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A unified treatment of elementary surface phenomena based on the formalism of thermodynamics is
presented and compared to more familiar treatments based on the formalism of Newtonian
mechanics. Emphasis is put on the surface free energy concept rather than on surface tension, not
only because the former is more fundamental, but also because the latter may mislead if pushed too
far. The examples discussed (Young—Laplace and Young—Dupré equations, and capillary rise) can
be easily described with the help of the Helmholtz function, and clearly show some of the
advantages of the thermodynamic approach. In particular, several misleading results appearing
in elementary treatments can be avoided by using this approach. It is concluded that: (i)
thermodynamics and physical chemistry courses should favor the formalism of thermodynamics
rather than mechanics when dealing with surface phenomena; and (ii) when the mechanical
approach is still preferred, some weak points in the standard derivations (e.g., the existence of an
adhesion force in the explanation of the Young~Dupré equation and the nature and balance of forces
in capillary rise) should be properly dealt with. © 1995 American Association of Physics Teachers.

INTRODUCTION

Surface phenomena are important not only to physics but
also to neighboring disciplines such as physical chemistry,
life and health sciences, and chemical engineering. The study
of these phenomena has found an established place in el-
ementary treatments of these disciplines, but not in our cur-
rent introductory and intermediate physics courses. Most re-
cent textbooks either present only a brief account of surface
phenomenal‘3 or ignore them completely.4 This brief ac-
count often appears before the chapters devoted to thermo-
dynamics, and thus these phenomena are described by using
mechanical rather than thermodynamic arguments. Though
this procedure may certainly be suitable if one wishes to save
time and put emphasis on classical physics, it should how-
ever be recognized that surface phenomena are far from be-
ing old-fashioned. Indeed, they continue to play a prominent
role in research fields at the interface of physics with chem-
istry, biology, and engineering.>® The vigorous, multidisci-
plinary interest in surface phenomena has also resulted in
many different (and sometimes confusing) treatments refiect-
ing the particular training and interest of their authors. Sur-
prisingly even some thermodynamics texts have used me-
chanical rather than thermodynamic arguments when dealing
with surface phenomena.’

We propose here a unified treatment of elementary surface
phenomena that relies on the formalism of thermo-
dynamics® 12 rather than on that of mechanics. With the help
of very simple models, some of the advantages of the ther-
modynamic approach are shown:

(1) Surface phenomena are explained in terms of surface
free energy instead of surface tension. This procedure is not
only closer to the currently accepted viewpoint>13* but also
is free from misleading results that occasionally arise when
surface tension is used.

(2) Students have the opportunity to see that the classical
methods of thermodynamics also apply to physical systems
other than gases, solutions, etc. In addition, they see the ap-
plication of the Helmholiz function, which is seldom em-
ployed in the classroom examples of thermodynamics
courses, but is very suited to this study.

(3) Thermodynamics gives a broad view of the subject and
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suggests new ways of understanding the physical concept of
surface tension and deriving familiar results like the Young—
Laplace and the Young—Dupré equations, and capillary rise.

It should however be recognized that since the formalism
of thermodynamics requires an understanding of the Helm-
holtz function, most of the material presented here may not
be appropriate for an introductory physics course. Neverthe-
less, we believe that this description will be useful in inter-
mediate physics courses (thermodynamics, surface science,
physical chemistry) for scientists and engineers.

PHYSICAL CONCEPT OF SURFACE TENSION

In this section we consider a pure condensed phase (solid
or liquid) in equilibrium with its vapor (i.e., one-component,
two-phase systems). The description of these heterogeneous
systems must include the physical properties of matter in the
bulk phases as well as the effect of the phase boundary or
interphase. The interphase is defined as the thin region
across which the physical properties vary smoothly from
those of the bulk condensed phase to those of the bulk vapor.
However, the actual limits of the interphase are ill-defined,
which gives rise to different approaches to its study.® Fortu-
nately, the intermolecular forces extend only over a short
range (of the order of 10 A for simple molecules)® and then
the interphase can be considered as infinitely thin. Conse-
quently, we will follow the so-called Gibbs description of the
interphase, and regard the system as two homogeneous bulk
phases separated by a geometrical surface of zero volume,
known as the interface.

