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Biionic Potential of Charged Membranes: Effects of the Diffusion Boundary Layers 
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The biionic potential of charged membranes has been studied theoretically. A closed, analytical solution to 
the Nernst-Planck equations describing the multiionic transport through the charged membrane and the 
diffusion boundary layers has been obtained. Several limiting expressions, corresponding to negligible diffusion 
boundary layer effects, low bathing solution concentration, and low fixed charge concentration, have been 
discussed, and the experimental conditions which ensure their validity have been analyzed. The results from 
the model have been finally compared to recent experimental data corresponding to membranes with high 
charge density, and the influence of the boundary layers has been found to be significant. 

Introduction 

The biionic potential ( A v ~ p )  is the potential difference 
between two solutions of different electrolytes with a common 
co-ion at the same concentration which are separated by a 
charged membrane. The A q ~ p  has become a classical topic 
in the study of transport phenomena through charged mem- 
branes,'s2 because multiionic systems are important to both 
synthetic and biological membra ne^.^ 

The literature concerning this field is certainly extensive'-" 
and includes a wide variety of experimental and theoretical 
studies. From the experimental point of view, weakly and 
highly charged membranes behave quite differently. Indeed, 
the biionic potential of weakly charged membranes decreases 
when the external electrolyte concentration increases due to the 
increase of co-ions in the membrane phase,9 while the biionic 
potential of highly charged membranes seems to increase with 
the external electrolyte concentration.' One might argue that 
there should not be that much difference in their behavior and 
that only a shift of the biionic potential curve along the 
concentration axis should be expected. The theoretical studies 
currently available can explain satisfactorily the behavior of 
weakly charged membra ne^,^,^,^^ but quantitative theories 
describing the behavior of highly charged membranes are still 
lacking.'.7 

Most of the theoretical treatments presented so far have 
invoked at least one of the following assumptions: ideal 
permselectivity of the membrane (Le., zero co-ion the 
effects of the diffusion boundary layers (DBLs) are negligible,'-'O 
the electric field is constant in the membrane phase,6s11,12 and 
the contribution of the Donnan potentials to A q g p  is negli- 
gible.g,l These assumptions are approximately valid in some 
practical situations and allow for obtaining very simple limiting 
expressions's2 for A v ~ p  without resorting to numerical meth- 
o d ~ . ' ~ , ' ~  However, it has been emphasized that the membrane 
cannot be considered as ideally permselective when the elec- 
trolyte concentration of the bathing solutions is of the same order 
of magnitude as the membrane fixed charge c~ncentration.'~ 
Also, the DBLs are known to exert a considerable influence on 
the transport phenomena in multiionic s y s t e r n ~ . ~ , ~ , ~ ~ - ' ~  It is 
difficult to eliminate this influence when dilute solutions are 
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e m p l ~ y e d . ~ J ~  Finally, the constancy of the electric field in the 
membrane phase and the cancellation of interfacial Donnan 
potentials appear to be reasonable assumptions when the rate- 
determining step is the transport through the membranes-" (i.e., 
in the case of membrane but this is not necessarily 
true when the DBL effects are dominant (Le., in the case of 
film control's2). 

In view of the above facts, we propose here to analyze 
theoretically the biionic potential of highly charged membranes. 
The study is based on the solution of the Nernst-Planck flux 
equations. The classical papers by Planck and Pleije12 addressed 
the general problem of steady-state ion transport of mix- 
tures of salts through liquid junctions. S~h log l , ' ~  Buck,20 and 
Sqirensen and co-workers*l obtained solutions for the case of 
transport through charged membranes. In this paper, a closed 
analytical solution based on the assumption of local electro- 
neutrality has been derived for the particular problem of biionic 
potential, i.e., a mixture of two salts with a common anion 
flowing through a charged membrane under zero electric 
current.20 The main difference with the above treatments is that 
the integration of the Nernst-Planck equations has been canied 
out here over the whole membrane system, i.e., the membrane 
and the two DBLs, following the ideas by me are^.^ Special 
attention is paid to the effects of the co-ion flux and the DBLs 
on the A v ~ p .  Limiting expressions corresponding to the cases 
of negligible DBL effects, zero co-ion flux, and low fvted charge 
concentration have been presented, and the experimental condi- 
tions which ensure their validity have been given. Although 
this question can certainly be achieved by means of existing 
numerical  method^,'^,'^-^^ the derivation of general analytical 
solutions and the discussion of their limiting cases could be of 
utility for those who are unfamiliar with numerical methods. 
Also, analytical solutions display clearly the physical magnitudes 
influencing A I + B ~ ,  and therefore, they are very useful as 
guidelines for numerical studies. Finally, we have compared 
the theoretical results with the available experimental data. 

