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Abstract

The steady-state equations of carrier-mediated transport are solved numerically by
means of the boundary element method and the limiting cases of fast reaction, fast
diffusion and excess of carrier are studied critically. It is confirmed that the facilitation
factor, defined as the ratio between the total flux of solute to that in the case of absence
of carrier, shows a maximum for an optimal value of the equilibrium constant K of the
solute-carrier reaction. Also, there appears to be a broad range of K values where
neither the fast reaction assumption (which is valid when the reaction proceeds much
faster than the diffusion) nor the fast diffusion assumption (valid in the opposite case)
constitute good approximations.

1. Introduction

Facilitated diffusion [1] is a carrier-mediated transport process in which a solute (S)
diffuses through a membrane and reacts homogeneously with a ligand (L) contained in
the membrane to form a complex (LS)

k,
L+S 2 LS. (1
k*l

This phenomenon has become a current topic in several fields because it represents a
step further to a classical passive transport system. In membrane biophysics the
transport of oxygen is known to occur with the mediation of hemoglobin or myoglobin
[2-5]. In chemical engineering, carrier-mediated diffusion is a promising separation
technique which combines high selectivity (because of the specific carrier-solute
reactions) with important facilitation factors [6-97]. And finally, in applied mathema-
tics facilitated diffusion also constitutes an attractive subject because of the nonlinear
character of the reaction-diffusion equations ruling the problem [10, 117. For instance,
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the flux of solute has a nonlinear dependence on the concentration difference across the
membrane, opposing to the case of passive diffusion.

The boundary element method (BEM) deals with the problem of solving a system of
nonlinear differential equations within a given domain by transforming it into an
equivalent integral equation system at the boundary of the domain. It was originally
developed by Banerjee and Butterfield [12] and Brebbia and coworkers [13—15] for
heat transfer and electrostatics problems [16-207, but it has recently found applica-
tions to mass transport phenomena [21-23]. Our aim here is to show that BEM
computational techniques can also be of interest for the solution of the reaction-
diffusion equations of facilitated diffusion. In particular, the present work will make use
of the BEM in a problem of considerable practical importance: the range of validity of
the assumptions of fast reaction, fast diffusion and excess of carrier [1-7].

Equations of facilitated diffusion

The process of facilitated diffusion [1] through a liquid membrane of thickness d is
schematically depicted in Figure 1. Transport is considered to occur along the positive
x direction. A concentration ¢, of carrier is dissolved in the membrane phase, and
confined there because of its negligible solubility in the external aqueous solutions. The
concentration of solute in the source and receiving solutions is cg, and cg,. respectively.
Inside the liquid membrane, the solute concentration is lower than in the external
solution because of the reduced solubility of the solute in the organic phase. In
particular, the interfacial concentrations of solute ¢z (0) and ¢ (d) are lower than ¢z, and
¢, respectively, and determined by the partition coefficient [1] of the solute. Since we
are interested here in the carrier-mediated transport through the membrane, we
consider that c4(0) and cg(d) are known.

During diffusion through the membrane phase, the solute S reacts with the ligand L
according to reaction (1) and forms a complex LS which also diffuses in the positive x
direction. The concentration of solute bound to the ligand can be much higher than the
free solute concentration due to the larger solubility of the complex in the membrane
phase. This additional transport mechanism (ie., the carrier-mediated diffusion)
increases the solute flux and can lead to important facilitation factors, defined as the
ratio between the total flux of solute (i.e., free plus bound solute) to that in the case of
absence of carrier [24]

dc de
—D. 5 _p, LS
F_< > dx = dx >C7#O

_p.%s
de cr=0

In order to compare the diffusion and reaction rates, the Damkdohler number [24] is
introduced as Da = k _,d*/D, where D is a typical diffusion coefficient of the solute and
k_, is the reverse rate constant of the solute-carrier reaction (1). (This dimensionless
number can also be defined in terms of the forward rate constant k, but this is not
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interesting in our case.) Thus, the limits of fast diffusion and fast reaction correspond to
Jow and high Damkohler numbers, respectively [1,7,24]. In the first case, the transport
through the membrance occurs as if no carrier were present, and therefore the
facilitation factor reduces to one. In the second case, the concentration of the different
species are related everywhere by

K =St )

Crls

where K = k,/k _, is the equilibrium constant of reaction (1). However, there are still
some differences with respect to the case of heterogeneous solute-carrier reaction.