It is observed experimentally that the reversible increase
of the area of the interface by a small amount dA, keeping
the temperature and the volume of the two phases constant,
requires some external work 6W.,, proportional to dA:

W=7 dA, (1)

where the proportionality coefficient 7y is positive and is
given the name of surface tension from the comparison of
Eq. (1) with the expression of the work necessary to extend
the area of an elastic membrane under tension 7 by dA:

W=7 dA. (2)
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The need for this external work can be easily explained in
terms of a molecular description. The cohesion of condensed
phases is due to intermolecular forces. The interaction of a
given molecule with its (nearest) neighbors leads to a reduc-
tion of its potential energy, i.e., intermolecular forces act to
stabilize the system. However, the molecules at the surface
region of this condensed phase have a smaller number of
nearest neighbors, and therefore their potential energy is not
decreased by as much as in the interior of the condensed
phase. In other words, if the zero of potential energy is con-
sidered that of the molecules in the interior of the condensed
phase, the molecules at the surface region have a positive
potential energy.!*!6 In the vapor phase, intermolecular
forces are neghglble because of the large distance between
nearest neighbors so the molecules in the vapor phase will
have a positive potential energy with respect to the con-
densed phase (i.e., the latent heat of vaporization or sublima-
tion). Since the number of nearest neighbors in the surface
region is nearly half the number in the condensed phase, the
potential energy per molecule in the surface region can be
estimated as half the energy per molecule in the vapor
phase.!*

The increase in area requires a proportional increase in the
number of molecules at the interface. Since these molecules
move from the bulk of the condensed phase to the interface,
there is a net increase in potential energy associated with this
motion. The theorem of conservation of mechanical energy
equates the external work with the increase in potential en-
ergy. The surface tension vy represents the rate of increase in
(potentlalg energy of the interface with respect to the interfa-
cial area.

Another interpretation of the coefficient y can be obtained
from fundamentals of thermodynamics. We already know
that the system can be regarded as two homogeneous bulk
phases, denoted a and B in the following paragraphs, which
are separated by the interface. When attempting to describe
surface phenomena by the methods of thermodynamics, the
question of which thermodynamic function should be used
naturally arises. Since the independent variables characteriz-
ing this system are the temperature, which is considered con-
stant m this treatment, the volumes of the phases a and 8, V¢
and V#, respectively, and the area of the interface A, the most
adequate thermodynamic function for the study of this sys-
tem is the Helmholtz free energy F.'® Now, we consider that
the bulk phases as well as the interface contribute to F and
write

F=F,+Fg+F,, 3)

where the subscript o denotes magnitudes related to the in-
terface. This decomposition of F into three separate contri-
butions is possible because of the short range of intermolecu-
lar forces. Molecular behavior is independent of position
when the molecules remain far from the interface, so in the
two bulk phases the major contribution to the free energy is
proportional to the phase size (number of moles, mass, or
volume). However, the molecular behavior close to the inter-
face is different and even though the interface is considered
as a mathematical surface without volume,1 it accounts for
the difference in the properties of matter in the interphase
with respect to the bulk phases, and therefore it contributes
to the free energy of the system.'6%

The change in the Helmholtz free energy is equal to the
work of reversible isothermal expansion of phases o and 8
and the interface, which gives us
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dF=dF +dF g+dF,
=—5Wa"6Wﬁ_ 6W0'= —p,,dVa—pﬂdVﬁ+ 'ydA (4)

[Note that 8W, is the work carried out by the interface so its
sign is opposite to that of the external work against the in-
terface given in Eq. (1).] Equation (4) now permits the inter-
pretation of y as the change in the free energy of the inter-
face F, per unit area at constant temperature

dF
Y= ( A ) ®)
This interpretation of y is considered to be the most
fundamental,>10:13:14
Finally note that the surface free energy v is determined
by the intensive state of the bulk phases, which in turn is
completely determined by 7, p,, and pg. The fact that vy is
independent of the surface area A makes this system quite
different from solid elastic films. In solid elastic films the
number of molecules is constant while the area changes, so
that both the average distance between neighboring mol-
ecules and the forces between them change. In contrast, the
change in area of the interface takes place via an increase in
the number of molecules, and the average intermolecular dis-
tance and force remain practically constant. Therefore, the
surface free energy vy does not depend on the surface area.