Formulation and Solution of the Problem 

Figure 1 shows a sketch of the membrane system under study. 
Transport is considered in the x direction through a membrane 
that extends from n = 0 to d and two DBLs lying from x = -6 
to 0 and from x = d to d + 6. The membrane is bathed by two 
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Figure 1. Schematic view of the membrane system. 

bulk solutions with the same concentration co of different 1:l 
binary electrolytes with a common anion. The concentration 
of (negatively) charged groups in the membrane is denoted by 
X .  Steady-state conditions will be assumed. 

The basic equations describing this problem are the Nemst- 
Planck  equation^^^,^^ 

I -  -\ - dci idX -*) i = l , 2 , 3 , O < x < d  (lb) d x ’  Ji = -D. - + ziti 

the equation for the (zero) electric current density 

J, + J2 - J3 = 0 (2) 

and the local electroneutrality assumption 

cl(x) + c2(x) = c3(x), -6 < x < 0, d < x < d + 6 (3a) 

(3b) 
- - -  
cl(x) + c2(x) = c3(x) + x, 0 < x < d 

Here Ji, Di, and ci are the flux, diffusion coefficient, and local 
molar concentration of the ith species, respectively. Overbars 
denote membrane phase. Subscripts 1 and 2 refer to the cations 
(counterions), and subscript 3 refers to the anion (co-ion). 
Finally, q = FqYRTis the dimensionless electric potential, where 
9 is the electric potential, F is the Faraday constant, R the gas 
constant, and T the absolute temperature. 

Equations 1-3 must be solved with the boundary conditions 
(see Figure 1) 

cl(-d) = c2(d + 6) = co (4a) 

c2(-6) = c,(d + 6) = 0 (4b) 

Also, according to the well-known Donnan equilibrium,112 both 
the ionic concentration and the electric potential are assumed 
to be discontinuous at the membrane/DBL interfaces. The 
concentrations at the inner boundaries of the membrane are 
related to those at the outer boundaries through the equations 

and 

while the electric potential jumps (Donnan potentials) at the 
interfaces are 

and 

Note that ion activity coefficients and single-ion partition 
coefficientsz0 have not been included in the Donnan relation- 
ships, which is a rather crude a s s u m p t i ~ n . ~ J ~ J ~ ~ ~ ~  (See refs 21, 
23, and 24 for more complete treatments of the membrane/ 
solution equilibrium.) 

The use of eqs 3 leads to a simple analytical solution. In the 
membrane phase, the Nemst-Planck equations add up to 

(7) 

which can be integrated to give 
- -  - -  

2k3(4  - c3(0)1 + XWM + 6 +J2 + j Jd  = 0 (8) 
- -  - - 

whereji = JJDi and A ~ M  q(d) - q(0)  is the potential drop 
in the membrane phase. In the DBLs, the sum of the Nemst- 
Planck equations shows that the co-ion concentration gradient 
is constant (take X = 0 in eq 7 and consider magnitudes referred 
to the DBLs), and hence 

where j i  = Ji/Di. 
The potential drop in the membrane is easily calculated by 

adding (1 - r)/2 times eq 7 to eq lb  for i = 3, with the result 

- cjo +X(1 - T)/2 
AqM = r l n -  

c3(0> + ~ ( 1  - T)/2 

while the corresponding equations for the DBLs are 

AqL = q(0)  - q ( - 6 )  = r ln(c3(0)/co) 

and 

where 

Jl + J2 - J3 

Jl +J2 +j3 
r =  

and 

The biionic potential is now calculated as the sum of the 
different potential drops through the s y ~ t e m ~ , ~ . ~  
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other," and the potential drops in the DBLs are negligible, eq 
17 gives the biionic potential. 

