An experiment on magnetic induction pulses
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The voltage pulse induced by a bar magnet as it moves at constant velocity through the axis of a
circular coil is analyzed. The physical system considered has a number of interesting features: (a)
It is easy to set up and handle in the laboratory, (b) the observed pulse can be predicted theoretically
by means of a simple model, and (c) it provides a very vivid and direct illustration of the concept
of electromagnetic induction. In fact, the system of a coil and magnet in relative motion is usually
presented in textbooks when introducing this concept. The experiment can also be used as a
procedure for determining the magnetic dipole moment of magnets. Since the equipment, a digital
storage oscilloscope or computer, is usually available in undergraduate laboratories, the experiment

can be performed in the introductory physics course.

L INTRODUCTION

We have studied the electromagnetic perturbation pro-
duced on a coil by a magnet moving through it. The resulting
signal is obtained in the form of a plot of induced voltage vs
time, which is recorded on a digital storage oscilloscope or
computer. This curve can be used to determine the magnetic
properties of the moving magnet.'~

Similar induced voltage curves are often used in tutorial
experiments to illustrate the effects of the time varying mag-
netic fluxes on closed circuits. Here, we will focus on a
simple experiment in which the quantitative analysis of the
pulse is simple. Indeed, our experiment is sufficiently
straightforward that it can be employed as a laboratory ex-
periment in the introductory physics course. The particular
system we choose is a thin circular coil that is traversed by a
bar rlnagnet moving at constant speed along the axis of the
coil.
mental setup. The main instrumentation needed is an air
track with its usual accessories, a large diameter coil, an
operational amplifier, and a digital storage oscilloscope. Al-
ternatively, a computerized data acquisition system can be
employed, which not only improves the experiment but also
makes it more interesting for the students. The bar magnet is
attached to a glider placed on the air track and launched
towards the coil. As the magnet moves along the axis of the
coil, the magnetic flux through the coil, ®@,,, changes, and an
electromotive force, e=—d®, /dt, appears at the coil ends.
We refer to the resulting curve £(¢) as the induction pulse.

The theoretical analysis employs a dipolar model for the
magnet in which the magnetic field is approximated by the
vector sum of the ﬁelds produced by a pair of magnetic point
charges or monopoles.’ This model can be handled by fresh-
men, and can be presented on a more rigorous basis for ad-
vanced students.’ Alternatively, a solenoid model could also
be employed, but this procedure requires the numerical com-
putation of the magnetic field of the magnet by decomposing
the solenoid into a large number of length elements and us-
ing the Biot—Savart law.* Fortunately, such a tedious proce-
dure is not necessary when the cross section of the coil is
much larger than that of the magnet.

Hence, the physical system considered has a number of
interesting features: (a) It is easy to set up and handle in the
laboratory, (b) the resulting curve can be theoretically pre-

702 Am. J. Phys. 62 (8), August 1994

Figure 1 shows a schematic diagram of the experr- t

dicted by means of a simple model, and (c) it provides a very
vivid and direct illustration of the concept of electromagnetic
induction. In fact, the system of a coil and magnet in relative
motion is usually presented in textbooks when introducing
this concept.”

II. THEORETICAL MODEL

In order to work out a quantitative description of the in-
duction pulse, we consider first the magnet model in detail. A
homogeneously magnetized, long thin magnet can be re-
garded as composed of two fictitious magnetic charges of
opposite sign placed at its ends. Thus two point charges or
monopoles of magnitude q,, and opposite signs are placed at
the ends of the magnet separated by a distance L. If m is the
magnetic dipole moment of the magnet, these charges can be
written as g, =*m/L.

The magnetic field created by the positive pole g, at a
distance r is

Moq;
47r?

B (r)= (1)
and points radially outwards. The emf in the coil induced by
this pole as it moves along the axis of the coil is obtained,
according to Faraday’s law, as the time derrvatrve of the
magnetic flux through the coil. As is well known,'? the flux
through the coil due to the field in Eq: (1) can be calculated
on any surface bounded by the corl We choose the spherrcal
segment of radius r=(x*+R?)"? shown in Fig. 2, where x is
the distance between the pole and the coil center and R is the
coil radius. Since the magnetic field is normal to this surface
at every point, the flux is given by the product

&' (x)=sgn(x)NB*S, )

where N is the number of turns in the coil, and S is the area
of the spherical segment,

S=2mr(r—|x|). 3)

Note that the sign of the magnetic flux is arbitrary but &
changes its sign when the pole passes through the coil. Here
@ is taken to be negative when x<<0, and hence Eq. (2)
incorporates as a factor the sign of x, i.e., sgn (x). From Egs.
(1)—(3), the flux is
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Fig. 1. Sketch of the experimental setup.