The study of facilitated diffusion involves the solution of a boundary value problem. In
particular, the three continuity equations for the steady-state transport through the
membrane [1]

d*c

Dy dxzs =lkycgep —k _iCpg (4a)
d?c

DL—CEfzklcscL-—k,chs (4b)
d*c

DLS—C-Z;?Z —(kyeger —k_ycpg) (4c)

must be solved under the boundary conditions
cg=c5(0), pL=ps=0 atx =0, (5a)
cg=cs(d), pL=ps=0 atx=d, (5b)

and

O ey

(cp + cps)dx = crd. (6)

Here D}, ¢; and p;=dc /dx denote the diffusion coefficient, concentration and concen-
tration gradient of species j(j =S, L, and LS), respectively. The boundary conditions
indicate that the carrier is confined to the membrane phase, and equation (6) holds
indeed because the total carrier flux (ie., free and bound carrier) is constant and
therefore the specification of the carrier fluxes as zero at x = 0, already implies that they
are also zero at x = d (ie., only three of the four boundary conditions related to the
carrier are independent, cp. Fig. 1).

In most of the situations of practical interest, the carrier and its complex are of about
the same size, and then the assumption D, & D, s can be used with negligible error. In

J. Non-Equilib Thermodyn. Vol. 20, 1995, No. 4

e

B



A. J. Barbero et al.
ast reaction correspond to
the first case, the transport

‘esent, and therefore the
centration of the different

3)

). However, there are still
olute-carrier reaction.

mundary value problem. In
ite transport through the

(4a)

(4b)

(4c)

(52)

(5b)

(6)

ncentration and concen-
T'he boundary conditions
e, and equation (6) holds
carrier) is constant and
,already implies that they
conditions related to the

its complex are of about
1 with negligible error. In

hermodyn. Vol. 20, 1995, No. 4

BEM study of facilitated diffusion 335

this case, equation (6) simplifies to the local condition
)+ es(X)=cp, O0<x<d, (7)

which allows to work with concentrations ¢g and ¢, only and reduce in one the number
of differential equations. Still, no exact analytical solution to the above equation system
exists, and thus the three approximated solutions based on the limiting cases of fast
reaction (Da » 1), fast diffusion (Da « 1), and excess of carrier (¢, > ¢, g, ¢g) have become
very popular [1,7].

Though these limiting cases constitute fairly good approximations in many practical
applications [1], the need of numerical solution often arises. Numerical solutions can
serve not only to deal with situations where these cases do not apply [25] but also to
predict theoretical optimal regimes of facilitated transport [24] and explore the
consequences of the coupling between the reaction-diffusion phenomena with a
convective flow [ 26, 27]. The computational techniques employed in these studies are
the method of orthogonal collocation on finite elements [25] and a combined finite
element and boundary element method [26]. More recently, lattice Boltzmann compu-
tations for general reaction-diffusion equations have also been attempted [28]. How-
ever, as far as we know, this work is the first implementation of the BEM to the problem
of facilitated diffusion.