In the limiting case of very low electrolyte concentration, co 
<< X ,  the co-ion flux is zero, the cation fluxes are given by 

All these potential drops are schematically represented in Figure 
1. 

Finally, the introduction of eq 7 into eq l b  for i = 1 and 
further integration leads to 

c l ( 4  = c,(o)e-'vM + [(c3(4 + X )  - 
- -  - 

- 
- j l  

j l  + j 2  
(c3(0) + X)e-AvM]= (13a) 

and the corresponding equations in the DBLs are 

and 

J i  
c l ( 4  = -[c3(4 - cOeAvR] 

J~ + J 2  

In conclusion, we have formulated and solved the general 
transport equations under the only assumption of local electro- 
neutrality. The exact analytical solution has taken then the form 
of a system of transcendental equations which must be solved 
for the three ion fluxes J I .  However, it is also interesting to 
work out the solutions corresponding to three approximate cases. 

Case i: Negligible Effect of the DBLs (6 << d). In this 
case, we can neglect the potential drops in the DBLs. Also, 
eqs 9 and 13 reduce to 

c3(0) = c3(4  = c,(O) co (14a) 

and then it is reasonable to assume 

dGIdx x 0 (15) 

Equation 15 implies that the electric field inside the membrane 
is approximately constant (see eq 7), and then eqs l b  can be 
integrated to give 

and 

where we have made use of eqs 14. The introduction of eqs 
16 into eq 2 yields the following expression for the potential 
drop inside the membrane 

-- 

(see eq 26 in ref 11). Since all single-ion partition coefficients 
have been put equal to one, the Donnan potentials cancel each 

and the biionic potential reduces to 

(see eq 8.86 in ref 1 and eq 4.87 in ref 2, respectively). In the 
opposite limiting case, Le., that of very concentrated bathing 
solutions, co >> X ,  the expression for A v ~ p  is 

which has the form of a (ternary) liquid junction potential.*Jl 
Case ii: Very Low Electrolyte Concentration (cg << X). 

Now, the concentration of co-ions in the membrane phase is 
very small, and thus the potential drop in the membrane must 
be negligible ( A ~ M  % 0), for any potential drop would lead to 
an important electric current due to the high concentration of 
counterions. At the two ends of the membrane, the co-ion 
concentrations can be approximated as c3(0) x c ~ ( O ) ~ / X  and 
c3(4  = c3(412/X, so that the sum of the Donnan potentials is 

- 
- 

while the sum of the potential drops in the DBLs is given by 
eqs 10 as 

Therefore, the biionic potential can be readily obtained as 

If the membrane permeability to co-ions is very small, 
D3c02/Xd << Dcdd,  where D is a typical diffusion coefficient 
for counterions in the DBL, the co-ion flux results to be 
negligible when compared to the counterion fluxes, Le., I J3 I << 
lJll x 1521. Since r 1 (see eq lla), we exactly obtain that 

- 

which amounts to assume that co-ions are in equilibrium in the 
DBLs. However, the co-ions cannot be considered to be in 
equilibrium in the membrane phase because the co-ion flux and 
the co-ion concentration are very small there, and then the three 
terms in eq l b  for i = 3 are of the same order of magnitude. 