N
P, (x)=sgn(x)

Moq [1 |x‘ } (4)

2 _(x2+R2)1/2

Finally, the emf induced in the coil by the pole can be written
as

. do; dx d® do;
e Pl P el R
UN poq, R
ZZ_(J—VTI;‘Z—)T/Z (x#0), (5)

where v is the velocity of the pole. The condition on x in Eq.
(5) comes from the fact that @} (x) is discontinuous at x =0.
The induced emf, however, is continuous at x=0, though it
cannot be obtained there as a time derivative of the magnetic
flux. (Note that the limits of d®,/dx when x—0— and
x—0+ coincide).

The expressions in Eqs. (4) and (5) may appear “unphysi-
cal,” because magnetic poles always appear in pairs. Con-
sider now that z represents the distance between the center of
the magnet and the center of the coil (see Fig. 1). Then, the
distance from the coil to the front end of the moving magnet
is z+L/2, and the distance from the coil to the rear end is
z—L/2. (Remember that the magnet is launched towards the
coil from the region of negative z.) By adding up two ex-
pressions such as that of Eq. (4) we can readily obtain the
flux produced by the magnet.

Fig. 2. Geometrical construction for the evaluation of the flux through the
coil of the magnetic field created by a magnetic charge g,, . The spherical
surface § is centered at the charge and lies on the coil.
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®,,(2)=D (z+L/2)+ D, (z—L/2)

+
=sgn(z+L/2) N,uzoq,,,{ ‘[(ZH,JZ/Z)I;/_SL@]NZ ]

+sgn(z—L/2) N,u;qm{ ‘[(z_iz/z)é/_fle]l/z ]
(6)

The emf induced by the magnet can now be written as

UN pomR? 1
S [+ L)+ R
1

“[G-L2+RT" ] @

Equation (7) corresponds to the situation where the positive
pole is leading the motion through the coil (see Eq. (6)).

In order to get € as a function of time, we use z=v(f—1;)
where t,, is the time at which the center of the magnet is at
the center of the coil. Rewriting Eq. (7) we find that

uN pomR? { 1

1) [(v(t—to)+L/2)*+R?P"?

1
[(w(t—19)—L/12)*+R*P7 ] (8)

Equation (8) represents the induction pulse for a given mag-
net and coil with known values of v and ¢,.

II. EXPERIMENTAL

The diameter of the cylindrical magnet (PASCO SE-8604)
is D=(1.000+0.005) cm and its length L =(5.015+0.005)
cm. The coil (PHYWE 06 960.00) has N=154 turns, a ra-
dius R=(20.0+0.9) cm, and a thickness T=(1.7+0.1) cm. It
is important to note that the magnet can be considered as an
ideal “linear dipole” in the sense that its cross section is
much smaller than the circular section bounded by the coil,
and its length is much greater than its radius. Also, the coil
can be considered as “infinitely thin” since its thickness is
much smaller than its radius.

The velocity of the magnet is computed as v=L g/t;,
where ¢; is the interruption time recorded by a photogate
located near the coil and L .4 is the distance the magnet trav-
els during the interruption time. Note that v is taken to be
positive since the origin z=0 is located at the coil center and
the initial position of the glider corresponds to a negative
value of z (see Fig. 1). Typically L . differs from the magnet
length L by 1-2 mm; in the case of PHYWE gates L is
greater than L, but the opposite may occur with other
gates.!! Since L is about 5 cm, a rough determination of the
magnet velocity as v=L/t; would yield an error of a few
percent, and consequently a lack of agreement between
theory and experiment. Therefore, it is necessary to carefully
determine L .. Methods for such a purpose have been con-
sidered in Ref. 11. Here we use two photogates along the air
track which are separated by a distance D =80 cm. If the
gates are connected so that the travel time T between them is
recorded, L .4 can be obtained as

oY

L eff— T . (9)
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This procedure was repeated for magnet velocities ranging
from 0.5 to 1.5 m/s, and the final average value was
L .=(5.20%0.09) cm.

Further, when using Eq. (9), special care must be taken on
a series of points: (i) the magnet must always cut the light
beams at the same distance from the gate detector (e.g., the
beam halfway), (ii) both gates must give the same reading
for the interruption time (thus ensuring the constant velocity
of the magnet), and (iii) the launcher must provide reproduc-
ible velocities (so that we can assume that the value of ¢; can
be obtained in a previous determination using the same po-
sition of the launcher).