APPLICATIONS

In this section we study the mechanical equilibrium of
different systems composed of two or more homogeneous
phases and their interfaces. In thermodynamic terms, the
condition of equilibrium requires the minimization of the
Helmholtz function, while in mechanical terms the vector
resultant of the forces (i.e., surface tensions) acting on the
system must vanish. There is, apparently, a third alternative
which consists in using the principle of virtual work. How-
ever, since dF at constant temperature equals the reversible
work W, this principle is practically equivalent to the mini-
mization of the Helmholtz function.

Young—Laplace equation

We are interested here in determining the condition of me-
chanical equilibrium of an isothermal, closed system made
up of a spherical liquid drop of radius r (phase @) immersed
in its vapor (phase B). The two phases are considered to be at
chemical equilibrium, so that their masses do not change.
Since the system is closed, the total volume remains constant
and any change in V, is accompanied by an opposite change
in Vg:

dV,=—dVy. (6)

In order to lower the energy of the system, the area of the
interface must be reduced. This, however, causes a decrease
in the volume of the liquid phase V,, which in turn increases
the energy of the system. The size of the liquid drop is de-
termined by a compromise between these two tendencies, so
that the overall reversible work done by the system is zero
under equilibrium conditions, and dF in Eq. (4) vanishes.!”
The condition of mechanical equilibrium is then expressed as

dA
Pa=P=Y - ™
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Fig. 1. Imaginary section of a spherical liquid drop in two hemispheres. The
arrows pointing radially outwards represent forces due to the pressure dif-
ference (p®— pP). The arrows pointing to the left represent forces due to
surface tension.

which, for the case of the spherical drop under consideration,
leads to the well-known Young—Laplace equation

2y
pa_pﬂzT- 8)

Alternatively, the Young-Laplace equation is often de-
rived from mechanical arguments.7’11’21 On the one hand, the
surface tension acts to reduce the volume of the drop and
increase the inner pressure p,. On the other hand, the pres-
sure difference between phases a and B8 acts to increase the
volume of the drop. The equilibrium condition is then
achieved when these two tendencies counterbalance each
other. If only a hemisphere is considered (Fig. 1), the force
due to surface tension is equal to 27r7y, where 27r is the
length of the circumference C of the hemisphere H. The
force due to pressure difference is p,—pg times the pro-
jected area of the hemisphere, i.e., (p,—pp) mr?. Therefore,
the equilibrium condition leads to Eq. (8).

Young-Dupreé equation

In this second case study we are interested in the condition
of mechanical equilibrium for three homogeneous phases in
contact. The homogeneous phases are bounded by three in-
terfaces which join in a line of triple contact, and the equi-
librium condition of the system is expressed as the equilib-
rium of the line of triple contact. In particular we consider
here a “sessile drop,” i.e., a liquid drop in equilibrium on a
(plane) solid surface (Fig. 2). In this case the equilibrium
will be achieved when the solid S and the liquid L are also in
equilibrium with the surrounding vapor V.

If we assume that the three homogeneous phases are in
chemical equilibrium, then the change in the Helmholtz
function associated with a change in the drop shape is

dF = yydAy+ y1sdA st YsvdAgy, 9)

where Ay, A1s; Asv, Yiv, Yis» and gy are the areas and
surface free energies (surface tensions in mechanical terms)
of the liquid—vapor, liquid—solid, and solid—vapor interfaces,
respectively. All these surface free energies are positive be-
cause the molecular interactions in the bulk condensed
phases are more effective in reducing the (potential) energy
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vapor

Fig. 2. Sessile drop on a flat solid surface. The liquid—vapor interface is a
spherical cap whose center of curvature is at C. Neumann’s construction for
the equilibrium of the line of contact is also depicted.

of the system than the molecular interactions at the inter-
faces. We might think there must be a tendency to reduce
Ay, Ars and Agy, because of the positive signs of these
surface free energies; however, the changes in the solid phase
can usually be neglected, and the total surface area of the
solid phase is considered to be constant:

dALS= ‘_dAsv. (10)

(In fact, solid—solid and solid—vapor molecular interaction
play a negligible role in surface phenomena at normal
temperatures.)