To obtain the value of A ~ B I ~ ,  the counterions must be 
considered. The sum of eqs 1 for i = 1 and i = 2 gives 
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and 

respectively, where u = Dlcl + D2c2 and u E Dlcl + D,c,. 
(Note that eq 24b is now a good approximation due to the high 
concentration of counterions in the membrane.) Since we have 
shown above that there can be no potential drop in the 
membrane, eq 24b implies that the counterion concentration 
gradients in the membrane are also negligible, and therefore 

- -  
c,(O) = c,(d), i = 1, 2 (25) 

Thus, the sum of the two Donnan potentials is 

where we have made use of eq 25. Also, the sum of the 
potential drops in DBLs can be obtained, by using eq 24a, as 

Finally, the biionic potential is given by 

Dl 
- (27) 
D2 AqBp AqL + AVDL + AVDR + AVR = 

and the ion fluxes can be obtained from eqs 9, 23, and 27 as 

(see eqs 8.87 and 8.46 in ref 1). 
Case iii: Negligible Fixed Charge Concentration (X << 

CO). In this case, the membrane system behaves as three liquid 
junctions in series, and the biionic potential takes the form 

AVBIP = 

(Ol + D3)[(D1 + O3) + (O2 + D3)(1 + d/6)1 
(O2 + D3)[ (D2  + O3) + (Ol + D3)(1 + d/6)1 

- -  - -  ] (29) 
[(D2 + 03) + (Dl + D&1 + d/6)1 

[(Dl + 0 3 )  + ( 0 2  + DJ(1 + d/6)1 
- -  - -  

In i 
- 

However, it could reasonable to assume that Di x Di, because 
of the negligible effect of the fixed charge concentration, and 
thus the biionic potential reduces to the liquid junction potential 
shown in eq 20. Furthermore, the use of the Henderson 
assumption's2 for the resulting liquid junction allows to calculate 
the ion fluxes as 

and 

D2 + D3 DlcOAVBIP J =-- ' D,-D,  d + 2 6  

D l  + D3 D2cOAVBIP J2 = - D , - D ,  d + 2 6  

D3c0A+B1P 

d + 2 6  
J3 = 

Results and Discussion 

1. Theoretical Predictions. In the first part of this section, 
we present some theoretical results aimed to enlighten the 
behavior of membrane systems under biionic conditions. The 
results presented have been obtained by solving the exact 
transcendental equations shown in the first part of the previous 
section. However, it should be recognized that they could be 
obtained as well from the numerical solution of Nernst-Planck 
eq~a t ions '~J~  with a similar (or even lower) degree of complex- 
ity. The results are presented for illustrative purposes and extend 
over a range of cdX values larger than that characteristic of 
experimental studies in order to discuss the (mathematical) 
limiting cases. In the last part of this section, we use the theory 
previously worked out to describe quantitatively the available 
experimental data of biionic potential for highly charged 
membranes. 

Figure 2 shows the biionic potential plotted against log(cd 
x) for different values of the ratio d/6 (membrane thickness to 
DBL thickness). The diffusion coefficients considered in this 
calculation are D1 = D, = 1.95 x cm2/s, D2 = 20, = 
1.33 x cm2/s, and 0 3  = 30, = 2.03 x cm2/s, 
corresponding to potassium, sodium, and chloride ions at infinite 
dilution in the external solution phase, while the values in the 
membrane phase have been chosen arbitrarily. (The more 
realistic case of diffusion coefficients which are much smaller 
in the membrane phase than in the DBLs will be analyzed later 
in Figure 5.) For any value of cdX, the biionic potential is 
bounded by the values corresponding to zero membrane 
thickness (bottom curve) and zero DBL thickness (top curve, 
eq 17). The bottom curve states simply that the biionic potential 
is given by the ternary liquid junction potential 

- - 
- 

and does not change with the external electrolyte concentration. 
In the limit of low external solution concentration, co << X, 

the top curve tends to the value shown in eq 19, while the middle 
curves (i.e., those corresponding to nonzero, finite values of 
the ratio d/6) tend to the value shown in eq 27. The limiting 
value of the top curve in the limit of very concentrated external 
solution, co >> X, is given by eq 20. The middle curves follow 
eq 29 in this limit and range from the value shown in eq 20 to 
that in eq 31. 