The signal from the coil is first filtered and amplified, and
the output is recorded on a digital scope or a computer with
a data acquisition card. For this purpose, a noninverting volt-
age amplifier with amplification gain g=(121+2) and offset
voltage V g.;=—(55%2) mV is used. The input impedance
of this device is high enough (above 2 M(}) so that no cur-
rent flows between the input terminals. Spurious signals,
such as the local electrical network emission (50 Hz), are
reduced by means of a filter which attenuates above 2 Hz.
Since the characteristic frequency of the induction pulses is
of the order of 1 Hz and the attenuation factor is less than 1%
for frequencies below 2 Hz, no significant distortion caused
by the filter is expected.

The sign of the signal depends on how the coil is con-
nected to the digital scope or computer. According to the
convention established in the previous section, we assume
that a magnet whose positive pole is leading the motion in-
duces a positive emf when approaching to the coil. Note that
the direction of the induced current and the polarity of the
emf in the coil are physically determined by Lenz’s law.

The dipole moment m of the magnet deserves special at-
tention, since it is the only parameter in our model which is
not available from a direct measurement. The magnetic di-
pole moment was determined by two independent proce-
dures. In the first method, the magnet is hung at its midpoint
so that it can oscillate in a known, constant magnetic field
created by a pair of Helmholtz coils.'> The frequency of the
small oscillations is measured for different intensities of the
field, and a representation of the oscillation frequency
squared versus the magnetic field yields a stralght line of
slope proportional to m. The second method'? is based on the
theoretical expression of the magnetic field along the magnet
axis at a distance z from its center. From Eq. (1) this field is
given by

M 1 1
Bl =1L | G=L2? A L2

(10)

The magnetic field B., is measured by means of a Hall probe
(PHYWE 11 749.01) placed at a set of equidistant points
from 2=8.5 to 17.5 cm. A plot of B, vs the theoretical
values of B,,/m at the same points also yields a straight line
of slope m. In our case, both determinations of the magnetic
dipole moment agree within the experlmental uncertalnty,
and the mean value is m=(2.055+0.015) A m?. It is interest-
ing to note that Eq. (10) contains the length of the magnet
(i.e., the magnet is modeled as a finite-length dipole) and that
the magnetic field is measured at points which are far enough
from the end of the magnet. A significant error in the deter-
mination of the m Fnetlc dipole moment would have been
obtained otherwise.*!
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Fig. 3. Induction pulses in the digital oscilloscope corresponding to different
magnet velocities. This record was obtained by using the autostore display
mode, which allows for keeping the previous records on the same screen.
The signals have been previously filtered and amplified with a gain of the
order of one hundred. The trigger conditions were (i) level at zero volts, and
(ii) negative slope.

IV. RESULTS

Figure 3 shows the printout of several induction pulses
recorded in a HP 54600A digital scope when the magnet was
launched towards the coil with different velocities. This fig-
ure has been obtained by using the autostore display mode of
the scope (which allows for keeping the previous records),
and setting the trigger level at £=0, so that the midpoint of
the display corresponds to the instant ¢, for all these curves.

In order to compare Eq. (8) with experiment, we also
record the pulse on a Macintosh LC II computer with a data
acquisition card and appropriate software (LABVIEW 2, Na-
tional Instruments Inc.). The interruption time ¢; of the gate
can also be recorded by the computer by connecting the ana-
log output of the gate to another input channel of the card.
Data from the coil and the gate are acquired during 1 s at 1
kHz. The data acquisition frequency and the precision of the
gate determine that the error in the recorded value for ¢; is of
the order of 1 ms. Then, there is no need to run the data
acquisition system at a higher frequency—this would only
delay the data analysis.

The only parameter in Eq. (8) that remains to be deter-
mined is the time ¢,. Since this time satisfies the condition
€ (t5)=0, it can be obtained from a linear plot of the experi-
mental points near £=0. Finally, the computer is ready to
compare the theoretical pulse corresponding to the experi-
mental pulse, as shown in Figs. 4. The agreement is excellent
and the results are very reproducible.

Let us analyze Figs. 3 and 4 and consider the dependence
of &(¢) on the velocity v of the magnet. Equations (5) and (7)
predict that the induced emf should be proportional to v.
Figure 5 shows that this is indeed the case. The values of
e(t) at the peaks are plotted against v in this figure and a
linear dependence with slope 4.19 mV s m™! is observed; a
zero intercept at the origin has been imposed.