Thus, we arrive at the following expression for the change
in the Helmholtz function:

dF=yydAy+(yis— Ysv)dAys. (11)

We already know that y;y acts to reduce A;y. The coeffi-
cient (yg—Ysy) can be either positive or negative, as this
term contains essentially the influence of liquid-liquid inter-
molecular forces, which act to reduce A5, and liquid—solid
intermolecular forces, which act to increase Agg. If the
liquid—-solid interactions are negligible, the energy associated
with the liquid—solid interface is practically the same as the
sum of the energies associated with the separate liquid—
vapor and solid—vapor interfaces and ¥ ¢~ ysy+vy. The
sessile drop then behaves as when it is fully immersed in its
vapor and adopts the shape of a sphere. If ¥ = ¥sv, then the
molecules in the liquid part of the interphase behave just like
molecules in bulk liquid phase (i.e., liquid-solid interactions
are like liquid-liquid interactions) and the drop adopts the
shape of a hemisphere. Finally, if y g<vsy— v the liquid—-
solid intermolecular forces are so effective in reducing the
energy of the system that no equilibrium can be achieved and
the drop spreads out on the solid surface (i.e., A g=A py—>).
For the sake of simplicity we consider a sessile drop with
the shape of a spherical cap of height H and base of radius r
(see Fig. 2). In order to derive the equilibrium condition of
the sessile drop, we consider its volume V fixed, and write

dF = yiydAy+ (yis— ¥sv)dAs=0, (12)
where??#
V==1twH(3r*+H?), 13)
Apy="m(r*+H?), (14)
A= mr? (15)
and
dV=maHr dr+im(r*+H*)dH=0, (16)
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2 H2

= 17
dALV :51—172' 29r dr (V ﬁXCd), ( )
dA(s=2mr dr (V fixed). (18)

If the angle of contact between the liquid—vapor and
liquid—solid interfaces is denoted by ® (see Fig. 2), then Eq.
(12) can be written as

dF:[YLV cos O+ Yis— ')/sv]ZTrr dr=0 (19)

since the application of the cosine theorem to the dotted
triangle in Fig. 2 gives cos @=(r’—H?)/(r*+H?). The
equilibrium condition then takes the final form

Ysv—Ns
v

which gives the equilibrium contact angle in terms of the
surface free energies of the three interfaces. This is a form of
the Young—Dupré equation, originally stated in qualitative
terms by Thomas Young in 1805, and in mathematical terms
by Dupré in 1869."

Alternatively, the Young—Dupré equation can be derived
from mechanical arguments. Since the line of triple contact is
subject to the tensions of three different surfaces, the vector
resultant of these three tensions must vanish in the equilib-
rium situation.?? It is clear from Fig. 2 that Eq. (20) assures
the equilibrium in the direction parallel to the plane solid
surface but there is, however, a nonzero component normal
to the plane. This means that no equilibrium situation can be
achieved if the solid surface is plane in which case we must
assume either that along the line of contact a local ““pucker-
ing” of the solid surface occurs,'>'* or that no equilibrium
condition is necessary for the normal components because
the line of contact is not free to move in the normal
direction.!® Some authors have proposed an adhesive force
acting in the direction normal to the plane solid surface so as
to maintain equilibrium,! but this is an unrealistic alternative
and should be disregarded because this force is not a surface
tension and its origin is unclear.

Finally, it should be noted that the normal component is
not the only problem of this mechanical approach. The cases
where ®<90° are attributed to values of y g smaller than
vsv. When the mechanical approach is used, the student is
given the impression that the solid—vapor interface plays a
decisive role in determining the equilibrium shape of the
drop,”'® when in fact this equilibrium is actually determined
by the intermolecular forces at the liquid—vapor and liquid—
solid interfaces.

cos O = (20)

Capillary rise

In this third case study we deal again with three homoge-
neous phases in contact along three interfaces and a line of
triple contact. In particular we consider a liquid column
within a vertical cylindrical tube open to air in the upper end
and immersed in a container of the liquid in the lower end
(Fig. 3).