One of the most surprising results in Figure 2 is the existence 
of a maximum in the biionic potential for the cases d 2 6. This 
fact is related to the different behavior exhibited by weaklyg 
and highly' charged membranes. The ion diffusion coefficients 
in weakly charged membranes with high water content are very 
similar to those in the external solution." Then, eqs 19 and 27 
give the same value for A ~ B I P ;  this is also the case of eqs 20 
and 31. The biionic potential curves are then between a top 
curve which decreases monotonically from In DJD, to 
In(% + D3)/(D2 + 03) and a horizontal bottom curve with 
constant value ln(D, + D,)/(D, + DJ, so that there can be no 
maximum, as theoretically predicted' and experimentally 
~bse rved .~  However, in the case of highly charged membranes, 
and especially for those with low water content, the diffusion 
coefficients in the membrane phase will decrease respect to those 
in the external solution, and this reduction in the diffusion 
coefficients can be very dependent on the particular ion 

-- 
- -  

- - -  - 
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Figure 2. Biionic potential vs log(cdx) for different values of the ratio 
dI6, when D, = D1, D,  = DJ2,  and D, = 0313, with D1 = 1.95 x 

- - - 
cm2/s, D2 = 1.33 x cm21s, and D3 = 2.03 x cm2/s. 

considered. Since the middle curves have two well-defined 
limiting values and tend to move toward the top curve (if d =- 
6) or toward the bottom curve (if d < d), we can conclude that 
the biionic potential curve will exhibit a maximum if d > 6, 
and eq 19 gives a value significantly higher than eq 20. The 
first condition (d > 6) is frequently met in practice, while the 
second requires 6 to be significantly higher than 6. (Note 
that we take D1 > D2 in order to have a positive biionic potential, 
and then the same inequality will usually be satisfied by the 
diffusion coefficients in the membrane phase.) 

Figures 3 show the effect of the ratio c d X  on the co-ion flux 
(relative to the average counterion flux J) through the membrane 
for different values of the diffusion coefficients. As expected, 
the assumption of zero co-ion flux becomes poorer when c d X  
increases. The usual procedure of neglecting the co-ion flux4-' 
is no longer justified when co - 0.1X. Let us consider Figure 
3a in deeper detail. The three curves shown in this figure cross 
each other at co x X due to the compromise between two 
opposite effects: (i) the co-ion flux becomes important when 
co x X d / d ,  so that the rise of J3/J from zero starts earlier for 
the curves corresponding to smaller values of the ratio d/6, and 
(ii) the limiting values of J3/J are 

and 

J i  - J 2  D3(D, + D2) 4- 2D1D, 

as deduced from eq 30. However, the use of different values 
for the diffusion coefficients in the membrane and the external 
solution phase is not justified when co >> X ,  and therefore Figure 
3a cannot be used in this limit. In order to check this point, 
Figure 3b shows a similar plot calculated with the following 
diffusion coefficients: D1 = = 2.0 x cm2/s, D2 = 
6 = 1.0 x cm2/s, and 0 3  = D, = 2.0 x cm2/s. The 
value of J3IJ in the limit co >> X is now given by either eq 32a 
or 32b as 0.4. 

Figure 4 shows the contribution of the Donnan potentials to 
A v ~ p .  Surprisingly enough, the contribution of the Donnan 

- 

-4 -3 -2 -1 0 1 2 
log,, 

Figure 3. (a) Co-ion fluxlaverage counterion flux (J  = (51 - J2)/2) 
for different values of the ratio d/6 and the diffusion coefficients 
considered in Figure 2 .  (b) Co-ion fludaverage counterion flux for 
different values of the ratio dI6, when 0, = Di ( i  = 1, 2, 3 )  and D1 = 
202 = D3 = 2 x cm2/s. 

+ 

Figure 4. Contribution of the Donnan poteEtials to the biionic potential 
for different values of the ratio did, when Di = Di ( i  = 1, 2, 3) and D1 
= 202 = D3 = 2 x 

potentials is not negligible at all over the zone of experimental 
interest (-3 log(cdX) 0). Indeed, the presence of the DBLs 
leads to asymmetric ion concentrations at points x = 0 and x = 
d, which makes the contribution of the Donnan potentials to 

cm2/s. 
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deviate significantly from zero. The asymptotic value (0.5) 
reached in the low concentration limit can be easily understood 
from eqs 21a and 23. 