Boundary element method

Lately, Ramachandran [21, 227 has presented a BEM procedure for a single ordinary
differential equation of the form

d2
= fluep) (8a)
X

where ¢ is a concentration, p =dc/dx i1s the concentration gradient, and f is an
arbitrary function of x, ¢ and p. The numerical method employed here can be
considered as a generalization of this procedure to a system of reaction-diffusion
equations

dzcj )
e filx, e capsopr), J=S, L. (8b)

First, we choose a set of n nodal points x, =0, x,,...,x, = d, defining a nonuniform
grid, and take two convenient weighting functions w,(x) and w,(x) satisfying the
condition [22]

dek (x)
dx*

=0, k=1,2. ©9)
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Multiplication of equation (8b) by w, (k = 1,2), and integration between two consecu-
tive nodal points, x; and x,, ,, yields

o dzc‘ ' ’
[ sz&ijdx = — we(x)p;0x0) + wic;(xg) + wilx; 4 )px; 1) — wici(x; 4 1)

= [ wfdx i=1...n—1 j=LS; k=12 (10)

Xi

where the left hand side has been integrated twice by parts, and w; = dw,/dx.

In a general formulation, the boundary conditions for this problem can be written as
four linear relationships between ¢; and p; (j = L, §) at both ends of the membrane

Lyjeix) + Lypix) + Ly;=0, j=L.S (11a)
Ryjei(x,) + Rypi(x,) + Ry; =0, j=L,S (11b)

where L, ;, L,;, Ls;, R,;, R,;, and Ry; are constants. Thus, equations (10) and (11)
constitute a system of 2#2(n — 1) + 4 = 4n relationships between the 4n independent
variables (¢;(x;) and p;(x;) for j=L, S and i=1,...,n). The solution of this system
requires an initial guess for the 4n independent variables. Then, Newton-Raphson
method is applied to obtain the corrections to the values of ¢;(x;) and p;(x;) [22].
Whenever necessary, the integrals in equations (10) are calculated via gaussian
quadratures by using polynomial approximations for ¢;(x) and p;(x) in every subinter-
val x; < x < x,, ; [22,23]. The process is iterated until the corrections are smaller than
some previously determined tolerance.

It is interesting to note that some methods need an initial guess relatively close to the
exact solution to converge. On the contrary, the BEM can reach the right solution even
with poor starting guesses.

Results and discussion

As stated in the Introduction, the results here presented, and hence the values
considered for the system parameters, are intended to show the conditions of validity of
the assumptions of fast reaction, fast diffusion, and excess of carrier rather than
simulate a particular experimental situation. In particular and unless otherwise stated,
we have chosen ¢g(0) = c; = 10 *molem ™3, ¢g(d) = 0,Dg =D, =D,y = 10" cm?s ™ 7,
d=10"?cm,and k_, =10°s" .

Figure 2 shows the facilitation factor F as a function of the equilibrium constant K of
reaction (1). Tt can be seen that there is a broad range of values (10* <K
(cm®mol ') < 107) where neither the fast reaction nor the fast diffusion constitute
good approximations. The computed values for F in the above limits agree with
the analytical expressions given in the literature (see equations (15.3-13) and (15.3-19)
in reference [1]). Also, F takes its maximum value for an optimal value of K
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flux of solute '
CS (0) c S( d)

S+L &= 18

liquid membrane

x=0 x=d

Fig. 1: Schematic representation of carrier-mediated transport (facilitated diffusion) through a
liquid membrane.
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Fig. 2: Facilitation factor vs. the reaction equilibrium constant.

(K ~ 107 cm®*mol ! in Fig. 2). This fact has been discussed previously [24], and can be
casily understood from the definition K = k,/k_,. For low values of K, the amount of
complex is so small that the diffusion is not facilitated at all. However, very high values
of K also inhibit facilitation, since in this case the complex is very stable, and does not
dissociate to release the solute (see Figs. 1 and 2). The maximum value of F increases
with concentration ¢y.

