as

202(¢,
Xi=— y __(__‘E‘_t_). . (8)
b4
From Eq. (7), we know that the particle located at (x,y)
at time t flowed out of the hole at the time instant

to=1— y2(—))/8. 9)

Therefore, Eq. (8) gives the path of a particle that left the
tank at time 7=1,,,. However, if we were able to substitute
the time dependent exit speed v(t) for v(z,,) in Eq. (8),
we would obtain the streak line equation [note that we can
relate ¢, and ¢ from Eq. (9)].

In order to calculate v(¢), we should find previously sow
the height H of the water level in the tank changes with
time. To do this, let us write the continuity equation in the
form

=—S(dH/dt), (10)

where the minus sign simply states that H is decreasing

with time. If we substitute Eq. (5) into Eq. (10) and sep-
arate variables, we get

__2__2g dt

VB V(8702 1%

Integration of Eq. (11) yields

8
JH= \/170_‘(2[(3/ Tt (12)

Now, the exit speed at time t=1,, is

S ,
V(tow) == (S/O') Ho mg_/)rﬁ tout]

(13)

Finally, substitution of Eq. (13) into Eq. (8), and further
substitution for z,,, from Eq. (9) leads to the equation for
the streak line

(11)

o 4Ho [ V(1/2)gf— (=) (14)
=TT/ | T {Bl(S/e)r—1]

Equation (14) is valid from #=T to the time required for
the tank to become empty. According to Eq. (12), this
time is

2H,[(S/0)2=1]/g. (15)

empty
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On the other hand, the path of the water particles corre-
sponding to the initial, intermediate, and final points of the
streak line at any instant ¢ are, respectively,

20(t)?
P=—y 2
4gH, 1/2)g
=_yl—(a/S)2[ JHO[(S/a)2—1]] (19
g
4gH, J(172)g7 - \k72)
Y1=(0/8)? \/Ho[(S/a)z—ll} (1
and
x2=_y2v(t—T)2
g
4gH, W—\/’;
=Y/} T {H[(5/0)—1] (1®)

Figure 2 shows the plots of Eq. (14) (continuous line)
and Eqs. (16)-(18) (dotted lines) when H=1 cm. This
corresponds to the instant

t=\2[(S/0) =1]/g( {Hy— {H)=2.73 s (19)

for the numerical values considered here. Note that the
streak line does not follow a parabolic curve though the
path of the water particles do follow parabolic curves.
Likewise, the dotted lines in Fig. 2 are not to be confused
with the streak lines which are obtained for different times.
Figure 3 shows such streak lines. The first curve (=T
=0.45 s) corresponds to the first complete streak line, and
the last curve (#= T ppy=3.19 s) gives the streak line at a
time very close to that required for the tank to be empty.
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