Let us analyze finally the reason for the increase in the biionic 
potential from the limiting value given in eq 27 and the existence 
of the maxima in the A q ~ p  curves. In the limit of very diluted 
external solution, co << X, the co-ion flux is negligible (r % 1; 
see eqs l l ) ,  so that the potential drops in the DBLs and the 
Donnan potentials contribute in the same amount to the biionic 
potential (see Figure 4 and eq 23). When increasing the external 
solution concentration, the co-ion flux becomes appreciable (see 
Figures 3) and r increases. The corresponding increase in the 
potential drops in the DBLs makes the biionic potential increase, 
too. However, at higher electrolyte concentrations, the biionic 
potential must decrease in order to reach the limit given by eq 
29. The maximum value of the biionic potential is not easy to 
predict. However, it is clear that the lower the diffusion 
coefficients in the membrane phase, the more negligible the 
DBLs effects, and the smaller the difference between the 
maximum value and that shown in eq 19. 

2. Comparison with Experiment. It is in order now to 
check the theoretical predictions in a given experimental context. 
A recent, interesting experimental study on A q ~ p  across cation- 
exchange membranes is that by Tasaka et aL7 These authors 
found a significant increase in A ~ B I P  with the external elec- 
trolyte concentration CO. This is a rather surprising result, since 
their experimental conditions correspond to the limit co << X, 
which leads to total co-ion exclusion in the membrane, and then 
the A q ~ p  should be almost constant with c ~ . ~ , ~ J ~  The signifi- 
cant concentration dependence of A q ~ p  on co was claimed to 
be due to the change in the state of the hydrated counterions, 
although the mechanism was not understood in detail, and thus 
no quantitative theory was ad~anced .~  Given the low water 
content of the membranes employed (see Table 1 in ref 7), 
counterion hydration should certainly play an important role in 
the absolute values of A q ~ p .  However, since the total 
counterion concentration in the membrane was virtually constant 
with external electrolyte concentration7 and determined by X ,  
it remained obscure how the A q ~ p  could change so much with 
co * 

Let us apply some of the ideas discussed in the above section 
to the experimental results in ref 7. The membranes were almost 
ideally permselective all over the range of experimental condi- 
tions. Therefore, the co-ion flux effects should be negligible 
here. Consider now the possible influence of the DBLs on the 
A ~ B I P .  Since this influence was not discussed in ref 7 and no 
specific details on the hydrodynamics (stirring procedure and 
rate, geometrical factors, etc.) were included there, it seems 
rather risky to attempt an explanation on the basis of the DBL 
effects. Now, let us accept the general criterion' that it is the 
magnitude of the dimensionless ratio 
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Dcod 

E d  DXd 
(33) 

what gives the counterion rate-determining step in the membrane 
system, where diffusion coefficients and concentrations are 
referred to the counterion in the membrane and solution phases. 
Then, the transport is not completely controlled by the diffusion 
in the membrane phase when co M, since Dc&fEXd - 
1 for realistic values of these parameters in this limit (see, e.g., 
ref 1, p 349). Therefore, both the membrane and the DBLs 
must affect the counterion transport for small values of CO. 

In order to check the plausibility of this conjecture, we have 
plotted the biionic potential A b p  (mV) against log(c&i) in 

a 

L " " " " " " " " " ' 1  
16 

14 
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10 

8 

-7 -6 -5 -4 -3 
log,, (c,/mol 

Figure 5. Biionic potential vs log(cdmo1 ~ m - ~ )  for the system 
KCllmernbraneJNaCl. Experimentals points from Tasaka et al.7 (mem- 
branes SC1 and SC4). The continuous lines correspond to the theoretical 
predictions with D,/D, = 1.9 (membrane SC4), D,/D, = 1.7 (mem- 
brane SCl),  and DJDz = 1.4. 