The concentration profiles correspondi‘ng to fast reaction appear in Figure 3. At both
sides of the center of the membrane, the profiles are linear which means that the
reaction equilibrium has been achieved there. At the membrane center, carrier-solute
association predominates over dissociation but still equation (3) constitutes a good
approximation. Thus, the solute diffuses to the membrane center and reacts there with
the carrier to form a complex species which diffuses then from the center towards the
receiving solution. At the interface with this solution, the reaction is reversed. The
carrier liberated diffuses back to the membrance center, where it reacts to form the
complex, and so on. In the case of fast diffusion, the solute behaves as if no carrier where
present and, therefore, its concentration profile is simply linear, while all the carrierisin
free form. Note that the reaction front is located at x = d/2 because ¢5(0) = ¢,. When
¢5(0) > ¢, (cs(0) < cp) the reaction front moves to the left (right).
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Fig. 3: Concentration profiles through the membrane for K = 107 ecm®mol ™! (fast reaction
limit) and k; =102 cm®mol~*s™ ' Here, ¢ =cg/cg(0)(—), ¢ =cy/ep(~-), and
L L ):

Figure 4 gives F as a function of the total carrier concentration ¢, under conditions of
excess of carrier. We see that diffusion can increase considerably with ¢ (F ~ 10-10?)
and that this increase starts earlier for the higher values of K. Again, the computed
values agree with the analytical expression for F derived under the condition of excess
of carrier (equations (15.3-26) in ref. [1]). However, this agreement gets poorer for
higher values of K since the chemical reaction proceeds then so fast that the carrier can
no Jonger be in excess. Indeed, the differences between the values derived from equations
(15.3-26) in reference [ 1] and those in Figure 4 are of about 10% forlog, o (¢;/cs(0)) =3
and K = 10*cm®mol 1.

Figure 5 shows the concentration profiles for the case of excess of carrier. Note that ¢y is
almost constant and larger than cg and ¢, through most of the membrane. Since
Da = 10 here, and the reaction layer thickness is approximately given by d/(Da)'?, the
grid must include many points close to the membrane/solution interfaces, as usual in
those transport phenomena where two different spatial zones coexist [29-31]. In

100 e
80 |
60

40

PSS ETEVE N NP ol LTTYY

L

20}

- as®

[ = S O PP TELL O MR

1 2 3 , 4
log,  (c /c(0)

Fig. 4: Facilitation factor vs. total carrier concentration for different values of the equilibrium
constant K = 10* (——), 10° (———) and 10?cm®mol ™ (----).
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Fig. 5: Concentration profiles through the membrane for K = 10*cm® mol ~ ¥ and ¢4/cg(0) = 107
{excess of carrier). Here, ¢f = ¢5/c(0)(—), ¢f = ¢pfer(——), and ¢fg=c, fop( o ).

particular, we have used here the following grid on n = 41 points:

2i—1)1077, 1<i<6
(1+18(—6)1075, 7T<i<ll
x/d={(1+18(i—11)1075, 12<i<16 (12)
0.1(i — 16), 17<i<21
1—x,., /d, N<i<dl

Though the ¢y profile seems to be linear in Figure 5, this is not strictly true because
there is a reaction layer near to the membrane interface. This fact is shown in Figure 6,
where some nodal points in the neighborhood of the left interface are depicted in a
suitable scale: there are 16 nodal points between x =0 and x/d = 10~ %, although the
first ones are too close to distinguish them. Several runs using different grids showed
that the critical factor to achieve convergence is to take the distance between consecu-
tive nodal points to be of the same order of magnitude as the reaction layer thickness. If

1.00000  ggr—r————r—————————————

099975 | ]
099950 |- ]

0.99925 |- ]

099900 Lo Lo v v Ut
0 2 4 6 8 10

10° x/d

Fig. 6: Concentration profile cf in the vicinity of left interface for the same casc as in Figure 5.
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this condition is satisfied, convergence is achieved virtually in all realistic cases,
and the results are independent of the number and distribution of the additional nodal
points.

To test further the validity of our numerical results, a comparison between the values
obtained here for the facilitation factor and those reported by Kemena et al. [24] using
a standard numerical procedure was made. A good agreement (better than 8% for all
the cases studied) between our results and those in Figure 1 of reference [ 24] was found.

The BEM algorithm was written in C programming language, and run on a HP
9000/330 computer. Convergence in the Newton-Raphson procedure was attained
after some 8-15 iterations in all cases. The computer code, which is available on
request, can also be used on a PC working under DOS.
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