Figures 3 and 4 suggest that the area of the “‘half”’ pulse is
velocity independent. When the magnet velocity decreases,
the height of the peak decreases and the pulse widens, and
this area seems to remain constant. We can easily show that
this is indeed the case. Let ¢, be the time instant when the
magnet center and the coil center are coincident (z=0), and
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Fig. 4. Induction pulses in the computer screen corresponding to different
magnet velocities: (a) 0.56 m/s, (b) 1.08 m/s, and (c) 1.56 m/s. The circular
spots are experimental values recorded by the computer and the continuous
lines correspond to Eq. (8). The effects of the amplification (gain and offset)
have been removed, so that the values in this plot represent the actual emf at
the coil ends.
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Fig. 5. Peak value of the induction pulse and absolute value of the “late half
pulse” area corresponding to different magnet velocities.

t, the time instant when the positive pole of the magnet is at
the coil center (z=L/2). The area of the “late half pulse”

can be expressed as
@ ©dd, - A
f sdt=—f dt—f'0 ~ dt
0 i 4t | p At

=®,(te) +AD, (2y), (11)

where A®,, (¢, ) is the jump in @, when the negative pole
passes through the coil. [Note that the integral in the left-
hand side of Eq. (11) has to be split in two because of the
discontinuity of ®,,=®, +®,, at t;.] In Eq. (11), we have
used the fact that the flux is zero when t—»c, Since
P, (t))=D,,(z=0) can be obtained from Eq. (6) as

® _Npom . L/2 1
m(tO)" L [(L/2)2+R2]1/2 ’ ( )
and from Eq. (4)
Nugm
AD(67)=—AD (17)=— ’Z" , (13)
we finally have
® Nugm
.”108 dt—-mﬂ—z. (14)

Figure 5 shows that this area is indeed constant with velocity
within the experimental error.

It is also interesting to consider the effect of the magnetic
dipole moment m of the magnet on the pulse. Equations (7)
and (8) show that the induced emf, just like the magnetic
field created by the magnet, is proportional to m. Similar
arguments to those considered before when discussing the
dependence of the pulse on v indicate that both the peak
value of g(f) and the area of the half pulse should be pro-
portional to the dipole moment of the magnet. This suggests
that the value of m could be determined from the induction
pulses obtained by launching the magnet with different ve-
locities. Indeed, by using Eq. (14) and the average area of the
“late half pulse” shown in Fig. 5 (i.e., 0.978 mV s) we can
obtain the value m=(2.04+0.02) A m? for the dipole mo-
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ment of the magnet, which is in agreement with the result
m=(2.05+0.02) A m” obtained by using the Hall probe, as
described in the experimental section.

V. SUMMARY

Our simple model provides reasonable explanations for
the observed phenomena. Further improvements, like the fi-
nite thickness of the coil, could be easily introduced in the
model but this is beyond the scope of the simple analysis
attempted here.

The system can also be used to determine the dipole mo-
ment of the magnet. This can be done either by calculating
the area of the half pulse as described in the previous section
or by using a computer routine for multiparametric nonlinear
fitting. In the second case, the fitting equation given to the
computer is Eq. (8), with m and ¢, as free parameters. (Let-
ting ¢, be undetermined is convenient though not necessary.)
This procedure has a high degree of reproducibility (disper-
sion lower than 1%), and the results agree, within the experi-
mental error, with the previous determinations of m. More-
over, the dispersion of m can be obtained by launching the
glider through the coil at different velocities.
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Classical analogy to quantum mechanical level repulsion
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The frequency repulsion in coupled harmonic oscillators can be treated as a classical analogy to the
quantum mechanical level repulsion. As an example the inductively coupled LC circuit will be

discussed.

1. QUANTUM MECHANICAL TWO-LEVEL SYSTEM

The quantum mechanical two-level system is well known
and has many applications in physics.l‘3 An example is the
parity doublet spectrum of the NH; molecule.>* A very im-
portant property of two-state systems is level repulsion. Let
the two-state system with no interaction have the energies E
and E,. The interaction should then be described by an off-
diagonal symmetric and, for simplicity, real matrix with the
matrix elements Vy,, V,;=V,,, and V;=V,;,=0. The
Hamiltonian in matrix representation takes the form

Hik=Ei6ik+ Vik with i,k=1,2. (1)

The energies of the coupled system are

Ei,=YHE+E) £ W(E—Ey)?+4V7,. @)

With this formula one can find the quantum mechanical level
repulsion theorem
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|E,—Ey|=|E|—E,|. 3)

This means the energy difference of two mixed states is al-
ways greater than or equal to the energy difference of two
unmixed states. One may ask whether there are classical
analogies to this level repulsion. In the following we shall
see that coupled harmonic oscillators have this property and
as an example we discuss the inductively coupled LC circuit.
The calculations are elementary and in this sense are not
really new. Our point is to emphasize the analogy between
classical and quantum mechanical repulsion and to illustrate
this with a simple classical system.

II. COUPLED HARMONIC OSCILLATORS

A frequency repulsion theorem can be established for two
harmonic oscillators where one finds that the absolute differ-
ence of the eigenfrequencies increases if coupling between
these oscillators is present.
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