Having assumed the mass equilibrium between the three
phases, the Helmholtz free ‘energy of the system can now
change due to a modification in the shape of the liquid—

vapor interface and/or a change in the mass m of the liquid’

column. Thus, Eq. (12) must be modified to incorporate a
new term accounting for the change in gravitational potential
energy, F,=mgh_,, , where h_, is the position of the center
of mass of the liquid column with respect to the free surface
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Fig. 3. Capillary rise in a vertical tube.

of the liquid in the container. The magnitudes m and h_,, are
taken as positive in the case of capillary rise and negative in
the case of capillary depression, since both situations require
positive gravitational energy. First, let us remember that
Y is positive while (y s~ 7vsy) can be either positive or
negative. If yg<ysy the liquid tends to wet the solid tube
and the energy of the system is decreased by increasing A g,
i.e., by producing a capillary rise effect. Of course, this rise
is limited by the increase in gravitational energy, and a mini-
mum free energy situation is eventually achieved. On the
other hand, if % ¢> sy the liquid tends to retreat from the
solid walls and the energy of the system is decreased by
decreasing Ag, i.e., by producing a capillary depression.
Again, this depression is limited by the increase in the gravi-
tational energy. In addition, there is a tendency to flatten the
liquid—vapor interface and reduce Ay, but this tendency is
usually buried by the tendency to wet (or retract from) the
solid walls.

In this case, two conditions of mechanical equilibrium are
needed: that of the liquid column and that of the line of triple
contact. In order to derive them, we consider once again a
spherical liquid—vapor surface of radius R, so that Ay is
given by Eq. (14). Also, if r is the radius of the cylindrical
tube and & the height of the liquid in contact with the solid
walls, the area of the liquid—solid interface is given by

Ais=27rh. 21)

Finally, we denote the angle of contact between the liquid—
vapor and liquid—solid interfaces by 6 (see Fig. 3), and its
complement by ®. Thus, §=0° (®=90°) in the case of a
rising (wetting) hemispherical surface, 6=90° (@=0°) if the
surface is flat, and #=180° (®@=—90°) in the case of a re-
treating (nonwetting) hemispherical surface.

The condition of mechanical equilibrium of the line of
triple contact can be obtained by considering changes in the
contact angle, but not in the mass (volume) of liquid in the
column. The change in the Helmholtz function is then

dF = yydAy+(yis— ysv)dA st mg dh .,
= 7LV27TH dH+ ( ‘yLS_ 'ySv)Z’ﬂ'r dh
=(ywv cos 0+ y s— ysy)27r dh=0, (22)

where the change in gravitational energy has been neglected
(since m is constant and only 6 is changing), and we have
made use of the condition

dm=pd(mwr*h—V)

=p| mr? dh— —— H dH|=0

Tr
cos 0

(r fixed). (23)
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Fig. 4. Balance of forces in capillary rise: (a) equilibrium of the line of triple
contact {Eq. (20)]; (b) equilibrium of the liquid column [Eq. (26)]; and (c)
the situation usually depicted in physics textbooks [Eq. (28)].

Here, p denotes the density of the liquid, and the liquid col-
umn has been considered as a cylinder of radius r and height
k minus a spherical cap of volume V given by Eq. (13) (see
Fig. 3). Obviously Eq. (22) leads again to the Young—Dupré
equation [see Eq. (20) and Figs. 2 and 3].

The condition of mechanical equilibrium of the liquid col-
umn is obtained by considering changes in the height of the
column at constant contact angle 6. Thus, we have

dF =(ys—ysv)dAs+gd(mh, )

=(ws—Ysv)27r dh+mg dh=0 (24)
since
r z
d(mhc,m.)=pd(f 2méz 3 d§)
0
=PJ 2wéz dz dé=p dhf 2mwéz dé=m dh.
Y 0
(25)

In Eq. (25), z(&,h) denotes the equation of the liquid—vapor
interface (i.e., £ is an auxiliary variable measuring the dis-
tance from the column axis) and dz=dh because @ is con-
stant. Equation (24) now gives

(Ysv—ns)2mr=mg (26)

which implies the existence of capillary rise (m>0) when
Ys<7Ysv, and capillary depression (m<0) when ¥ s> Yygy-
The equation for the capillary rise can also be written in the
form

2yvcos 8 2(ysv—s) 14
ogr = o =h ;—2-~h. 27

Finally, we can give a mechanical interpretation of the
above equations (see Fig. 4).2% This interpretation can be
done properly by considering that the forces involved are the
surface tensions of the different interfaces, which act on the
line of contact, and the weight of the liquid column. For
instance, the force exerted by the liquid—vapor interface on
the line of contact is 277 y;y and acts along this interface,
i.e., forming an angle @ with the solid walls. The equation for
capillary rise is then obtained in two steps, just as in the
thermodynamic approach. First, we consider the equilibrium
of the line of triple contact, and obtain the Young—Dupré
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equation. Second, we consider the liquid column, and state
that the force exerted by the solid tube on the liquid column,
(¥sy—yLs)27r, must compensate for the weight of the liquid
column mg, giving Eq. (26). The combination of these two
results finally leads to Eq. (27).