Figure 5 with the tentative values d = 106 = cm, X = 
1 M, and @Di % 1/20, taking for Di the values at infinite 
dilution. We see in this figure that our model does indeed 
follow the experimental trends observed for the concentration 
dependence of A b p .  The experimental points correspond to 
the particular system' KCllSCl or SC4 membranelNaC1, but 
similar qualitative results were obtained for other systems in 
ref 7, where no quantitative theoretical analysis was advanced. 
Although our aim was to show physical trends rather than to 
fit theory to experimental points, the following tentative 
conclusions could be drawn from Figure 5 and the ideas 
discussed in ref 7: 

(1) The counterion hydration properties do affect the meas- 
ured values of the biionic potential, as suggested by Tasaka et 
al.7 The membranes having the lowest water contents tend to 
reach the highest values of A ~ B , .  (See Figure 5 for membranes 
SC1 and SC4 as well as Figures 3-6 and Table 1 in ref 7.) 
This result could be rationalized in terms of the hydration effects 
on ionic diffusion coefficients. Indeed, the following sequence 
for the ratio of the diffusion coefficients was obtained from the 
fit of experimental data in Figure 5 to theory: D,fD, = 1.9 for 
membrane SC4 (that of lowest water content here), D,fD, = 
1.7 for membrane SC1, and D1fD2 = 1.4 for the DBLs in both 
membranes. Note that this latter value is not far from that 
corresponding to aqueous electrolyte solutions in the limit of 
infinite dilution,25 0 1 / 0 2  = 1.5. The above sequence could 
reflect the relatively higher difficulties found by the larger bare 
ion (potassium ion, subscript 1) to keep its hydration shell when 
decreasing the water content in the membrane when compared 
to those of the smaller bare ion (sodium ion, subscript 2); see 
p 106 in ref 1 in this context. However, the factors influencing 
counterion hydration in charged membranes are quite 
c o m p l e ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~  and we should not insist too much on this 
tentative explanation. 

(2) The presence of DBLs (in particular, the fact that 0, f 
Di and dfd > 1; see Figure 2) can explain the concentration 
dependence of the biionic potential over the whole experimental 
concentration range. As expected from the criterion in eq 33, 
the membrane should become the rate-determining mechanism 
only when high enough concentrations co are employed. 
However, when co takes low values, the DBLs effects are 
important. This could explain why the biionic potential is 
virtually independent of the membrane considered in the low 

-- -- 

-- 
_-  
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concentration limit (see Figures 2-6 in ref 7 as well as Figure 
5 here). In this context, it has often been mentioned that biionic 
systems have a strong tendency toward film c0ntr011-396,16922 in 
the low external concentration limit. Note also that the DBL 
effects could be hardly - noticeable in porous, weakly charged 
membranes where Di x Di, for in this case the A ~ , B I ~  in eqs 19 
and 20 are approximately equal to those in eqs 27 and 31, 
respectively (see also Figure 2). Therefore, theoretical studies 
not incorporating the DBL effects could lead to good agreement 
between theory and e ~ p e r i m e n t ~ , ~ ~  for the case of weakly 
charged membranes even when the DBLs are present. 

(3) The fact that the water state in the membrane phase may 
differ from that in the solution phase could give ion partition 
coefficients significantly different from unity. (The differences 
in the ion standard chemical potentialz0 between the membrane 
and the solution could be important, as suggested by Tasaka et 
al.’) However, though this effect could produce a shift in the 
biionic potential curves of Figure 5 ,  it is not likely to explain 
the significant concentration dependence of the biionic potential. 

In conclusion, we have discussed how the low water content 
of the membranes employed by Tasaka et al. could explain the 
particular values measured for the biionic potential. Following 
some of the suggestions from these authors, we could tentatively 
adscribe these values to the impact of the ion hydration effects 
on the diffusion coefficients in the membrane. However, it is 
hardly possible to imagine how these diffusion coefficients 
should change with the external concentration to produce such 
dramatic changes in the biionic potential. According to our 
ideas, it is the fact that counterions diffuse with very different 
diffusion coefficients in the DBLs and the membrane rather than 
the concentration dependence of membrane diffusion coef- 
ficients what could explain the observed changes of A v ~ p  with 
co in the highly charged membranes employed. Additional 
experimental work to confirm further this explanation is planned 
in the future. 
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