However, the (mechanical) interpretation given in many
textbooks'>*?! differs from this: only vy is invoked and
the equilibrium is formulated (in a single step) as a balance
between the weight of the liquid column and some force
related to 94y . Most authors then introduce the force exerted
by the solid walls on the liquid column as the reaction of the
force exerted by the liquid—vapor interface on the line of
contact. The vertical component of this reaction force is then
said to cancel the weight of the liquid column, and the equa-
tion for capillary rise is written as

27rypy cos 0=pgmr’h. (28)

Even though Eq. (28) is correct [see Eq. (27)], there are
several weak points in this derivation. First, nothing is said
about the physical magnitudes determining the value of the
contact angle. Second, the student is left with the idea that
capillary rise is directly related to 7y, while Fig. 4(b) and
Eq. (26) state clearly that the force exerted by the solid walls
on the liquid column is related to the difference in the sur-
face tensions of the liquid—solid and solid—vapor interfaces.
The direction of the force in Fig. 4(c) is also misleading,
since the solid walls can only exert forces in the direction of
the solid—liquid interface and not form an angle @ with it.
Finally, the mechanical interpretation does not explain where
the energy necessary for capillary rise comes from.!

CONCLUSIONS

Certainly, surface tension is not merely a “useful math-
ematical fiction” as suggested by many authors over the
years (see, e.g., Ref. 9). The interfaces are under tension®’
and therefore surface phenomena can be readily explained,
as in most physics textbooks, in terms of surface tension.
However, only those few texts (see, e.g., Ref. 11) which
define the surface tensions of the different interfaces, are able
to give an acceptable explanation of capillary rise and the
Young-Dupré equation.

In this paper, emphasis has been put on the surface free
energy rather than on the surface tension not only because
the surface free energy concept is considered to be more
fundamental, but also because when the concept of surface
tension is pushed too far, it leads to misleading results.” In
particular, the examples presented here (Young—Laplace and
Young-Dupré equations, and capillary rise) have clearly
shown a number of advantages of the thermodynamic ap-
proach to the study of elementary surface phenomena. (The
main disadvantages of this approach are the complexity of
the algebra and the need to introduce the Helmholtz function,
which could mean that the formalism of thermodynamics
could only be used in intermediate physics courses.) We con-
clude finally that: (i) thermodynamics and physical chemistry
courses should favor the thermodynamic rather than the me-
chanical formalism when dealing with surface phenomena;
and (ii) when the mechanical approach is still preferred,
some weak points in the standard derivations (e.g., the exist-
ence of an adhesion force in the explanation of the Young—
Dupré equation!! and the nature and balance of forces in
capillary rise) should be properly dealt with.
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In this paper we discuss our study of a string—mass chain and its anology to quantum mechanical
systems. Theoretical predictions are made based upon the numerical solution to the wave equation.
These predictions are tested experimentally using both normal mode analysis and pulse analysis.
The frequency band structures for periodic and disordered string mass chains are studied as well as
their corresponding eigenfunctions. The theoretical and experimental results are in accord. This
experiment, suitable for advanced physics majors, demonstrates many important features of
quantum mechanics: eigenvalues, superposition principle, band structure, gap modes, and Anderson
localization. © 1995 American Association of Physics Teachers.

L. INTRODUCTION

The study of eigenstates and the corresponding eigenfunc-
tions for periodic, quasiperiodic, and random systems has
evolved from the Bloch periodic potential model to the
Yablonovitch photonic crystal' and to Maynard’s quasiperi-
odic, macroscopic models.>> In this paper we present theo-

547 Am. J. Phys. 63 (6), June 1995

retical models for periodic, quasiperiodic, and random
string—mass chains and compare the theoretical model to our
experimental results.

Periodic spring—mass and string—mass chains are exten-
sively used as examples of eigenvalue problems because of
the simplicity in mathematical treatment. For a string—mass
chain, the mass of the string is usually assumed to be zero
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